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ABSTRACT Researchers suggest that a short video clip, when tagged with a single label, is sufficient for
classification into an emotional category. However, when subjects view an emotional film tagged similarly,
there is no guarantee that the designated emotion persists throughout the duration, or when exactly the emo-
tion is elicited. This inconsistency adversely affects the performance of emotion recognition (ER) systems.
In this study, we propose a multimodal ER system employing an eye-tracking gated strategy to identify
the most effective timing for emotional categorization. Initially, common eye-tracking features are extracted
and selected using the minimum-redundancy-maximum-relevance (mRMR)method. Subsequently, the most
discriminative feature is employed as a threshold to pinpoint themost relevant timing. EEG signals from these
moments are then decomposed into five standard frequency bands using the Daubechies wavelet function
(order 4). Furthermore, four types of entropy features are extracted from four-second segments of 62 and
32 channels for the SEED-IV and MAHNOB-HCI databases, respectively. The best features, as determined
by the mRMR method, are fed into a Sugeno-fuzzy inference system (S-FIS) designed to derive rules for
discriminating between the four emotional categories of happiness, fear, sadness, and neutrality. The S-FIS
rules were refined using a genetic algorithm (GA), leading to most discriminative rules achieving average
accuracies of 94.42% and 85.20% for the alpha frequency bands of the SEED-IV and MAHNOB-HCI
databases, respectively. The results of this study demonstrate the effectiveness of fuzzy rule extraction in
enhancing the performance of multimodal ER systems

INDEX TERMS Electroencephalogram (EEG), emotion recognition, Sugeno-fuzzy inference system (S-
FIS), entropy, mine fuzzy rule.

I. INTRODUCTION
This study introduces a novel method to explore vari-
ous dimensions, beginning with the expression and delin-
eation of uncertainty in emotion classification to address
issues associated with probability theory. Recognizing that
expert involvement or access to a knowledge base enhances

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Da Lin .

problem-solving, establishing a comprehensive rule base
marks a significant shift in emotion recognition (ER). This
allows for the effective use of knowledge and benefits emo-
tion research and disease diagnosis [1], [2], [3]. Furthermore,
given the interdependence of brain and biological signals,
analyzing a single signal is insufficient. A holistic approach
considers the interactions between different physiologic sig-
nals. This involves examining how an emotional stimulus
may alter the strength of one signal in relation to another,
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showcasing the complex interplay of physiological responses.
In this study we have used multimodal databases including
electroencephalogram (EEG) and eye track data. There are
multiple brain imaging techniques to investigate emotional
states, including EEG [1], [2], [3], functional magnetic reso-
nance imaging (fMRI) [4], magnetoencephalography (MEG)
[5], and near-infrared spectroscopy (NIRS) [6]. Among these,
EEG stands out due to its higher temporal resolution. Addi-
tionally, EEG is widely available in most research and
academic centers and is more cost-effective. Moreover, eye
track is a novel and interesting modality that has been aug-
mented information in neuroscience studies. Recently, this
modality has been used to improve performance of ER [7],
[8], [9] and evaluate autism [10], [11]. One of the study’s
highlights is identifying timing of eliciting emotions from
eye track data. Finding interactions between EEG signal and
eye track signal, crucial for refining classification accuracy
and identifying brain regions activated by stimuli, such as
watching a thriller. Additionally, measuring changes in pupil
diameter or blink rate and linking these to specific events
aids in pinpointing brain areas that significantly influence
accuracy. In summary, this research not only tackles theo-
retical challenges but also introduces practical methods for
unraveling the intricate links between emotional and physio-
logical responses, advancing our understanding and potential
diagnostic applications.

ER from multimodal signals is a cutting-edge field that
merges neuroscience, psychology, and technology to under-
stand human emotions through brainwave patterns. This
interdisciplinary approach has a wide range of applications
across various sectors. Here are some key applications:

• EEG-based emotion recognition can aid in diagnos-
ing mental health conditions such as depression [12], [13]
and anxiety [14], [15] by identifying abnormal emotional
responses. It can also monitor the effectiveness of treatments
by observing changes in emotional states over time.

• In human-computer interaction (HCI), EEG-based emo-
tion recognition can enable systems to adapt in real-time to
the user’s emotional state, improving user experience. For
example, a learning application could adjust its difficulty
level or content presentation style based on the learner’s
frustration or engagement levels [16], [17].

•Video game developers can use ER system to create more
immersive and responsive gaming experiences that adapt
to the player’s emotional state, enhancing engagement and
satisfaction [18].

The contribution of this study is as follows:
-Developing a multimodal and multiclass Emotion Recog-

nition (ER) system using eye-tracking data as a gated strategy
and EEG signals as input. This study investigates the best
eye-tracking features through a powerful machine learning
technique to extract relevant emotional aspects from EEG
signals.

-Enhancing the performance of discriminating between
multiclass emotional categories from two multimodal

databases by integrating machine learning techniques with
fuzzy logic. Machine learning techniques included extract
nonlinear features of entropy and select best features using
the minimum Redundancy Maximum Relevance (mRMR)
method. Then, the best features used as inputs for fuzzy
logic, which then mines effective fuzzy rules for multiclass
emotional categories.

-Addressing the uncertainties of emotional categories
using a type 1 Sugeno-fuzzy inference system (S-FIS).
Unlike traditional studies that rely on neural networks’ black-
box models, this approach leverages fuzzy logic to mine
high-level expert knowledge about data patterns. Further-
more, the S-FIS is optimized with a genetic algorithm to
discover the most effective fuzzy rules for distinguishing
between multiple emotion classes.

-Evaluating the proposed method on two public databases,
MAHNOB-HCI and SEED-IV, focusing on four emotional
categories from the first database and sadness, happiness, fear
and neutrality.

