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ABSTRACT Users have different sensitivities to different attributes for the same data set. Disregarding this
can result in inadequate data confidentiality or reduced data availability. To address this, this paper proposes
a multi-level personalized local differential privacy mechanism optimization method. In high-dimensional
heterogeneous data scenario, this paper first adopts the optimal privacy budget allocation scheme to allocate
the privacy budget of different attributes, and then categorizes the privacy levels into high, medium, and
low. Users can freely select the privacy level for each attribute or choose the same level for all attributes.
For data analysts, reorganizing data with different privacy levels to achieve histogram estimation is a
challenging task. The paper introduces a histogram optimization estimation method based on two evaluation
criteria. It proposes a combinatorial optimization method, OC, which minimizes mean square error, and a
combinatorial optimization method, OP, based on perturbation theory, which minimizes maximum error. The
paper comprehensively studies the balance between data availability and privacy protection based on these
two rules.

INDEX TERMS Differential privacy, perturbation, nonlinear equations, optimization, personalized.

I. INTRODUCTION
Crowdsourcing technology has emerged as a powerful tool
to understand users’ needs, driven by the collection of
vast amounts of private data. With the proliferation of
smartphones and the Internet, data collectors can easily
gather personal data from a variety of mobile apps, allowing
them to create more apps that meet people’s needs and
are quietly changing the way we live. For example, real-
time traffic conditions can be provided by collecting users’
driving information; The user’s mobile phone is used as
a weather station, providing weather information for any
given area; Businesses, marketers and urban planners can
collect video from users’ mobile devices and turn it into
meaningful aggregate data. However, these apps pose a huge
threat to users’ privacy while collecting their data, which
has become a major obstacle to the widespread acceptance
of crowdsourcing [1]. Such as the Apple iCloud user photo
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leak and Yahoo data leak in 2014, people gradually realized
the importance of user privacy. Without proper privacy
protections, it is difficult for users to trust an organization.
As a result, the sharing of personal data calls for increased
caution.

The emergence of differential privacy technologies [2],
[3] brings renewed optimism for users. This groundbreaking
approach offers independent and verifiable privacy protec-
tion, impervious to an attacker’s background knowledge and
computing prowess. Unfortunately, users’ trust is based on
centralized third-party data managers. However, the frequent
third-party privacy leakage in recent years makes people no
longer trust any third-party data managers who claim to keep
users secret.

The local differential privacy (ϵ-local differential privacy,
referred to as LDP) originates from the differential privacy
in the centralized database environment and has become
the standard of data privacy protection in crowdsourcing
environment. It protects the data privacy of each participant
locally (e.g. on its own mobile device), without relying on
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any other party (e.g. database administrator or aggregator,
other participants). This is ideal for safeguarding data
privacy in the crowdsourcing scenario outlined in this paper,
as crowdsourcing aggregators, application servers, or other
participants may potentially compromise privacy. In fact,
people have done a lot of work on data aggregation of general
categories with ϵ- LDP [4], [5], [6].
However, due to different professional backgrounds,

people have different definitions of privacy and different
levels of concern about the private data they care about. For
example, for public figures, they pay more attention to their
geographical location information, such as home address,
vacation travel, etc. This is because some malicious people
will use their exposed location information for personal
interest tracking. On the contrary, for user groups like Hiking
travel, they prefer people to know their geographical location
in real time, so as to get more attention. Different historical
backgrounds and different living environments make people
have different definitions of the same type of privacy data.
Therefore, it is worth studying to provide a personalized
local differential privacy mechanism that meets different
user groups. In certain circumstances, individuals may be
open to trading some privacy protection for increased data
availability or more precise services. For example, when
sharing location data, if users are interested in accessing
information about nearby services or deals, they may choose
to lower their privacy level slightly to receive more accurate
recommendations. In this instance, employingmedium or low
level LDP settings can effectively address this requirement.
Therefore, in 2012, Li et al. [7] proposed a multi-level
privacy data release method to provide a solution for users’
diversified privacy needs. However, this method is centralized
differential privacy, that is, it assumes that there is a
trusted third-party data management organization to save user
privacy data, which is not applicable to the local differential
privacy model. Nie et al. proposed a multi-level personalized
local differential privacy scheme [8] in 2018. This method
is based on a single attribute scenario. However, under the
condition of high-dimensional heterogeneous data collection,
how to publish personalized local differential privacy scheme
is still a problem worth studying.

Motivated by above problems, this paper proposes a novel
multi-level personalized local differential privacy mechanism
optimization method. Multi-level personalized local differen-
tial privacy means that different users can choose different
levels of privacy protection for each attribute based on their
privacy preferences and data sensitivity. These levels can be
quantified by different privacy budgets ϵ, with a smaller ϵ

value indicating a higher level of privacy protection. In order
to achieve multiple levels of personalized local differential
privacy, the aggregator first needs to define different privacy
levels for users to choose from. To meet the needs of users,
this paper divides the privacy level into high, medium, and
low levels. You have the freedom to customize the privacy
settings for individual attributes or set a universal privacy
level for all attributes. This paper introduces innovative

histogram optimization estimation methods tailored to the
specific needs of data analysts, addressing two evaluation
criteria and various privacy levels. It presents the combined
optimization method OC, which minimizes the mean square
error, as well as the combined optimization method OP,
based on perturbation theory, which prioritizes minimizing
the maximum error to cater to the diverse requirements of
data analysts.

The main contributions of this paper are as follows:

• This paper introduces an innovative multi-level per-
sonalized local differential privacy mechanism tailored
for high-dimensional heterogeneous attribute scenarios.
By integrating an optimal privacy budget allocation
strategy with a binary randomized response mechanism,
this approach empowers users to customize privacy
levels for different attributes.

