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ABSTRACT Programming is an essential skill in computer science and in a wide range of engineering-
related disciplines. However, occurring errors, often referred to as ‘‘bugs’’ in code, can indeed be challenging
to identify and rectify, both for students who are learning to program and for experienced professionals.
These errors can lead to unexpected behaviors in programming. Understanding, finding, and effectively
dealing with errors is an integral part of programming learning as well as software development. To classify
the errors, we propose a multi-label error classification of source code for dealing with programming data
by using the ML-KNN classifier with CodeT5 embeddings. In addition, several deep neural network (DNN)
models, including GRU, LSTM, BiLSTM, and BiLSTM-A (attention mechanism) are also employed as
baseline models to classify the errors. We trained all the models by using a large-scale dataset (original error
labels) as well as modified datasets (summarized error labels) of the source code. The average classification
accuracy of the proposed model is 95.91% and 84.77% for the original and summarized error-labeled
datasets, respectively. The exact match accuracy is 22.57% and 27.22% respectively for the original and
summarized error-labeled datasets. The comprehensive experimental results of the proposed approach are
promising for multi-label error classification over the baseline models. Moreover, the findings derived from
the proposed approach and data-driven analytical results hold significant promise for error classification,
programming education, and related research endeavors.

INDEX TERMS CodeT5, data analysis, educational big data, error classification, learning analytics, ML-
KNN, multi-label classification, programming learning, software engineering.

I. INTRODUCTION
Practical-based learning plays a significant role in enriching
logical and innovative thinking [1]. Computer programming
stands as a prime example of practical-based learning,
particularly in the field of computer science. Programming
education serves as the foundation for artificial intelligence
(AI), modern applications, numerical analysis, and data
analysis. To motivate and inspire students and programmers
to engage in programming learning, many online learning
platforms and e-learning systems are being employed.
Students can utilize these platforms to enrich their learning
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experiences and study more effectively, ultimately helping
them achieve their desired goals. In this context, Online Judge
(OJ) systems [2], [3], play an important role in enhancing
programming learning and practice opportunities alongside
traditional classroom-based instruction.

OJ systems function as supplementary resources that
complement traditional classroom-based programming edu-
cation [4]. In contemporary education, OJs have become
integral tools for numerous educational institutions that
offer courses in computing, programming, and software
engineering [5]. Several universities have also developed
Automated Program Assessment (APA) systems for pro-
gramming courses, aiming to enhance the speed and
effectiveness of students’ learning [6], [7]. A few examples
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of OJ systems, such as Aizu Online Judge (AOJ) [8],
UVa [9], URI [10], Codeforces [11], and Jutge.org [12], are
widely employed as academic tools. OJ systems are not only
beneficial for programming learning but also have broad
applications in various domains [13]. As a result, OJ systems
have generated extensive archives of problem-solving data,
including solution codes, scores, and logs which serve as
valuable resources in programming education research.

Programmers, especially novices, often encounter chal-
lenges in understanding errors in their written codes.
Identifying errors and their types in the solution code poses a
challenging task for programmers, teachers, and instructors.
Programmers often invest considerable time and effort in
error identification within solution codes, a task that can
be both time-consuming and labor-intensive. Analyzing the
common and frequent errors made by programmers [14], is a
valuable endeavor, contributing to a better understanding of
the challenges they face and providing insights for improving
programming education. Source code typically contains vari-
ous error types, including syntax, semantics, communication,
calculation, and logic errors. Conventional compilers, while
useful, fall short of comprehensively assessing all source
code errors [15]. Even with the assistance of traditional
compilers, students and professional programmers often find
it challenging to identify logic errors in the source code.

For instance, consider the scenario involving a logic error:
although the code compiles and runs, it yields incorrect output
because it contains errors. During compilation and execution,
a program might terminate due to a compilation or runtime
error. However, codes that contain logical errors can still
be compiled and run successfully, yet produce unexpected
results. Visually, a code with logical errors may appear
correct, but from the perspective of logical reasoning, it is
indeed erroneous.

Figure 1 presents a motivational example of error classi-
fication. The leftmost block contains the source code, which
exhibits errors such as the incorrect arithmetic operator (‘‘−’’
instead of ‘‘+’’) and the incorrect variable usage (‘‘c’’ instead
of ‘‘b’’) in the third line. Based on the error classification,
the rightmost block displays the output section with the
corresponding error labels of the code.

FIGURE 1. Motivational example of the error classification.

In recent times, multi-label classification has garnered sig-
nificant attention and holds promise for addressing a variety
of problems. In machine learning, multi-label classification

presents a variation in the classification problem, where each
instance can be assigned multiple nonexclusive labels. This
contrasts with multi-class classification, where instances are
assigned precisely one class from a set of two or more classes.
Multi-label classification allows instances to be assigned to
multiple classes without restrictions on the number of labels.
The objective of multi-label classification is to find a model
that maps inputs, represented as x, to binary vectors y, where
each element (label) in the vector y is assigned a value of 0 or
1. Unlike binary or multi-class classification, where the goal
is to predict only one output label, multi-label classification
aims to predict data with asmany applicable labels as possible
based on the input data. The output in this scenario can range
from one label to the maximum number of available labels.

The labels predicted by the model often exhibit inter-
connected relationships [16]. In NLP, multi-label text
classification [17], stands as one of the fundamental tasks
including diverse applications [18]. However, the simulta-
neous involvement of numerous classes in multi-label data
introduces a level of ambiguity because of its association with
multiple classes simultaneously. Consequently, multi-label
data are inherently complex and, require efficient handling
to navigate its inherent ambiguity. Diverse approaches have
been employed to address multi-label data, including the
transformation of data [19], problem adaption [20], and
ensemble techniques [21]. Dealing with this type of data
presents numerous complexities for classification, such as
complex decision spaces and correlated classes. Researchers
address these challenges from diverse perspectives tomitigate
associated shortcomings.