II. RELATED STUDIES
Zheng et al. [19] introduced an ER technique combining
EEG signals and eye tracker-derived pupillary response data.
They used 15 emotional film clips to elicit positive, neu-
tral, and negative states from 5 subjects, extracting features
such as power spectral density (PSD), differential entropy
(DE), and asymmetry measures. Employing linear dynamic
system (LDS) for EEG smoothing and a support vector
machine (SVM) for classification, they achieved highest
accuracies of 71.77% (EEG) and 58.90% (eye-tracking), with
a feature-level fusion strategy further increasing accuracy
to 73.59%. Su et al. [20] proposed a method to perceive
multi-modal emotion intensity by integrating EEG and eye
movement data. They developed a stimulus selection method
for evoking various emotional states in a study involving
twelve participants and forty emotional trials. They extracted
feature parameters such as average power spectral (APS) and
average energy (AE) from different brain frequency bands.
Using a two-classification SVM approach, they assessed
emotion intensity across arousal and valence dimensions.
Separate classifiers for EEG and eye movement data were
used before combining them through decision-level fusion,
aiming to enhance recognition accuracy. The highest recogni-
tion accuracies achieved for arousal and valence dimensions
were 72.8% and 69.3%, respectively, in a laboratory setting.
Li et al. [21] studied the use of EEG and eye movement
signals for classifying five emotions (happy, sad, fear, disgust,
neutral) over time, creating the SEED-V dataset from 16 sub-
jects. They extracted DE from EEG across five frequency
bands and computed 33-dimensional eye movement features
(including pupil diameter and saccade) through statistical
analysis. SVM and MLP classifiers were trained on EEG
and eye movement signals, respectively. They also combined
EEG and eye movement features using a feature-level fusion
(FLF) method. The study found average accuracies of 70.8%
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(EEG), 59.87% (eye movement), and 75.13% (FLF). Gong
et al. [22] investigated emotion cognition across cultural
groups using EEG and eyemovement signals on SEED-CHN,
SEED-GER, and SEED-FRA datasets, focusing on intracul-
tural and cross-cultural analyses. They extracted DE from
EEG and various features from eye movements, employing a
neural network called multiple stacked broad learning system
(MSBLS) for fusion, achieving high accuracies in cultural
settings: 94.30% (Chinese), 94.33% (German), and 84.68%
(French). Zhu et al. [23] integrated EEG and eye-tracking
for product evaluation, predicting valence and arousal from
EEG and deriving preferences through statistical analysis and
a spatial-temporal neural network, Att-2DCNN, achieving
maximum accuracies of 93.71% and 93.56% for valence and
arousal, and 95.12% for design decision prediction through
fusion of EEG and eye-tracking. Fu et al. [24] proposed a
Multimodal Feature Fusion Neural Network (MFFNN) for
ER from EEG and eye movement, achieving an 87.32%
accuracy on the SEED-IV dataset for four emotions through
dual-branch feature extraction and multi-scale feature fusion.
Lu et al. [25] aimed to improve ER by combining eye
movements and EEG, exploring features and fusion strate-
gies for three emotions: positive, negative, and neutral. They
extracted 16 eye movement features and EEG features like
PSD and DE, using an SVM with a linear kernel for classi-
fication. Various fusion strategies, including FLF and DLF,
were tested. The fuzzy integral fusion strategy yielded the
highest accuracy at 87.59%, compared to 77.80% with eye
movements alone and 78.51% with EEG data alone. Anto-
niou et al. [26] developed a brain-computer interface (BCI)
system using the Emotiv EPOC Flex to capture EEG signals
and classify them into six categories related to eye move-
ments (open, closed, left, right, up, and down) using the
random forests (RF) algorithm. After preprocessing and fea-
ture extraction, the method achieved an accuracy of 85.39%,
surpassing other classification algorithms. Zheng et al. [7]
developed a multimodal framework to recognize four emo-
tions (happy, sad, fear, and neutral) that integrated EEG
signals and eye movements. They used PSD and DE for EEG
signals, and various detailed parameters for eye movements,
such as pupil diameters, fixation details, saccade details,
blink details, and event statistics. The classification methods
involved modality fusion using multimodal deep learning
and feature-level fusion approaches. The results showed that
modality fusion significantly improved classification accu-
racies, with an average accuracy of 85.11% for recognizing
the four emotions. Zhou et al. [27] introduced a multimodal
fusion framework for Emotion Recognition (ER) using EEG
and eyemovement signals, focusing on four emotions (happy,
sad, fear, neutral) with the SEED-IV dataset. Their SOFNN
(subjective and objective signal fusion) framework effec-
tively extracted temporal-spatial features, showing improved
classification for neutral and fear emotions, with moderate
success for sad emotions. The highest accuracy achieved
was 86.27%.

FIGURE 1. An example of recording devices and environment from (a) the
SEED-IV [7] and (b) MAHNOB-HCI databases [9].

III. MATERIAL AND METHODS
A. MULTIMODAL SEED-IV DATABASE
This database is recorded from 15 (8 female/ 7 male) healthy
subjects with average age of 21.32 old, while watching
72 short emotional clips [7]. EEG signals from 62 loca-
tions according to 10-20 electrode placement system were
recorded with 1000 sampling frequency. EEG signals were
recorded using the ESI NuroScan device with Ag/Ag-
CL electrodes. Four discrete emotional categories, sadness,
happiness, fear and neutral were considered among clips.
Duration of clips were between 48 seconds to 3minutes (short
clips were selected to elicit only one category of emotions).
Also, eye-track data has been recorded simultaneously by the
SMI eye-tracking glass. FIGURE 1 shows the environment of
recording EEG and eye-track data for the SEED-IV (a) and
MAHNOB-HCI (b). Table 1 report details of this database.

B. MULTIMODAL MAHNOB-HCI DATABASE
The MAHNOB-HCI database comprises EEG recordings
from 27 healthy participants, captured across 32 channels
while they viewed 20 different video clips [9]. The participant
group consisted of 16 females and 11 males with varied
educational backgrounds, aged between 19 and 40 years
(mean age = 26.06, standard deviation = 4.39). The EEG
data were collected using a Biosemi Active II system, adher-
ing to the 10–20 international electrode placement standard,
at a sampling frequency of 256 Hz. The selection of video
clips, derived from a preliminary study and including online
and weather forecast segments, is detailed in [9]. The pro-
tocol to elicit various emotional responses involved three
steps: 1) presenting a neutral clip to mitigate emotional
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FIGURE 2. Proposed eye track data gated EEG-S-FIS-GA-ER system from MAHNOB-HCI and SEED-IV databases.

TABLE 1. Details of SEED-IV and MAHNOB-HCI multimodal databases.

preconceptions, 2) displaying emotional video clips, and
3) completing a self-assessment form. Each participant’s ses-
sion lasted approximately 50 minutes, with individual trials
around two and a half minutes. The durations of the video
clips ranged from approximately 34 to 117 seconds.

C. EMOTION CATEGORIES
According to Ekman’s theory, sadness, happiness, and fear
are fundamental emotional categories universally recognized
across different nationalities [28]. In other words, these emo-
tions exhibit similarities among individuals regardless of sex,
culture, or age. This study focuses on classifying these emo-
tions, along with neutrality, as they represent core affective
states that are commonly understood and identifiable across
diverse demographic groups. By examining these basic emo-
tions, the study aims to contribute to a deeper understanding
of emotional processing and recognition, which could have
broad implications for fields such as psychology, neuro-
science, and human-computer interaction.

D. PROPOSED S-FIS-GA-ER SCHEMA
In this study, we proposed a multimodal ER system that
provides selected parts of EEG signals based on eye track

data. In the other words, this system determined a threshold
based on a specific feature extracted from eye track data,
then, select corresponding parts from EEG signals which
are most effective parts in recognition of four desired emo-
tional categories i.e., sadness, happiness, fear and neutrality.
Then, nonlinear features are extracted from these EEG sig-
nals and after selection of three best features using desired
feature selection method, a S-FIS is designed to mine rules.
This S-FIS is tunes using the GA and optimized rules are
used to discriminate four mentioned emotional categories.
FIGURE 2 illustrates these steps.

E. EYE TRACKER AS A GATEWAY FOR SELECTING
PHYSIOLOGICAL SIGNALS
In this step, eye track data is used to selectmost discriminative
parts of EEG signals to be processes in our multiclass ER
problem. To do this work, appropriate features according
to [7] are extracted from eye track data.

1) EXTRACT FEATURES
These features include average and standard deviation of
fixation duration and pupil diameter (in X and Y direc-
tions), fixation frequency andmaximumfixation duration [7].
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Fixation duration refers to the amount of time (milli second)
that the eyes remain stationary, focusing on a single point or
area in the visual field. Longer fixation durations can indicate
more in-depth cognitive processing, difficulty in understand-
ing, or heightened interest in the visual content. Average of
fixation duration computes sum of duration of all fixation
divided by number of fixations in the trial according to milli
second. Fixation frequency refers to the number of fixations
that occur within a given time frame or during a particular
task. Maximum fixation duration is the length of the longest
single fixation recorded during a specific period or task.
This feature indicates the point of greatest interest, difficulty,
or engagement within the visual field. pupil diameter refers
to the measurement of the width of the pupil, in each X and Y
directions. Pupil diameter can vary based on several factors,
including light levels (pupillary light reflex), emotional state,
cognitive load, and other physiological and psychological
conditions. Finally, 8 features are extracted from every 4 sec-
ond segments, length of segments are selected to compare
with [7].

2) SELECT FEATURES USING mRMR METHOD
After extract mentioned features, the mRMR [29] is used
to select best features in each database. The mRMR feature
selection approach systematically identifies a set of features
characterized by minimal mutual redundancy while maxi-
mizing the mutual information with the outcome variable
(class label) [29]. Mutual information between two features,
denoted as x and y, is quantitatively defined in Eq (1). This
equation employs the probability density functions (PDFs)
p (x) , p(y) and p(x, y) to measure the statistical dependence
or information shared between the features. The core princi-
ple of mRMR is to enhance the predictive power of models
by selecting features that offer the most unique and relevant
information about the target variable [29].

I (x; y) =

∫∫
p(x, y) log

p(x, y)
p (x) p(y)

dxdy (1)

The quantification of the maximal correlation or depen-
dency between the feature set and the class label is achieved
through the application of Eq (2):

maxD (S, c) ,D =
1
|S|

∑
xiϵS

I (xi; c) (2)

Here, S represents the set of selected features, while c
denotes the class label. Furthermore, to ensure the selection
of features with minimal redundancy, a separate formula is
applied, structured as Eq (3):

minR (S) ,D =
1

|S|2

∑
xi,xjϵS

I (xi, xj) (3)

This dual approach underscores the importance of balanc-
ing relevance with redundancy minimization in the feature
selection process, aiming to optimize the predictive accuracy
and interpretability of the model. The mRMR is calculated by
Eq (4) as follows:

max∅ (D,R) , ∅ = D− R (4)

F. PROCESS MULTICHANNEL EEGs
Noise removal, windowing and normalization are among the
most important low-level preprocessing methods for EEG
signals [3]. EEG signals are susceptible to various types of
noise, including electrical interference, muscle activity, and
movement artifacts. These noises are commonly removed
using different filters, such as band-pass, low-pass, and
high-pass, during the low-level preprocessing stage. In this
study, we applied these steps according to recommendation
of MAHNOB-HCI database [9]. Also, we have used the
independent component analysis (ICA) to remove residual
noises. Therefore, EEG signals from MAHNOB-HCI were
preprocessed as bellow:

1-Band pass Butterworth filter with order 4 and low and
high cut frequencies of 1 and 60 Hz and order 4 to remove
artefacts

2-Notch filter to remove power line noise
3-Re-reference multichannel EEG signals from

MAHNOB-HCI database based on common average method.
4-Downsample signals to 128 Hz to decrease the compu-

tational load.
Also, EEG signals from SEED-IV database were passed

through all mentioned steps except number 3.

1) DECOMPOSE EEG SIGNALS TO FIVE FREQUENCY BANDS
After these steps, the cleaned EEG signals were decomposed
to five frequency bands of delta (1-4 Hz), theta (4-8 Hz),
alpha (8-13 Hz), beta (13-25 Hz) and gamma (25-60 Hz)
using the discrete wavelet transform (DWT) method with the
Daubechies (order 4) mother wavelet at 4 levels [30]. DWT
includes two operations as bellow:

1- Filtering: At each level, the signal is split into two parts
using high-pass and low-pass filters.

2-Downsampling: After filtering, the signal is downsam-
pled, which means that the number of samples is reduced by
half at each level.

FIGURE 3 shows a 30 second EEG signal from SEED-IV
database from sad class at the top, then, five frequency
bands of delta, theta, alpha, beta and gamma frequency bands
are decomposed as mentioned here. Due to downsampling
at each level, the length of the resulting signals for each
frequency band decreases. For instance, after one level of
decomposition, the signal length is halved, after two lev-
els, it is reduced to a quarter of the original length, and
so on.

2) EXTRACT FEATURES FROM MULTICHANNEL EEG SIGNALS
Now, four nonlinear entropy features (symbolic dynamic,
sample, permutation and phase entropies) are extracted from
62 channels of SEED-IV and 32 channels of MAHNOB-HCI
databases at each frequency bands. There features are
selected based on efficacy to process nonlinear EEG sig-
nals [31], [32], [33]. These features are described at bellow
sub-sections.
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FIGURE 3. An example of a raw EEG signal associated with sadness,
showing the delta, theta, alpha, beta, and gamma frequency bands from
top to bottom, respectively. The horizontal axis represents the samples,
and the vertical axis represents the signal amplitude. The raw signal has a
duration of 30 seconds and consists of 3840 samples, given a sampling
frequency of 128 Hz.

a: SYMBOLIC DYNAMICS ENTROPY
In the framework of symbolic dynamics, a methodology
exists where datasets from the time domain are transmuted
into sequences of symbolic representations, facilitating the
computation of the probabilities associated with various sub-
sequences as delineated in [33]. This transformation enables
the derivation of symbolic dynamics entropy (SymbEn)
through the application of Eq (5):