Assisting programmers in effectively assessing, catego-
rizing, and classifying source code errors has emerged
as a pivotal research focus in software engineering and
programming education. We have been inspired by the need
to identify common errors made by programmers, aiming to
contribute to programming learning. The primary objective
of this study is to classify these prevalent errors. For the
error classification task, this study utilizes a multi-label
classification method. Deep Learning (DL) models have
been utilized to classify multi-label data derived from real-
world programming problem-solving datasets. Following
data preprocessing, we employed the CodeT5 transformer
for dataset embedding, enabling the ML-KNN model to
perform the classification task. Additionally, we trained
GRU, LSTM, BiLSTM, and BiLSTM-A on the processed
data for multi-label classification purposes. Our primary
focus was on classifying errors, to provide valuable insights
for programmers and enhance programming learning. The
key contributions and highlights of this study are summarized
as follows:

• We propose a multi-label classification model to classify
errors in program code. The ML-KNN classifier is used
for our proposed approach. In this case, the transformer
model CodeT5 is leveraged for the embedding. The
average accuracy for error classification achieved by the
proposed model is 95.91% and 84.77% for the original

100806 VOLUME 12, 2024



M. F. I. Amin et al.: Multi-Label Code Error Classification Using CodeT5 and ML-KNN

and summarized error-labeled datasets, respectively.
The exact match accuracy stands at 22.57% and 27.22%.

• Our proposed model outperformed the baseline models
in terms of average accuracy, exact match accuracy, and
other evaluation metrics including precision, recall, and
F1 score.

• To highlight the effectiveness of the proposed approach,
experiments were conducted using a real-world
problem-solving dataset. The results indicate that error
classification has significant potential for enhancing the
skills of programmers and programming learning.

The rest of this paper follows a structured outline as
follows. Section II presents some recent related studies
and theoretical information on the multi-label classification
related to this study is presented in Section III as baseline
models. Section IV proposes the approach for the multi-
label error classification. Section V presents the experimental
settings, especially the dataset preparation and evaluation
metrics. Section VI details the experimental results including
implementation and evaluation. Section VII presents the
discussion and result analysis. Section VIII encapsulates the
conclusion and outlines future avenues of work.

II. RELATED WORK
This section highlights recent research relevant to multi-
label classification, NLP, program code classification, and
programming-related data analysis.

A. PROGRAMMING DATA ANALYSIS AND CODE
CLASSIFICATION
The authors [4], primarily focused on programming edu-
cation, employing the educational data mining approach.
They utilize machine learning techniques to extract valu-
able insights from actual problem-solving data. In another
research [1], the authors addressed the core objective which
lies in investigating the influence of practical skills on
academic performance. As a programming problem can
be approached using various languages, identifying the
problem solely from the source code becomes challenging.
Therefore, there is a need for a classification model to assist
programmers in identifying problems developed in Multi-
Programming Languages (MPLs). To address this gap, the
authors [22], proposed a stacked BiLSTM model designed
to classify the source codes developed in MPLs. However,
in this study, there are not so explicit statements to address
long source code.

In research [23], the authors emphasized the importance of
algorithmic thinking and the proper selection of algorithms to
enhance software engineering, computational performance,
and programming education. They introduced a program
code classification model based on a CNN designed to
classify code based on algorithms. However, The study does
not sufficiently address the model’s generalizability across
different programming languages or coding styles and it also
lacks comparisons with the latest methods in the rapidly
evolving field of machine learning.Moreover, concerns about

overfitting and the interpretability of the model’s decisions
are not thoroughly addressed.

The authors [14], delved into an intriguing topic concern-
ing error classification to analyze the differences in frequent
errors. In their research, they addressed the challenge of find-
ing and rectifying errors that can be time-consuming for both
novice and expert programmers. They have been motivated
by this issue and employed a rule-based error classification
tool to categorize errors in code pairs, comprising both
incorrect and correct programs. The categorized errors are
then utilized to scrutinize the distinctions in frequent errors
between novice and expert programmers. While rule-based
systems are straightforward and interpretable, they may lack
the flexibility and adaptability of machine learning models.
A programming problem can be solved by using various
programming languages, leading to a huge multilingual
solution code. Code identification from this vast archive
poses a difficult task [24]. The authors have been motivated
by this issue and presented a novel classification model
based on problem names and algorithms. However, the
dependency on intensive hyperparameter optimization could
hinder adaptability and quick deployment, and the model’s
deep learning architecture inherently lacks interpretability,
which could be a significant drawback in scenarios where
understanding decision-making processes is crucial.

Moreover, several studies have introduced data analysis
and machine learning-based models aimed at bolstering
programming education [15], [25], [26], [27], [28], [29], [30].
These models are crafted to elevate the learning experience
and improve educational outcomes in programming learning.

B. MULTI-LABEL CLASSIFICATION
The article [31], introduces a binary tree of classifiers
for preserving label dependencies and addressing the class
imbalance. The overarching objective of the proposed work
is to construct a decision tree-based model that lever-
ages the inherent label correlations in the data, enabling
efficient machine learning classification while mitigating
issues related to class imbalance. In the study [16], the
authors introduced a multi-label guided network designed
to guide document representation with multi-label semantic
information. Additionally, to enhance the original label
predictions in downstream tasks, they leveraged correlation
knowledge.

Searching for hardware configurations through online
embedded code can be a time-consuming process and may
not ensure an optimal solution. To tackle this problem,
the research outlined in [32], introduced an embedded
code classifier aimed at aiding programmers in locating
the most effective code snippets with accurate tags. The
study involves the development of a tag-correlated multi-
label machine learning model tailored for the embedded code
dataset. Students’ performance prediction in higher education
presents notable challenges in crafting accurate and robust
diagnostic models. With this aim, the study [33], focused on
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two key aspects: first, they created a hybrid regression model
to enhance the accuracy of predicting student performance.
Subsequently, they introduced an optimized multi-label clas-
sifier designed to forecast qualitative values representing the
influence of different factors linked to student performance.

In multi-label classification, where labels are often inter-
dependent, harnessing label dependencies can markedly
enhance performance. In research [34], the authors intro-
duced a novel algorithm, Ml-Forest, which learns an
ensemble of hierarchical multi-label classifier trees to unveil
intrinsic label dependencies. In the study [18], the authors
delved into the realm of multi-label classification algorithms
based on semi-supervised learning. The study begins with a
comprehensive review of supervised learning classification
algorithms, taking into account both label non-correlation and
label correlation. Subsequently, the authors explored semi-
supervised learning classification algorithms and categorized
them into two main groups: inductive and transductive
methods.