SymEn(X ,m, τ, c) = −

∑c

a=1
mp

(
qc,m,τ
a

)
lnp

(
qc,m,τ
a

)
−

∑c

a=1
m

∑c

b=1
p

(
qε,m,τ
a

)
lnp

(
qε,m,τ
a

)
.p

(
σb | qε,mτ

a
)

(5)

Here, X signifies the series of symbols derived from the
time series data, with m representing the embedding dimen-
sion, τ indicating the time delay, and ε denoting the alphabet
size. The term cm specifies the total count of distinct states
within the system, where a indexes these state patterns (with
a ranging from 1 to cm), and b indexes the individual symbols
within the alphabet (with b ranging from 1 to c). The state of
the embedding vector is denoted by qc,m,τ

a , while σb corre-
sponds to a particular symbol within the alphabet, spanning
from 1 to c. In the specific context of calculating SymbEn,
parameters are selected as follows: an embedding dimension
(m) of 5, a time delay (τ ) of 2, and an alphabet size (c) of 3.

b: PHASE ENTROPY
The methodology embodied by phase entropy (PhEn) per-
tains to the quantitative assessment of signal complexity
through an analysis of its representation within the second
order difference plot (SODP) [34]. This analytical procedure
entails the calculation of the angular inclination for indi-
vidual data points situated on the SODP and subsequently
categorizing the plot into k distinct sectors, with each sec-
tor encompassing an angular breadth of 2π

k radians. This
segmentation strategy facilitates the modulation of analysis
granularity. The accumulation of slope angles within each
designated sector is computed, followed by the derivation
of the probability distribution of these slope angles across

the sectors, denoted as p (i). Utilizing this probability distri-
bution, the Shannon entropy, referred to as PhasEn, is then
calculated, as indicated in reference. This entropy serves
as a metric for the signal’s complexity by quantifying the
diversity in its phase space distribution as represented on the
SODP [34].

PhasEn = −
1

log k

∑k

i=1
p (i) logp (i) (6)

where, k is set 5.

c: PERMUTATION ENTROPY
Permutation entropy (PermEn) is a metric for evaluating the
prevalence of ordinal patterns within a time series dataset
by constructing a multidimensional sequence vector, which
is contingent upon the parameters of embedding dimension
and time delay, analogous to methodologies employed by
approximate entropy and SampEn [35]. This involves the
generation of amultidimensional sequence vector through the
specification of an embedding dimension, denoted asm, and a
time delay, denoted as τ . The formal expression for PermEn,
is calculated by Eq.(7) as follows [35]:

PermEn = −

∑m!

i
pi ln pi (7)

In this context, pi represents the probability of encountering
each specific pattern within the dataset, and m signifies the
embedding dimension. For the purposes of the conducted
analysis, the parameters were established with m = 5, indi-
cating an embedding dimension, and the time delay, τ , was
set to 2. Sample entropy (SampEn) SampEnis a statistical
measure employed for assessing the likelihood that two sub-
sequences, differing by one in their length (m andm+1), will
remain similar to each other within a specified tolerance (r).
This index effectively measures the self-similarity of a time
series, as articulated in Eq.(8) [36]:

SampEn (m, r,N ) = −ln[

∑n−mτ
i=1 Ai∑n−mτ
i=1 Bi

] (8)

In this equation, Ai denotes the count of pairs of sequences
that match within a tolerance r in the (m + 1)-dimensional
space, whereas Bi signifies the count of matching pairs in the
m -dimensional space. Here,Xi elements are compared within
a tolerance r of Xj, with these elements forming part of either
the m -dimensional or (m + 1)-dimensional pattern vectors,
as indicated in [37]. For the purpose of calculating this form
of entropy, parameters are set with m = 5 as the embedding
dimension, τ = 2 as the time delay, and r as 0.15 times the
standard deviation of the time series signal, thereby providing
a standardized approach to quantify temporal regularity and
predictability within the dataset.

G. FUZZY LOGIC
In a general statement, it is said that the complexity of the
universe comes from its uncertainty, where humans are able
to understand ambiguities and complications due to the power
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FIGURE 4. Flowchart of our proposed S-FIS of ER system.

of thinking. Many real-world problems cannot be solved by
classical set theory, in classical set theory an element or mem-
ber of the set is or is not, or zero or one. The opposite point
of classical set theory is fuzzy theory [38], [39]. We are faced
with uncertainty in the phenomenon of ER, whether a system
can identify exactly one type of emotion or what knowledge
an expert has to recognize emotions, fuzzy set theory is a pow-
erful tool to deal with the uncertainty of emotion expression
due to ambiguity. Although fuzzy systems describe uncertain
and uncertain phenomena, the fuzzy theory itself leads to a
precise theory.

1) S-FIS METHOD
FIGURE 4 shows the architecture of the S-FIS for fuzzing
emotional signals. As it is known, the FIS is generally made
of three components of fuzzifier, fuzzy inference engine
and defuzzifier. The process of converting explicit variables
into linguistic variables is called fuzzification which in this
study we have used lookup table method [40], [41]. By per-
forming various steps, selected features over all samples
are given as input to the S-FIS [42], and these inputs are
the same features that are divided into 5 folders, and each
time 4 folders are discretized in 2, 3, and then in 4 levels
and given to this section, and pruning rules are obtained
in the final stage using the GA [43], [44]. Also, each time
a remaining category is given to the same fuzzy classifier
for testing. The inference engine evaluates and infers the
rules using inference algorithms, and after collecting the
output rules, it is converted into an explicit or numerical
value by the de-fuzzifier unit. In this study we have used
the centroid method [45] to defuzzify triangular membership
functions. Centroid defuzzification calculates the center of
gravity for the fuzzy set along the x-axis. Imagine the area
as a uniformly thick and dense plate; the centroid represents
the point on the x-axis where the fuzzy set would achieve
equilibrium. Simply put, the fuzzy inference engine here
expresses a knowledge base for rule extraction from the ER
system.

One point is choosing the number of membership func-
tions, which is based on the expert decision which determines
it according to the type of system and her/ his personal knowl-
edge and experience. It should not be noticed that the number
of membership functions should be justified, that is, not so
low that the designed fuzzy system has poor performance
and high error, and not so much that the system calculations
increase due to the increase in the number of rules and
the designed system becomes expensive. However, in some
cases, due to the complexity of the system, high resolution
is required, so the number of membership functions should
be increased. The number of membership functions in this
study are 2, 3 and 4. Then, these membership function can be
considered in different shapes, such as triangular, Gaussian
and etc. Triangular membership function is used in this study,
then, split points of concepts (features) were discretized using
the entropy method. FIGURE 5 shows a triangular member-
ship function for PhEn-FP2 and three conceptual levels of
‘Low’, ‘Medium’ and ‘High’. Then, fuzzy rules (fuzzy oper-
ators) are determined from EEG features that were selected
from mm method. These rules are usually defined based on
the following model:

IF variable is set, THEN action

FIGURE 5. Triangular membership functions for the PhEn feature of FP2
channel. This feature was discretized into three conceptual levels of ‘Low’,
‘Medium’ and ‘High’.
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FIGURE 6. Structure of our proposed chromosome in GA.

2) OPTIMIZING RULES USING GA
Up to this point, a fuzzy rule has been obtained for all rows
of the database (features). In this step, to further refine the
rules and further simplify the fuzzy system, another step is
performed on all the rules of the dataset rows:

If there are conflicting rules, i.e., rules that have the same
front part (If) and different tail (Then), only one rule is
selected with a greater weight. This work has been done by
obtaining the parameters related to the membership functions
and then calculating their probability, and finally the rules that
have the highest probability are selected. For example, a rule
that says that if the value of entropy feature in beta band is
low then it leads to a class event of sadness and another rule
with a different antecedent and sadness again, pruning should
be started and to the rule that gets more points should be
attributed. Of course, in this study, in order not to lose the
extractive knowledge of strong and inconsistent rules with
high degree of belonging, and to make better decisions, the
S-FIS-GA has been trusted.

As mentioned before, one of the most important parts of
this study is creating a reliable knowledge base to identify
emotions. In the previous section, it was explained how the
basic rules are made, and these rules are entered in the GA
cycle for optimization during a proposed algorithm, and the
rules are optimized. In the implementation of the GA, it is
important to answer two questions: 1) How should the initial
chromosomes be? 2) How should the optimization function
work? In response to the initial question, the decision was
made to rely on the algorithm for extracting the initial rules of
emotions, during which the identified initial compatible rules
were considered as primary chromosomes, and then to select
the optimization function to extract better rules in the next
generations, two points It was considered: one is to increase
the accuracy of the classification and the other is to cover
the knowledge base extracted from the set of rules. Taking
into account the stated assumptions of other parameters of the
GA, we have proceeded selectively, which will be explained
bellow.

In fact, fuzzy system design is done in two stages,
1- preliminary design and 2- knowledge extraction with
lookup table algorithm. In the next step, the GA is used to
tune S-FIS rules. Note that, in both steps of design, the output
of the knowledge expressed is in the recognition of emotions.
In the first step, this knowledge is limited to scoring based
on the membership functions of the features, and in fact,
with lookup table, this knowledge leads to if-then rules for
the class output of emotions, and in the next step, after the

initial pruning and removing the inconsistent rules, during the
optimization steps, best rules are selected for the design of the
conceptual rule system. The proposed chromosome structure
for GA is shown in FIGURE 6.

H. EVALUATION CRITERION
K-fold CV is used to evaluate the proposed S-FIS-GA-
ER method with K=5. Three best features of SampEn-T8,
PermEn-T7 and PhaEn-FP2 for all subjects are divided into
five folds, four folds are used to train FIS and one-fold for
test. This procedure is repeated five times. Average of accu-
racy, true positive rate (TPR), false negative rate (FNR) and
area under the curve (AUC) are calculated for each fold by
Eq (9)-(12) [46]. Where, tpi is true positive for class i, tni is
true negative for class i, fpi is false positive for class i, and
fni is false negative for class i. (AUC is calculated as a binary
problem).

Accuracy =

∑l
i=1

tpi+tni
tpi+tni+fpi+fni

l
(9)

TPR =

∑l
i=1

tpi
tpi+fni

l
(10)

FNR =

∑l
i=1

fni
tpi+fni

l
(11)

AUC =
1
2
(

tp
tp+ fn

+
tn

tn+ fp
) (12)

IV. RESULTS
A. EYE TRACKER
In the first step, eye track data for both databases are mon-
itored and segmented into lower parts to extract desired
features. These features include average and standard devi-
ation of fixation duration, fixation frequency and maximum
fixation duration, average and standard deviation of pupil
diameter in X and Y directions, respectively, [7]. Finally,
these 8 features are extracted from every 4 second segments,
length of segments are selected according to [7]. FIGURE 7
shows results of the mRMR feature selection method for
the SEED-IV (a) and MAHNOB-HCI (b) databases. In this
figure, the features are ranked from highest to lowest as
follows: average pupil diameter in the Y direction, average
pupil diameter in the X direction, average fixation duration,
standard deviation of pupil diameter in the Y and X direc-
tions, fixation frequency, maximum fixation duration, and
standard deviation of fixation duration. As it can be observed,
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FIGURE 7. Results of mRMR method to rank features ascending for the
SEED-IV (a) and MAHNOB-HCI (b) databases. Seventh feature (average of
pupil diameter in Y direction) achieved highest rank among others. The
features are ranked from highest to lowest as follows: average pupil
diameter in the Y direction, average pupil diameter in the X direction,
average fixation duration, standard deviation of pupil diameter in the Y
and X directions, fixation frequency, maximum fixation duration, and
standard deviation of fixation duration.

this feature can be effectively distinguishing four emotional
classes for both databases.

Then, this feature is used in gate strategy to determine
an event, in the other hand, in this strategy, parts of signals
after this event was selected. The maximum of this feature is
calculated and used as threshold, i.e., eye track is monitored
and each time this feature reached the maximum values, that
moments were marked and time in EEG signal were used for
analysis.

B. EEG SIGNALS
After pre-process step, multichannel EEG signals from each
database are segmented into 4 seconds. Then, four features
of SampEn, PermEn, SymbEn and PhEn were extracted
from each segment of 62 and 32 channels from SEED-IV
andMAHNOB-HCI databases, respectively. Finally, 248 and
128 features from these channels are computed. Then, three
common features among five frequency bands and channels
from selection of mRMR method are used. These features
are PhEn, SampEn and PermEn for T7, T8 and Fp2 channels
of both databases, respectively. These features are used as
input of S-FIS (FIGURE 8). As said earlier, the FIS is created
using lookup table algorithm. The mentioned features are
discretized into two, three and four levels using the entropy
criterion. Finally, three levels had higher performance based

FIGURE 8. The proposed S-FIS based on lookup table algorithm with
3 input and 27 rules. Each input has three levels of low, medium and high.
Triangular membership functions are considered for three selected
features (input) of PermEn from T7 channel, SampEn from T8 channel and
PhaseEn from Fp2 channel. These features were selected using mRMR
method for SEED-IV database.

on average accuracy value among four emotional categories.
Also, the membership functions were set triangular. Finally,
27 (3 membership function for PhEn-T7 ×3 membership
function SampEn-T8×3 membership function PermEn-Fp2)
rules are created for each frequency bands. These FIS are
tuned using the GA.