In large-scale multi-label classification, the application
of SVM is severely restricted by excessive time com-
plexity. Consequently, the study [35], introduced a multi-
label SVM classification algorithm, termed AEDC-MLSVM.
This hybrid approach combines the approximate extreme
points method with the divide-and-conquer strategy. In the
study [36], the authors proposed a novel approach for learning
from multi-label data, leveraging label-specific features to
enhance the performance of classification models. Specif-
ically, they introduced a wrapped learning approach that
integrates label-specific feature generation with classification
model induction in a simultaneous manner. Some more
studies related to multi-label classification are [37], [38],
[39], [40], [41], [42], where various methods have been
discussed.

C. TEXT CLASSIFICATION
Conventional approaches to multi-label text classification,
particularly those employing deep learning techniques,
have demonstrated impressive outcomes. However, the
conventional approach treats labels as independent entities,
overlooking the relationships between them. The study [43],
presented a new hierarchical graph transformer-based model
for tackling large-scale multi-label text classification, aiming
to overcome this challenge. In the study [44], the authors
addressed amulti-label text classification task by highlighting
the significance of explicitly incorporating label semantics.
They introduced a hybrid neural network model that aims
to simultaneously harness both label semantics and detailed
text information. To accomplish this, they employed the pre-
trained BERT model to generate context-aware representa-
tions of documents, enabling a more nuanced comprehension
of the text content.

For multi-label text classification, many existing deep
learning models focus on either non-consecutive or long-
distance semantics. However, the coherent integration of

these aspects remains under-explored. In research [45], the
authors introduced a novel hierarchical taxonomy-aware
and attentional graph capsule recurrent CNNs for large-
scale multi-label text classification. In research [46], the
authors’ objective was to employ NLP techniques on articles
sourced from peer-reviewed journals. The article compares
the performance of multi-label text classification models
using datasets with different characteristics.

D. LANGUAGE MODELS FOR CODE
In research [47], the authors emphasized the significance of
programming skills in computer science and engineering-
related disciplines. However, it acknowledges the inherent
difficulty in crafting source code, particularly in identi-
fying logical errors. To tackle this challenge, the authors
introduced a language model for evaluating source codes,
leveraging a BiLSTM neural network. Moreover, differ-
ent programming environments and more complex code
structures have not been thoroughly demonstrated, which
may restrict its practical utility in real-world applications.
In research [48], the authors introduced CodeT5, a unified
pre-trained encoder-decoder transformer model designed to
enhance code semantics. They propose a novel identifier-
aware pre-training task, allowing the model to distinguish
code tokens as identifiers and reconstruct themwhenmasked.
In research [49], the authors suggested an approach for
recommending the correct program with minimal repair edits
by employing CodeT5. They employed a fine-tuned pre-
trained CodeT5 model by utilizing correct and incorrect code
pairs.

In research [50], the authors introduced a novel type
inference method that views type prediction as a code-
infilling task, leveraging CodeT5. Their method employed
static analysis to generate dynamic contexts for each code
element. Additionally, they proposed an iterative decoding
scheme that integrates previous types of predictions into
the model’s input context. In research [51], the authors
introduced CodeBERT (a transformer-based neural architec-
ture), designed for processing both programming language
(PL) and natural language (NL). Moreover, other related
research on the language models for code is presented here
[52], [53], [54].

E. ML-KNN BASED STUDY
In multi-label learning, the training set consists of instances
that are, linked with a set of labels. By analyzing the training
instances with known label sets, the objective is to predict the
label sets of unseen instances. In research [55], the authors
introduced a multi-label lazy learning approach named ML-
KNN, derived from the traditional KNN algorithm. Multi-
label classification poses a complex and critical challenge in
the domains of NLP and text mining. The research [56], aims
to address these issues and deliver a standardized solution
for Bengali text. The study utilizes a substantial dataset with
unique labels, employing a supervised model approach that
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incorporates the ML-KNN algorithm and neural network.
Additionally, the Count vectorizer is employed for word
embedding features. Moreover, some other research related
to ML-KNN is presented here [57], [58], [59].

In our reviewed code classification-related research,
we found some significant drawbacks such as (i) most of the
study performed the classification task in either conventional
ML or RNN models, (ii) there is a lack of discussion on
how to address longer source code, (iii) there is no sufficient
information on how to address the model’s generalizability
and interoperability, (iv) and there is a lack of explanation
on how to tackle complex code structures and overfitting
problems during training. Additionally, ML and RNNmodels
have some shortcomings due to their algorithmic and
structural limitations [24]. Individually, the performance of
ML or RNNs is not efficient for multi-label classification
tasks.

In our study, we conducted multi-label error classification
to classify errors made by programmers by using ML-KNN
with CodeT5. To the best of our knowledge, employingmulti-
label error classification for program code by this approach
is distinct.

Our proposed approach integrates the transformer-based
CodeT5 and ML-KNN models, effectively addressing the
limitations of conventional methods. CodeT5 is a pre-
trained large language model with parameters ranging from
220 million (base) to 770 million (large) [48], enabling it
to handle long sequences more effectively than traditional
models and thus improving classification performance.
Additionally, CodeT5 is specifically optimized for code-
related tasks, making it more scalable and suitable for
our purposes. This hybrid approach not only remedies the
shortcomings of previous models but also excels in multi-
label classification tasks, surpassing conventional methods.
The structural innovations in our method further set it apart
from other approaches, offering a unique solution to complex
multi-label classification challenges.

Another factor contributing to the uniqueness of our
proposed model is the datasets used in our experiments,
which are new, distinctive, and sourced from real-world pro-
gramming submissions. Additionally, our approach includes
an innovative feature: labeling errors in the erroneous code
based on various contexts. This capability allows for precise
label predictions, aiding programmers in understanding the
context and nature of the errors more effectively. However,
since our dataset is new and has not yet been used in
other studies, presenting a direct comparison is challenging.
Instead, we conducted experiments using several RNN
models as baseline comparisons.

III. BASELINE MODELS
This section offers a brief introduction to baseline models that
have been used in this study. Consequently, the mathematical
representations of the GRU, LSTM, BiLSTM, and BiLSTM-
A for sequential language modeling tasks are presented. The
overview of the models is described below:

A. GRU
GRU is a type of recurrent neural network (RNN) architecture
designed to address some of the limitations of traditional
RNNs, such as difficulties in learning long-term dependen-
cies and it was introduced by Cho et al. [60]. The GRU is
defined by the following equations:

zt = σ (Wz · [ht−1, xt ]) (1)

rt = σ (Wr · [ht−1, xt ]) (2)

h̃t = tanh(Wh · [rt ⊙ ht−1, xt ]) (3)

ht = (1 − zt ) ⊙ ht−1 + zt ⊙ h̃t (4)

where, zt and rt denote the update gate and reset gate, h̃t is
the currentmemory content, and ht represents the final hidden
state. xt represents the input at time step t . Wz, Wr , and Wh
are the weight matrices that are learned during training. σ is
the sigmoid activation function. tanh is the hyperbolic tangent
activation function. ⊙ is for element-wise multiplication.
The final hidden state is computed by blending the previous
hidden state with the new memory content based on the
update gate.

B. LSTM
LSTM [61], networks are a type of RNN designed to
overcome the vanishing gradient problem. The equations for
an LSTM cell at a single time step are as follows. Let xt be the
input at time step t , ht−1 and ct−1 indicate the hidden state and
cell state at time step (t−1). The LSTM cell involves several
gates and operations as follows:

ft = σ (Wif xt +Whf ht−1 + bf ) (5)

it = σ (Wiixt +Whiht−1 + bi) (6)

c̃t = tanh(Wigxt +Whght−1 + bg) (7)

ct = ft ⊙ ct−1 + it ⊙ c̃t (8)

ot = σ (Wioxt +Whoht−1 + bo) (9)

ht = ot ⊙ tanh(ct ) (10)

where, ft , it , c̃t , ct , ot , ht are the forget gate, input gate,
cell state update, cell state, output gate, and hidden state,
respectively. In these equations,Wif ,Whf ,Wii,Whi,Wig,Whg,
Wio, and Who are weight matrices, and bf , bi, bg, and bo
are the bias vectors. The σ and tanh represent the sigmoid
and hyperbolic tangent activation functions, respectively. ⊙

denotes element-wise multiplication.

C. BILSTM
BiLSTM is a type of RNN architecture that processes input
sequences in both forward and backward directions, allowing
it to capture contextual information from both preceding and
following elements in the sequence. Let’s consider a single-
time step in a BiLSTM. The forward LSTM equations can be
represented as follows:

it = σ (Wiixt + bii +Whiht−1 + bhi) (11)

ft = σ (Wif xt + bif +Whf ht−1 + bhf ) (12)
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gt = tanh(Wigxt + big +Whght−1 + bhg) (13)

ot = σ (Wioxt + bio +Whoht−1 + bho) (14)

ct = ft ⊙ ct−1 + it ⊙ gt (15)

ht = ot ⊙ tanh(ct ) (16)

The backward LSTM equations can be represented as
follows:

i′t = σ (W ′
iixt + b′

ii +W ′
hiht+1 + b′

hi) (17)

f ′
t = σ (W ′

if xt + b′
if +W ′

hf ht+1 + b′
hf ) (18)

g′
t = tanh(W ′

igxt + b′
ig +W ′

hght+1 + b′
hg) (19)

o′
t = σ (W ′

ioxt + b′
io +W ′

hoht+1 + b′
ho) (20)

c′t = f ′
t ⊙ c′t+1 + i′t ⊙ g′

t (21)

h′
t = o′

t ⊙ tanh(c′t ) (22)

where xt , ht , and ct represent the input, hidden state, and cell
state at time step t . σ is the sigmoid activation function, and⊙

represents element-wise multiplication. Finally, the network
combines the output of both forward and backward LSTMs
at each time step and the equation is as follows:

Assuming ht and h′
t represent the hidden state at time t

in the forward and backward LSTM, the hidden state in the
BiLSTM is given by the concatenation of those two hidden
states:

hbit = [ht ; h′
t ] (23)

where [ht ; h′
t ] denotes the concatenation of the forward and

backward hidden states. In a BiLSTM, the final output at
each time step is often obtained by applying a fully connected
layer or other relevant operations on the concatenated hidden
state hbit .

D. BILSTM-A
BiLSTM-A is a model that combines the capabilities
of bidirectional LSTMs for sequence processing with an
attention mechanism to focus on specific parts of the input
sequence when making predictions.

Here’s a conceptual overview of the BiLSTM-A: Assum-
ing we have a sequence of input vectors x1, x2, . . . , xt and the
hidden states from both the forward and backward LSTMs ht
and h′

t respectively at time t , and αt represents the attention
weights, the hidden state with attention (hattt ) is computed as
follows:

et = vTa tanh(Wa[ht ; h′
t ] + ba) (24)

αt = softmax(et ) (25)

ct =

t∑
i=1

αi[hi; h′
i] (26)

hattt = ot ⊙ tanh(ct ) (27)

where, et , stands for attention scores, αt is for attention
weights, ct is for context vector, and hattt is for final hidden
state with attention. Wa, va, ba are learnable parameters
for the attention mechanism. tanh is the hyperbolic tangent

FIGURE 2. Proposed approach for multi-label error code classification
with CodeT5 and ML-KNN.

function. Softmax is the softmax function applied element-
wise. ⊙ represents element-wise multiplication. ot is the
output gate activation from the BiLSTM.

IV. MULTI-LABEL ERROR CLASSIFICATION
In multi-label classification, the approach is better suited
for complex tasks where instances can possess multiple
attributes or labels. The multi-label classification provides
a more representative depiction of real-world scenarios,
acknowledging that objects or documents can exhibit diverse
characteristics. Consequently, it facilitates a more nuanced
understanding of the intricate relationships between instances
and labels. However, it’s important to note that this task
is inherently more complex than multi-class classification,
posing challenges in terms of both model training and
interpretation. Imbalances may arise in datasets, especially
when some labels are rare, potentially introducing challenges
during the training process.