Population size is based on number of membership func-
tions equal to 27 (3 membership function for SampEn ×3
membership function for PermEn × 3 membership function
for PhEn). Also, fitness function is according to the coverage
of rules among samples and the accuracy. After creating
rules, accuracy is calculated to investigate strength of rules.
Notice that, a rule can have high accuracy but not coverage,
therefore we have considered the coverage as the second
metric. Coveragemeans howmany rules are fired by samples,
in other words, after creating rules, features are scanned and
rules with higher coverage win.

FIGURE 9 shows results of tuning fuzzy rules of alpha
frequency band for SEED-IV database using the GA. This
process stops after 450 generation due to no change in fitness
value in the last 10 steps. The speed of running the algorithm
is not very important here because the use of knowledge
extracted only leads to the creation of a platform for use in
the field of ER.

In total, a set of 10 rules has been extracted for each
sub-band of brain signals. The rules are arranged accord-
ing to their importance, for example, the first rule for delta
frequency band is more important than the second rule. But
the most important rule for detection of happiness is rule
number seven. Therefore, in total, according to the existence
of 5 frequency bands and the presence of the top 10 rules
in each sub-band, a total of 50 rules have been identified.
In the following, for each band, a rule package of 4 of the
best discriminative rules for 4 emotion classes is presented.
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FIGURE 9. Training curve resultant from tuning fuzzy rules of alpha
frequency band for SEED-IV database using the GA. This process is
stopped after 450 generation. Stopping criterion was no further
proceeding of fitness value after 10 generation.

TABLE 2. Set A: 10 top fuzzy rules for delta frequency band from the
SEED-IV database.

According to TABLE 2, for the delta band, rule number 1
is chosen to detect the neutrality, rule number 2 is chosen to
detect the feeling of sadness, rule number 6 is chosen to detect
the feeling of fear, rule number 7 is chosen for the feeling of
happiness. Also, the results of this set state that the SampEn
of the T8 channel plays a good role in expressing the feeling
of happiness.

According to TABLE 3, rules for the theta band, in order
to detect the feeling of neutrality, rule number 3 was chosen
to detect the feeling of sadness. No rule was chosen to detect
the feeling of fear (in other words, the feeling of fear was not
seen in the theta band). Also, rule number 4 was chosen for
feeling happy. In addition, the results of this group state that

TABLE 3. Set B: 10 top fuzzy rules for theta frequency band from the
SEED-IV database.

TABLE 4. Set C: 10 top fuzzy rules for alpha frequency band from the
SEED-IV database.

the entropy of the T8 channel plays a good role in expressing
the sense of neutrality.

According to TABLE 4 for alpha band, rule number 10 was
chosen to detect the feeling of neutrality, rule number 5
was chosen to detect the feeling of sadness, rule number 3was
chosen to detect the feeling of fear, and rule number 1 was
chosen for the feeling of happiness.

Results of rules for beta frequency (set D) in TABLE 5
are approximately similar to set C for alpha frequency band.
For example, rule number 10,5,3 and 1 were chosen to
detect the feelings of neutrality, sadness, fear and happiness,
respectively.

According to TABLE 6, rules for the gamma band, rule
number 10 was chosen to detect the feeling of neutrality,
rule number 5 was chosen to detect the feeling of sadness,
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TABLE 5. Set D: 10 top fuzzy rules for beta frequency band from the
SEED-IV database.

TABLE 6. Set E: 10 top fuzzy rules for gamma frequency band from the
SEED-IV database.

rule number 6 was chosen to detect the feeling of fear, rule
number 1 was chosen for the feeling of happiness.

Overall, for all frequency bands, the medium concept of
PhEn have a significant role in ER.

FIGURE 10 illustrates confusion matrix of our
S-FIS-GA-ER for recognition of four emotional categories of
(1) sadness, (2) happiness, (3) fear and (4) neutrality for five
frequency bands for the SEED-IV database for the best fold.
Alpha frequency band achieves the highest average accuracy
of 94.42% for four mentioned classes. Then, beta and gamma
frequency bands achieved the average accuracies of 93.02%
and 89.80%. Both theta and delta frequency bands achieved
lower accuracies.

As it can be observed from FIGURE11, values of AUC for
each frequency bands and classes are higher than 0.9 which
demonstrate the efficacy of our proposed S-FIS-GA-ER

method for the SEED-IV database. All of the frequency
bands have excellent rules that achieved highest performance
to recognize sadness (1), happiness (2), fear (3) and neu-
tral (4) for this database, respectively. The alpha and beta
frequency bands achieved the highest AUC values approx-
imately 0.99 for each class. Then, gamma, theta and delta
achieve the AUC values of approximately 0.98, 0.95 and 0.90,
respectively.

As mentioned earlier, our proposed S-FIS-GA-ER system
is adaptive, so, we did not design a distinct rule base for
MAHNOB-HCI database. Rule base of SEED-IV database is
tuned using the MAHNOB-HCI database. FIGURE 12 illus-
trates confusion matrix of our S-FIS-GA-ER for recognition
of four emotional categories of (1) sadness, (2) happiness,
(3) fear and (4) neutral for five frequency bands for the
MAHNOB-HCI database for the best fold. Alpha frequency
band achieves the highest average accuracy of 85.2% for four
mentioned classes. Then, beta and gamma frequency bands
achieved the average accuracies of 82.92% and 79.05%. Both
theta and delta frequency bands achieved lower accuracies.

As it can be observed from FIGURE 13, values of AUC for
each frequency bands and classes are higher than 0.9 which
demonstrate the efficacy of our proposed S-FIS-GA-ER
method for the MAHNOB-HCI database. All of the fre-
quency bands have excellent rules that achieved highest
performance to recognize sadness (1), happiness (2), fear
(3) and neutral (4) for this database, respectively. The alpha
and theta frequency bands achieved the highest AUC values
approximately 0.97 for each class. Then, beta, gamma and
delt achieves the AUC values of approximately 0.95, 0.94 and
0.93, respectively.

V. DISCUSSION
In this study, an interesting idea is investigated to improve
performance of ER systems from multimodal emotional
databases. We have proposed an eye-gated strategy to
improve performance of ER system based on multichannel
EEG signals. To do this, we have used two multimodal emo-
tional databases, the eye-track data is used to find effective
parts for each subject and after that, the corresponding EEG
signals are processed. As our knowledge, this idea is for the
first time to be investigated in ER area from these modalities.
Indeed, our hypothesis was that when a person watches an
emotional clip as stimulation, some features resulted from the
eye-track can be useful to correspond with effective parts of
EEG signal. For example, during watching a thriller, fixation
duration or pupil diameter in x direction decrease, or during
happiness these features increases. So, we have considered
this information to increase accuracy of ER system.