A. PROPOSED APPROACH
The proposed multi-label program codes’ error classification
approach comprises two main phases: data preprocessing
and classification, employing the ML-KNN with the CodeT5
model. Below, we provide an overview of the proposed
method and the architecture of theML-KNNwith the CodeT5
model.

1) ARCHITECTURE OF THE ML-KNN WITH CODET5
CodeT5 is a variant of the Text-To-Text Transfer Transformer
(T5) model designed for code generation tasks [48]. It is a
Transformer-based model trained on a mixture of code and
natural language data to perform various tasks, including
code summarization, translation, and completion. Combining
CodeT5 with ML-KNN involves two distinct steps: using
CodeT5 for code generation or related tasks and then
using ML-KNN for multi-label classification based on
the generated content. Figure 2 represents the graphical
illustration of the proposed approach.
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TABLE 1. Basic Statistics of the Error-labeled Dataset.

The conceptual overview of the workflow of the model is
below:

2) STEP1: USE CODET5 FOR CODE EMBEDDING

embedding = CodeT5 (source_code) (28)

3) STEP2: USE ML-KNN FOR MULTI-LABEL CLASSIFICATION:

labels = ML_KNN (embedding) (29)

Equations (28) and (29) represent the pseudocode for
combining CodeT5 with ML-KNN, as they involve distinct
models and processes. The outputs of CodeT5 (generated
code embedding) will be used as inputs for ML-KNN.

The leftmost part of Figure 2 provides information
regarding the dataset. After data preprocessing, we obtained
two datasets, named the original error label (OEL) and
summarized error label (SEL), along with the erroneous
source code. The erroneous code is then passed to CodeT5
for embedding, as shown in the middle part. The output from
CodeT5 yields the embedding matrix. In the rightmost part,
the embeddingmatrix, alongwith theOEL and SEL, is passed
to the ML-KNN for our classification task. Finally, multi-
label error classification is performed, yielding the output
from the ML-KNN.

V. EXPERIMENTS
A. DATASET
In this work, we utilized the error-labeled dataset proposed
by Shirafuji et al. [14]. The dataset contains 95,631 pairs of
erroneous and accepted codes, collected from 44 introductory
programming problems from the course Introduction to
Programming 1 (ITP1) on an online judge system. The
average number of errors for each pair is 3.47 (± 2.69), and
at least one error is contained. Since the erroneous code is
collected from the AOJ [2], [8], it is confirmed that the code
is evaluated using test input/output cases, and error verdicts
are obtained. The basic statistics of the error-labeled datasets
are listed in Table 1.

The overview of the data pre-processing is illustrated in
Figure 3. For the multi-label error classification, we used
only the erroneous code and its error labels of the code
pairs. To improve the classification performance while

FIGURE 3. Overview of the data preprocessing.

FIGURE 4. Illustration of the one-hot encoding of the error-labeled
dataset. For each codej , it indicates that it contains the error labeli if
(labeli , codej ) is 1, but not otherwise.

keeping consistency, we merged some similar labels into one,
as described in Section V-A1c.

1) PREPROCESSING
We apply some preprocessing to utilize the dataset for multi-
label classification tasks. The preprocessing has three phases:
(1) filtering, (2) transformation, and (3) summarization.

a: FILTERING
To avoid cheating on the models, we filtered out duplicate
pairs. We consider the data to be duplicated if both the
wrong and correct programs are exactly the same. In addition,
we removed the samples that contained no errors. As an
integral part of the preprocessing, we also shuffled the data
to mitigate the over-fitting problem and to improve the model
learning.

b: TRANSFORMATION
In the data transformation phase, we applied one-hot
encoding [62] to convert categorical labels to numerical
values. We created a matrix, where each column represents
an error, and each row represents a code pair. The one-hot
encoding process is illustrated in Figure 4.

c: SUMMARIZATION
The original error label (OEL) dataset comprises 55 labels,
while the summarized error label (SEL) dataset reduces this
number to 11. Table 2 provides a list of both summarized and
original error labels. As shown in Figure 5, some labels have
very low frequency, potentially causing dataset imbalance
and impacting classification results. To address this issue,

VOLUME 12, 2024 100811



M. F. I. Amin et al.: Multi-Label Code Error Classification Using CodeT5 and ML-KNN

FIGURE 5. Frequency of each label in the OEL dataset.

we have summarized the dataset, as illustrated in Figure 6,
and achieved a more balanced distribution of labels compared
to the OEL dataset.

B. EVALUATION METRICS
In the classification task, the performance of a classifier is
typically assessed using a confusion matrix. This matrix,
in turn, serves as the basis for calculating key metrics, such
as accuracy, precision, recall, and F1-score. We adhere to

FIGURE 6. Frequency of each label in the SEL dataset.

the standard evaluation approach [24], [31], [63], [64] for
our multi-label error classification task. In our classification
task, we adopted the precision, recall, and F1 score including
macro and weighted settings. In addition, the average
accuracy and exact match accuracy are also calculated for
the evaluation. The description of the evaluation matrices is
presented below:

1) AVERAGE ACCURACY
The average accuracy is defined as the average number
of correct predictions compared to the total number of
predictions. For example, a sample (data) contains n labels
(actual/true-label), now if the the output (number of predicted
labels) matches the actual label then the average accuracy of
the sample is:

Average_accuracy =
Predicted labels
True labels

(30)

The average accuracy of all samples is calculated as below:

Avgacc =

∑N
i

PLi
TLi

N
(31)

where Avgacc is the average accuracy, PLi is the predicted
labels, TLi is the true labels, and N denotes # of all samples.

2) EXACT MATCH ACCURACY
Then we focused on calculating the exact match accuracy.
In case of the exact match accuracy, if all the actual and
predicted labels match then it will be the exact match.
A sample contains n labels, and if the actual labels (e.g.,
0, 1, 1, . . . ., 0) exactly match all the predicted labels (e.g.,
0, 1, 1, . . . ., 0) then it is an exact match and it is calculated
by the following equation:

EM =

∑N
i Si
N

(32)

where EM presents average exact match accuracy, Si
represents exactly matched # of samples, and N denotes #
of all samples.

3) MACRO PRECISION, RECALL, AND F1 SCORE
Program code datasets often exhibit various data imbalances
and to make a neutral evaluation of these data, advanced
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TABLE 2. List of Summarized and Its Original Labels.

evaluation metrics (e.g., precision, recall, and F1-score) are
adopted. Although a higher micro F1 score suggests superior
overall performance, it lacks sensitivity to individual classes
because of imbalanced class data distribution. To mitigate
the issue, the macro-average is considered because a higher
macro F1 score signifies better model performance for
individual classes. For our classification task, macro F1
scores have been taken into account. Themacro precision (P),
recall (R), and F1 score (F1) are calculated as follows:

P =
1
C

C∑
i=1

TPi
TPi + FPi

(33)

R =
1
C

C∑
i=1

TPi
TPi + FN i

(34)

F1 =
2
C

C∑
i=1

Pi × Ri
Pi + Ri

(35)

where Pi is the precision for class i and Ri is the recall for
class i.

In these equations, TP, FP, and FN refer to the correspond-
ing counts for each class, andC is the total number of classes.

4) WEIGHTED PRECISION, RECALL, AND F1 SCORE
The weighted average F1 score is calculated by averaging
all F1 scores for individual classes, taking into account

the support of each class. The weighted precision, recall,
and F1 score are commonly utilized metrics in evaluating
classification models for imbalanced datasets. In these
metrics, each class contributes proportionally to the final
score based on its support (number of instances). For a
multi-label classification problem, the weighted precision
(Pweighted ), recall (Rweighted ), and F1 score (F1weighted ) are
calculated as follows:

Pweighted =

∑C
i=1 Supporti × Pi∑C

i=1 Supporti
(36)

Rweighted =

∑C
i=1 Supporti × Ri∑C

i=1 Supporti
(37)

F1weighted =

∑C
i=1 Supporti × F1i∑C

i=1 Supporti
(38)

where F1i is the F1 score for class i.

VI. EXPERIMENTAL RESULTS
A. IMPLEMENTATION DETAILS
A program code is typically a compilation of intricate
instructions, encompassing mathematical operations, func-
tions, keywords, variables, and tokens. These elements
are interrelated within a program code. The selection of
hyperparameters is of great importance in comprehending
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TABLE 3. Hyperparameter Settings.

the complex interrelationships within the code. We employ
different models for our multi-label error classification task.
The details of the hyperparameters are presented in Table 3.
In addition, 80%, 10%, and 10% of the data are used for the
training, validation, and evaluation, respectively.

B. RESULTS
Table 4 presents the quantitative classification results for P,
R, F1 as well as Pweighted , Rweighted , and F1weighted for the
OEL and SEL datasets for all the five models. In addition, the
Avgacc and EM accuracy with the number of exactly matched
error labels are also presented in Tables 5 – 6.

It is observed that the average P, R, and F1 scores of the
GRU model for the OEL dataset remain 0.00. In this case,
the GRU model failed to provide results for the dataset with
a large number of class labels. For the SEL dataset, P, R, and
F1 scores are 0.05, 0.09, and 0.06, respectively, while the
Pweighted , Rweighted , and F1weighted scores are 0.12, 0.21, and
0.15, respectively. For the SEL dataset, which contains fewer
classes, the GRU model can perform the classification task
and provide results. However, similar to the GRU model, the
LSTMmodel also failed to perform the classification task for
datasets with a large number of classes. The results obtained
from the LSTM model are identical to those of the GRU
model, indicating that the LSTM model also fails to provide
the classification results.

Unlike LSTM and GRU, the BiLSTM model can perform
the classification task for both OEL and SEL datasets. The
average F1 and F1weighted scores for the OEL are 0.12 and
0.36, respectively. For the SEL, the F1 and F1weighted scores
are 0.45 and 0.56, respectively. The BiLSTM model demon-
strates better performance in the SEL dataset compared to the
OEL dataset. It also provides good results for P, Pweighted ,
R, and Rweighted for the SEL dataset compared to the OEL
dataset. It is observed that the BiLSTMmodel’s performance
depends on the number of class labels, showing better results
for datasets with fewer classes than those with many classes.
Moreover, compared to GRU and LSTM, the BiLSTMmodel

performs better in the classification task and provides good
results for both the OEL and SEL datasets.

The BiLSTM-A model demonstrates promising results
over BiLSTM, LSTM, and GRU for both OEL and SEL
datasets. The P and R for both the OEL and SEL are
higher compared to BiLSTM, LSTM, and GRU. Although
the Pweighted for the OEL and SEL remains the same
for BiLSTM-A, it is higher than all the previous models.
Similarly, the Rweighted is also higher than the previous
models. The average F1 and F1weighted scores for the
BiLSTM-A mechanism for the OEL dataset are 0.21 and
0.45, respectively. For the SEL dataset, the scores are 0.51 and
0.60, respectively. BiLSTM-A can perform the classification
task for the both OEL and SEL datasets, but it also performs
better in the SEL dataset than the OEL dataset, similar to
the BiLSTM model. It is observed that BiLSTM-A exhibits
better performance in the multi-label error classification task
compared to BiLSTM, LSTM, and GRU.

The average F1 and F1weighted scores by the proposed
model for the OEL dataset are 0.26 and 0.53, respectively.
For the SEL dataset, the F1 and F1weighted scores are
0.52 and 0.65, respectively. It can be seen that the average
F1 score for the SEL dataset is higher than that for the OEL
dataset. The average P, Pweighted , R, and Rweighted for the
SEL dataset are also higher than the OEL dataset. In the
multi-label error classification task, our proposed ML-KNN
with CodeT5 demonstrates notable performance for the SEL
dataset compared to the OEL dataset.