A. EYE TRACK DATA AND EMOTION
According to FIGURE 7 (a) and (b), average of pupil
diameter in Y direction has been chosen as best feature
among 8 features using the mRMR method. This feature
is used as the candid for selecting effective parts from
EEG signals. Scientific studies have further elucidated the
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FIGURE 10. Confusion matrix of our proposed S-FIS-GA-ER for five frequency bands on the SEED-IV database. Values of 1 to
4 for each confusion matrix stands for sadness, happiness, fear and neutrality, respectively.

intricate relationship between pupil diameter and emotions,
shedding light on the physiological underpinnings of emo-
tional responses. One such study explored how pupil dilation
reflects the time course of ER in human vocalizations,
demonstrating that pupil dilation is significantly influenced
by emotional intensity, sound duration, and the ambiguity
of the stimuli. The research found that pupil size increased
more vigorously in response to auditory stimuli of higher
emotional intensity and longer duration. This variation in
pupil response, although relatively subtle compared to the

impact of baseline pupil size, was highly significant and
highlighted the independent contributions of cognitive load
(e.g., response time) and affective processing (e.g., valence
intensity) to pupil dilation [47]. Another study focused on
the physiological responses to awe experiences, employing
a within-subjects design to manipulate emotions through
video clips that induced feelings of awe, amusement, or were
neutral. This research aimed to understand how awe and
other emotional states affect physiological measures, includ-
ing pupil diameter. While the study’s primary focus was on
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FIGURE 11. ROC curves for five frequency band corresponding to the proposed S-FIS-GA-ER for SEED-IV database. Values of 1 to 4 for
each confusion matrix stands for sadness, happiness, fear and neutrality, respectively.

awe experiences, it contributed to the broader understanding
of how various emotional states can influence physiologi-
cal responses, emphasizing the complex interplay between
emotional experiences and physical reactions [48]. These
findings underscore the multifaceted nature of the relation-
ship between pupil diameter and emotions, indicating that
both the intensity of emotional stimuli and cognitive factors
related to processing these stimuli play significant roles in
modulating pupil size. The results from these studies not only
confirm the connection between pupil dilation and emotional
arousal but also highlight the importance of considering both
affective and cognitive dimensions when interpreting pupil-
lometric data in emotional research.

B. RELATION BETWEEN EYE TRACK, EEG AND EMOTION
The relationship between eye-tracking data and EEG sig-
nals is a subject of increasing interest in neuroscience,
psychology, and human-computer interaction studies. Eye-
tracking measures where and when a person’s gaze occurs,
while EEG records electrical activity in the brain. These two
methods, when combined, can offer comprehensive insights
into human cognition [49], attention [50], neurological pro-
cesses [51] and emotion recognition [7]. Duchowski [49]
has shown that integrating eye-tracking with EEG data can

provide a more nuanced understanding of cognitive load.
For instance, eye metrics such as blink rate, saccades, and
fixations, when analyzed alongside EEG signals, particularly
in the frontal lobe, can indicate levels of engagement, mental
effort, and fatigue. In another study, Polich [50] investigate
relation between both eye-tracking and EEG data in atten-
tion and information processing. The P300 wave in EEG
signals, which reflects attentional processes and memory
updating, can be temporally correlated with eye movement
events to infer how attention is allocated in tasks requiring
visual search. This combination helps in deciphering how
visual attention mechanisms are linked with cognitive pro-
cesses. The concurrent use of EEG and eye-tracking has
also been applied in the diagnosis and study of neurologi-
cal and psychological disorders. For example, abnormalities
in eye movement patterns, when combined with specific
EEG patterns, can help in the early detection of disorders
such as ADHD, autism, and schizophrenia [51]. This mul-
tidimensional approach allows for a better understanding
of the disorders’ underlying cognitive and neural mecha-
nisms. In the field of human-computer interaction, combining
eye- tracking and EEG data helps in designing more effec-
tive user interfaces. For instance, understanding how users
allocate their visual attention and cognitive resources while
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FIGURE 12. Confusion matrix of our proposed S-FIS-GA-ER for five frequency bands on the MAHNOB-HCI database. Values of 1 to 4 for
each confusion matrix stands for sadness, happiness, fear and neutral, respectively.

interacting with interfaces can inform more accessible and
user-friendly designs [52]. These examples illustrate the
broad and impactful applications of combining eye-tracking
and EEG data across various fields. The integration of
these methods continues to provide valuable insights into
human cognition, behavior, and interaction with technology.
However, it is important to acknowledge the complexity of

simultaneously collecting and analyzing these data types.
Rigorous methodological approaches and advanced ana-
lytical techniques are required to effectively interpret the
multimodal data generated from these sources.

Zheng et al. [7] present EmotionMeter, a multimodal
emotion recognition framework that combines brain waves
and eye movements. They demonstrate that fusing EEG and
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FIGURE 13. ROC curves for five frequency band corresponding to the proposed S-FIS-GA-ER for MAHNOB-HCI database. Values of 1 to
4 for each confusion matrix stands for sadness, happiness, fear and neutrality, respectively.

eye movements with multimodal deep learning significantly
enhances emotion recognition accuracy (85.11%) com-
pared to using a single modality (eye movements: 67.82%,
EEG: 70.33%).

All of these works used EEG and eye-tracking data sep-
arately. But in this study, we used eye-track data as gated
strategy to select effective parts of EEG signals related to
emotions.

C. FREQUENCY BANDS AND SELECTED CHANNELS
According to FIGURE 10 to FIGURE 13, alpha, beta and
gamma frequency bands are more prominent in discrim-
inating mentioned emotional categories. Results for these
frequency bands are consistent with [7], [53], [54], [55],
and [56]. The research has consistently identified the alpha,
beta, and gamma frequency bands as key neural corre-
lates of emotion, highlighting their significant relationship
with emotional processes. Moreover, numerous psycholog-
ical investigations have delved into the specific role of
the alpha frequency band in relation to emotional states.
These studies collectively reveal that the alpha band stands
out for its crucial role in the processing of emotions,

suggesting its predominance in the emotional response
system.