The average F1 and F1weighted scores as well as the
recall for both OEL and SEL datasets demonstrate that our
proposed model outperformed the BiLSTM-A, BiLSTM,
LSTM, and GRU. Although the P of the BiLSTM-A is
slightly higher than that of the proposedmodel, in comparison
to other models, the proposed models’ performance is better.
Additionally, the Pweighted of the proposed model is higher
than all models for both OEL and SEL datasets, except
for the BiLSTM-A, which is only the case for the OEL
dataset. It is observed that our proposed model outperformed
the BiLSTM-A, BiLSTM, LSTM, and GRU models for the
overall multi-label error classification task for both the OEL
and SEL datasets.

A comparison of the models’ performance for the classifi-
cation task based on precision is illustrated in Figure 7, and
in Figure 8 the comparison is presented based on recall.
A comparison of the models’ performance for the classifi-

cation task based on the F1 score is illustrated in Figure 9
In Table 5, the Avgacc of all the models is presented. For

the OEL, both GRU and LSTM provide the same Avgacc
results, and the same applies to the SEL dataset. The BiLSTM
model yields better results than LSTM and GRU for both the
OEL and SEL datasets in terms of Avgacc. The BiLSTM-A
outperforms the BiLSTM, LSTM, and GRU models for both
OEL and SEL datasets. Finally, our proposed ML-KNN with
CodeT5 exhibits superior performance compared to all the
baseline models for both the OEL and SEL datasets. It is
observed that ML-KNN with CodeT5 outperforms all the
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TABLE 4. Classification Results of All the Models for the OEL and SEL Datasets.

FIGURE 7. Comparisons of models’ performance in code label
classification based on Pweighted scores.

FIGURE 8. Comparisons of models’ performance in code label
classification based on Rweighted scores.

other models and performs the classification task better in
terms of Avgacc.

In Figure 10 the comparison of the Avgacc for the OEL and
SEL datasets is illustrated.

The EM accuracy of all the models for the OEL and SEL
datasets is presented in Table 6. For the OEL dataset, the GRU
and LSTMmodels fail to provide theEM accuracy while they
provide results for the SEL dataset and the results are the same

FIGURE 9. Comparisons of models’ performance in code label
classification based on F 1weighted scores.

TABLE 5. Avgacc of All the Models for the OEL and SEL Datasets.

for both models. The EM accuracy by the BiLSTM model
for the OEL and SEL datasets is 12.80% and 19.26%, with
the number of exactly matched labels being 1061 and 1594,
respectively. The EM accuracy for the SEL dataset is better
than the OEL dataset for the BiLSTM model.

The BiLSTM-A provides the EM accuracy for the OEL
dataset with the result being 16.84% and the number of exact
match labels being 1396. For the SEL dataset, the result is
22.12%, with the number of exact match labels being 1831.
The EM accuracy for the SEL dataset of the BiLSTM-A
is better than for the OEL dataset. Additionally, the EM
accuracy of the BiLSTM-A is also superior to BiLSTM,
LSTM, and GRU models for both OEL and SEL datasets.

The EM accuracy of our proposed ML-KNN with CodeT5
for the OEL dataset is 22.57% and the number of exactly
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TABLE 6. EM Accuracy of All the Models for the OEL and SEL Datasets.

FIGURE 10. Comparisons of models’ performance in code label
classification based on Avgacc .

match labels is 1871. In terms of the SEL dataset, the
result is 27.22% and the number of matched labels is
2253. The proposed model also demonstrates a better
EM accuracy for the SEL dataset than the OEL dataset.
Furthermore, compared to the other models, our proposed
model outperformed the EM accuracy for both the OEL and
SEL datasets.

In Figure 11 the comparison of the EM accuracy for the
OEL and SEL datasets is illustrated. The number of exactly
matched labels for both datasets is presented in Figure 12

The comprehensive comparison of results, encompassing
F1weighted , Avgacc, and EM , for all baseline models along
with our proposed model, across both the OEL and SEL
datasets, is illustrated in Figure 13.

VII. DISCUSSION
A. PERFORMANCE ANALYSIS
In this study, we approached the CodeT5 model with
ML-KNN for the multi-label error classification task in
program codes, aiming to address the inherent complexity
and diversity present in program codes.We assess themodel’s
performance through training, validation, and testing with
real-world program codes. The quantitative classification
results (Table 4) demonstrate that the proposed model
outperforms other baseline models such as GRU, LSTM,
BiLSTM, and BiLSTM-A. The comparison of the models’

FIGURE 11. Comparisons of models’ performance in code label
classification based on EM accuracy.

performance based on Pweighted , Rweighted , and F1weighted
score is visualized in Figures 7, 8, and 9, respectively.
Notably, the performance of the models seems to be
influenced by the number of classes, with the SELs showing
better performance compared to the OELs across all models.
The accuracy, including Avgacc and EM accuracy is presented
in Tables 5 and 6, and their comparison is illustrated in
Figures 10 and 11. We observed that the Avgacc is generally
higher for the OELs compared to the SELs, which could be
attributed to the variations in the test data. As the number of
classes differs between the OEL and SELs, the test data for
each also varies. The OELs encompass a larger number of
labels compared to the SELs, resulting in a higher likelihood
of predicted labels in the test data.

In terms of EM accuracy, our proposed CodeT5 with ML-
KNN consistently outperformed the other baselinemodels for
both OELs and SELs, as shown in Table 6 and Figure 12.
Particularly, our model achieves higher accuracy in matching
exactly labeled errors compared to other models, indicating
its superior performance in the multi-label error classification
task.

Overall, our study demonstrates that the proposed CodeT5
with the ML-KNN model is highly effective in classifying
errors in program codes, outperforming the other baseline
models across various evaluation metrics.
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FIGURE 12. Comparisons of models’ performance in code label
classification based on number of exactly matched labels.