According to the results, the two temporal EEG channels,
T7 and T8, achieved the highest accuracies. Physiological
research indicates that the temporal lobe is related to emo-
tions. The brain is divided into three main anatomical sec-
tions: the hindbrain, midbrain, and forebrain. The cerebrum,
part of the forebrain, is further divided into two hemispheres.
The outer layer of the cerebrum, known as the cerebral
cortex, consists of four major lobes: the frontal, occipital,
parietal, and temporal lobes. The amygdala is located within
the temporal lobe, specifically in the medial temporal lobe
near the hippocampus. It is an almond-shaped cluster of
nuclei deeply involved in processing emotions, particularly
fear and pleasure, as well as in forming emotional memories.
The relationship between the amygdala and the temporal
lobe is significant because the temporal lobe plays a crucial
role in integrating sensory input with emotional responses,
memory formation, and processing. The close proximity
and interaction between the amygdala and the hippocam-
pus within the temporal lobe are vital for the integration
of emotional experiences with memory, influencing how
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TABLE 7. Selected Rules for both databases resultant from five frequency bands for each emotional category.

TABLE 8. Comparison of recent machine learning ER studies from same databases.

memories are stored and recalled based on their emotional
content.

Also, selected EEG channels base on mRMR method,
T7, T8 and Fp2, are consistent with recent ER studies on
SEED-IV database [7], [55], [57], [58], [59]. For exam-
ple, Zheng et al., [7] present EmotionMeter, a multimodal
emotion recognition framework combining brain waves and
eye movements. For real-world feasibility and wearability,
they designed a six-electrode included T7, T8 and four
near ears electrodes to collect EEG signals. By integrating
EEG and eye movements, they enhanced recognition accu-
racy by merging users’ cognitive states and subconscious
behaviors. Also, Zheng and Lu [55] found that these two
channels are appropriate between a large number of healthy

subjects to recognize sadness and happiness. They created
time-frequency synchrosqueezing wavelet transform images
and used pre-trained CNN models to recognize these emo-
tional classes.

D. EMOTIONAL RULES
TABLE 7 reports selected rules for each class resultant five
frequency bands of delta, theta, alpha, beta and gamma for
both databases. According to this table, for sadness, there are
three rules with varying levels of coverage and accuracy and
the first rule, achieved the coverage of 57% and an accuracy
of 75.78%. For fear, two rules are presented and the first rule
achieved the coverage of 55% coverage and an accuracy of
72.29%. For happiness, several rules with decreasing levels
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of coverage from 58% to 30% are shown, and their accuracies
range from 82.65% to 75.45%. For neutrality, three rules are
listed and the first rule achieved the coverage of 55% and an
accuracy of 75.23%.

E. COMPARISON WITH MULTIMODAL STUDIES
TABLE 8 present a comparison of recent machine learning
studies on ER from the same databases, with a focus on
their methodologies, evaluation methods, number of classes,
and accuracy percentages. Our study utilizing both SEED-IV
and MAHNOB-HCI databases, shows a substantial improve-
ment over previous works. Our method includes extracting
SampleEn, PheEn, SymbEn, PermuEn features as input of
S-FIS, then tuning S-FIS rules using GA. The evaluation
was done using the 5-fold CV approach on 4 emotional
classes—sad, happy, fear, and neutral. The accuracy achieved
was 94.42% for SEED-IV and 85.2% for MAHNOB-HCI,
significantly higher than previous studies. For instance, Koel-
stra and Patras [50] using PSD and SVM and achieved the
accuracy of 80% for valence and 66.7% for arousal on the
MAHNOB-HCI database. Compared to the closest competi-
tor in SEED-IV, Fu et al. [24] used multi-branch EEG and
eye feature fusion with a 5-fold CV, our method demon-
strates a notable improvement: from their 87.32% accuracy
to our 94.42%. The significant jump in accuracy in our
2024 study highlights the effectiveness of our approach,
combining multimodal information and advanced feature
extraction techniques to understand and classify complex
emotional states with high accuracy.

F. ADVANTAGE, DISADVANTAGE AND LIMITATIONS OF
THE STUDY
The study has several advantages:

-It selects more effective EEG segments based on the eye-
gate strategy, reducing computational demands and costs,
enabling the use of less expensive processors in multi-
modal wearable ER systems since full EEG processing is
unnecessary.

Based on the findings of the manuscript, we suggest that an
AI wearable ER system, such as hands-free glasses equipped
with simple eye-tracking technology tomeasure and calculate
a single feature (average pupil diameter in the Y direction),
can comfortably and user-friendly recognize four desired
emotions: sadness, happiness, fear, and neutral.

-The adaptability of the S-FIS-GA-ER system allows for
tuning the rules knowledge base on new databases without
starting from scratch.

-The study successfully integrates and understands fuzzy
rules within the ER challenge, introducing uncertainty man-
agement into the problem.

The study’s disadvantages include:
The S-FIS’s limited input capacity. While machine learn-

ing methods typically generate and select features from a
large pool for classification, FIS uses fewer inputs, which
could lead to underutilization of S-FIS despite its usefulness
in managing uncertainty in ER.

The study’s limitations are:
The scarcity of multimodal databases combining eye-

tracking and EEG signals is a primary limitation in ER
research. Although valuable databases like MAHNOB-
HCI [9] and the SEED series [7], [8] exist, they have
limitations such as the SEED series being recorded in three
separate sessions with only 15 subjects watching a consid-
erable number of emotional clips (72 clips for SEED-IV).
To improve validity, future studies should include more sub-
jects from diverse cultures, ages, and genders.

VI. CONCLUSION
In this study, an interesting idea based on gated strategy
by eye track data is proposed to identify specific timing of
eliciting emotions. This timing has been investigated through
common eye track features such as pupil diameter using the
mRMR selection technique. Then, EEG signals are processed
at this corresponding time and entropy features such as PhEn
is extracted from five standard frequency bands which were
decomposed usingwavelet transformmethod. Next important
step was mining fuzzy rules using a designed S-FIS and
tuned by GA. Most discriminative rules caused the average
accuracy of 94.42% and 85.2% at alpha frequency bands for
the SEED-IV and MAHNOB-HCI databases, respectively.

The results in this article are presented in two ways:
1-the results related to the extracted knowledge base for each
frequency band whose signal follows the eye gate strategy
and the results related to the selected rules for each class.
2-It should be noted that the fuzzy design was adaptive so
that after the construction of the basic knowledge base, the
parameters of the system can be adjusted and there is no need
for another design for new databases.

In the future, we will try to reduce EEG channels based
on more effective channels to have a comfort wearable ER
device fromEEG signals and eye track data. Also, wewill add
extra modalities such as electrocardiogram (ECG) or electro-
dermal activity signals to improve performance of real-time
ER systems. Moreover, lightweight deep learning approach
such as autoencoders and long-short term memory (LSTM)
techniques will be used to extract and decode deeper features
from EEG signals.
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