B. SCALABILITY
In this study, multi-label error classification model is
employed to classify errors that exist in the program code.
The model classifies code errors and presents the output
as a label. Our proposed approach demonstrated superior
performance compared to the baseline models in the error
classification task, particularly those in Python, which is
considered a procedural language. Therefore, the proposed
model has the potential to classify program codes in
other procedural languages, such as C, C++, and Java.
Additionally, the proposed model is scalable and can handle
large industrial program codes, which are often lengthy and
contain numerous functions and classes. Given that industrial
codes can be extensive and diverse, with various functions
and classes, the proposed model proves beneficial for their
classification. Moreover, this study can be extended using
different approaches and methods, making it suitable for
large-scale applications. It can be utilized not only for multi-
label error classification, but also for tasks such as classifying
algorithms, function classification, and other classification
scenarios. It is evident that the proposed multi-label error
classification model holds utility and scalability for various
programming-related tasks.

C. SUITABILITY FOR PROGRAMMING LEARNING
One of our objectives is to explore how the model can aid
programmers in real-world programming environments.With
this goal in mind, the proposed model has been developed.
The dataset used in this study consists of solution codes from
the course Introduction to Programming 1 (ITP1) obtained
from an Online Judge (OJ) system. The ITP1 course encom-
passes a wide range of problems, including basic, interesting,
and practical problems, aimed at fostering fundamental
programming skills. These problems cover diverse topics
such as conditional branching, computation, arrays, strings,
mathematical functions, structured programming, and object-
oriented concepts. Therefore, the dataset derived from this

course is heterogeneous, containing various types of errors
and presenting diverse learning opportunities.

By leveraging this heterogeneous dataset, our model offers
valuable insights and assistance to programmers and learners.
The model’s ability to effectively classify errors in solution
codes from a diverse range of programming problems
enhances its utility in practical programming scenarios.
Moreover, it contributes to the improvement of programming
skills by providing targeted feedback and guidance tailored to
the specific errors encountered. Thus, the employment of our
model proves beneficial not only for individual programmers
but also for enhancing programming education and learning
experiences.

The experimental results suggest that the study has the
potential to be valuable in programming learning. Given the
continuous generation of programming code from various
sources, such as academia, industry, programming platforms,
and OJs, the proposed multi-label error classification model
offers programmers, especially novices, an advantage in
identifying and recognizing errors within their code in
extensive repositories. This model has the potential to
streamline programming methods and enhance technical
skills. The experimental outcomes demonstrate that the
proposed model excels in classifying diverse and complex
codes with a higher degree of accuracy. Additionally, the
model can be integrated into existing programming learning
platforms, such as OJ systems.

D. SCOPE FOR SOFTWARE ENGINEERING
Repositories of real-world program codes are integral to
building effective machine learning/deep learning models
in software engineering. These models find applicability
in various software engineering fields, including design
and analysis, classifying errors, code review, code reuse,
and intelligent programming assistants (IPA). Our proposed
multi-label error classification model specializes in clas-
sifying program codes. Consequently, this model can be
directly or indirectly applied to various software engineering
tasks such as code review, error classification, and assisting
with code refactoring. In particular, the proposed model
can serve as a supporting component for other machine-
learning/deep-learning models in software engineering that
deal with program codes.

E. PRE-TRAINED LLMS FOR CODING TASKS
In recent times, pre-trained LLMs performance for code-
related tasks has been promising. For example, CodeT5+
which is an iteration and updated version of the CodeT5.
CodeT5 utilizes an identifier-aware, unified pre-trained
encoder-decoder architecture [48]. On the other hand,
CodeT5+ expands on this by integrating a flexible architec-
ture that allows it to operate as encoder-only, decoder-only,
or both [65]. The CodeT5+ model sizes range from 220M
to 16B which enables it to adapt to a wide range of code-
related tasks more efficiently. CodeT5+ uses off-the-shelf
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FIGURE 13. Overview of the F 1weighted, Avgacc , and EM for OEL and SEL datasets.

Large Language Models (LLMs) for initialization, which
is an approach that differs from the earlier CodeT5. This
method allows CodeT5+ to scale up more efficiently by
leveraging existing pre-trainedmodels. It employs a ‘‘shallow
encoder and deep decoder’’ architecture aimed at enhancing
computational efficiency.

In our proposed approach CodeT5 is used for the matrix
embedding and as CodeT5+ is the updated version of
CodeT5, it might be fitted with our proposed approach and
could increase the performance. In addition, other LLMs such
as Codebert [51], and LLaMA [66] could be suitable for
our proposed approach. Our future plan is to use fine-tuned
transformer-based models for the multi-label classification
task, we will consider CodeT5+ as well as other LLMs.

F. THREATS TO VALIDITY
This study introduced an innovative approach from data
preprocessing to model development for the classification
task, resulting in notable achievements in classifying errors
during experimentation. However, the proposed model may
encounter challenges or potential threats due to the following
reasons: (i) the results could vary from dataset to dataset, (ii)
other hyperparameters could influence the model’s perfor-
mance (iii) data preprocessing and segmentation strategymay
affect the quality of input data, (iv) may differ when applied
to other programming languages

VIII. CONCLUSION
In this study, we employed CodeT5 with ML-KNN for
the multi-label error classification task in the program
code, utilizing real-world program codes collected from
an online judge system. Two different datasets, named the
OEL and SEL, were used. Comprehensive data prepro-
cessing, including filtering, transformation, error labeling,
and summarization, was conducted for model training. The
model performance for both datasets is promising. For the
OEL, the Avgacc and EM accuracy are 95.91% and 22.57%,

respectively. The Avgacc and EM accuracy for the SELs are
84.77% and 27.22%, respectively. The precision P, recall R,
and F1 scores for the weighted metrics for the OEL are 0.66,
0.46, and 0.53, respectively. For the SELs, the precision P,
recall R, and F1 scores for the weighted metrics are 0.70,
0.62, and 0.65, respectively. The model performance for both
datasets is significant, but the SELs dataset produces better
results than the OELs. Additionally, we employed GRU,
LSTM, BiLSTM, and BiLSTM-A as baseline models for
comparison. The proposed model outperformed the baseline
models across all evaluation metrics used.

In the future, fine-tuned transformer-based models can
be considered for the multi-label error classification tasks,
providing an opportunity for improved performance. Repro-
ducibility can be enhanced by exploring this task with
different approaches. Moreover, expanding the dataset to
include more problem-solving data from various courses and
additional programming languages could contribute to amore
comprehensive analysis.
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