• This paper introduces two novel histogram estimation
optimization methods, OC and OP, based on dis-
tinct optimization strategies. Furthermore, it provides
comprehensive theoretical support for each of these
optimization strategies.

• We have successfully conducted simulation experiments
to implement personalized perturbation of user privacy
data across high-dimensional heterogeneous attributes.
The experimental results of two histogram estimation
optimizations validate the effectiveness of our proposed
method.

II. RELATED WORK
A. HIGH DIMENSION
Nowadays, for the issue of high-dimensional data publishing,
there are many ways have proved their effectiveness from
different perspectives. For instance, Cai et al. [9] delved into
the balance struck between statistical precision and privacy
in the realm of average estimation and linear regression
with high-dimensional datasets. Their approach primarily
involved optimizing the parameter configurations, including
the minimum-maximum lower bound and iterative threshold,
to guarantee statistical accuracy while adhering to differential
privacy principles. Nevertheless, this methodology neglects
the localized aspect of user privacy, and the authors fail to
elaborate on effective strategies for allocating the privacy
budget.

Wang et al. [10] proposed LoCop and DR_LoCop,
which guarantee local differential privacy using the random-
ized response technique while synthesizing and releasing
high-dimensional crowdsourced data with high data utility.
Specifically, LoCop leverages copula theory to synthesize
data through univariate marginal distributions estimated by
Lasso-based regression and models attribute dependencies as
multivariate Gaussian copula. DR_LoCop further improves
upon LoCop by utilizing C-vine copula to capture conditional
dependencies and achieve dimension reduction. However,
their proposed approach doesn’t address how to precisely
allocate the privacy budget to each attribute or each data point.

99740 VOLUME 12, 2024



X. Feng, C. Zhang: MPLDP: Multi-Level Personalized Local Differential Privacy Method

Ren et al. introduced LoPub [11], a novel approach that
marries the principles of RAPPOR and the probability graph
model. Their method initially converts each attribute’s value
into a randomized bit string utilizing a Bloom filter [12], fol-
lowed by its transmission to a centralized server. Afterward,
the data collector conducts frequency analysis on the received
data and constructs a Markov network. The joint probability
distribution of the attributes is then condensed into a maximal
clique to minimize data dimensionality. The resulting joint
probability distribution is then employed to regenerate a
dataset for release. However, a significant limitation of this
approach lies in its lack of foresight regarding privacy budget
allocation prior to the aggregation of high-dimensional
heterogeneous data at the server. Furthermore, when dealing
withmutually independent attributes, they suggest employing
the Expectation-Maximization (EM) algorithm to estimate
the multivariate distribution, which can lead to a steep
exponential rise in computational complexities.

Ren et al. [13] proposed LDP-IDS, a novel local dif-
ferential privacy (LDP) paradigm for infinite streams. This
work addresses the challenge of preserving end user privacy
during streaming data collection, a crucial aspect of real-time
data analytics in IoT and mobile-based systems. By adapting
the budget division framework from centralized differential
privacy (CDP) and developing a unified error analysis for
LDP, the authors present two adaptive budget division-based
LDP methods that enhance data utility by leveraging the
non-deterministic sparsity in streams. Furthermore, a novel
population division framework is introduced, which not only
mitigates the high sensitivity of LDP noise to budget division
but also significantly reduces communication requirements.
Although two adaptive privacy budget allocation methods are
proposed in this paper, they simply divide the privacy budget
evenly into two parts according to the time window, and do
not take into account the estimated loss caused by privacy
budget division under the condition of heterogeneous privacy
attributes.

B. MULTI-LEVEL DIFFERENTIAL PRIVACY
With the development of differential privacy technology,
multi-level privacy methods are more and more popular.
Because different users have different definitions of privacy,
they may have different privacy attitudes towards the same
type of data. Motivated by this, some researchers have pro-
posed multi-level privacy methods. The existing multi-level
privacy protection methods can be roughly divided into
partition method [14] and randomization method [7], [15].
Xiao et al. proposed a multi-level privacy data publishing
mechanism in 2010. The method they proposed solves the
privacy leakage problem caused by user collusion under
different privacy levels. Under the premise of centralized
differential privacy, Jorgense et al. [16] proposed a per-
sonalized differential privacy scheme. To enable users to
customize their privacy budgets, they proposed a sampling
method for publishing privacy data, which automatically
converts all existing differential privacy algorithms into

the algorithms satisfying Personalized Differential Privacy
(PDP). Min et al. [17] proposed a method for location privacy
protection in 3D space, P3DLPPM, which uses a two-stage
position perturbation mechanism. The mechanism maps its
initial application in data publishing privacy protection to the
location perturbation mechanism. It generates false locations
with smaller perturbed distances while improving the balance
between privacy and quality of service (QoS). In the method
based on k-anonymity, Gedik and Liu [18] proposed a
personalized data publishing method to share user’s personal
location, and Yuan et al. [19] proposed a method to realize
personalized privacy protection in the structure of social
network graph on the premise of assuming the attacker’s
background knowledge.

All the multi-level privacy methods mentioned above
belong to the category of centralized differential privacy
research. They realize data privacy protection of user’s
personalized privacy level on the basis of trusted third party.
They are actually contradictory and do not intrinsically
address the risk of user privacy breaches. Therefore, the
personalized local differential privacy mechanism under
the local differential privacy mechanism is studied in this
paper. In the research of personalized privacy with local
differential privacy, a small number of literatures are related
to this research category. For example, Wang et al. [20]
designed a feasible locally differential privacy protection
scheme on the Bloom filter. The proposed method can
ensure the confidentiality of users’ privacy level and optimize
the estimation accuracy through the selected randomization
strategy. Chen et al. [6] proposed to control the intensity
of privacy through the granularity of region division, and
realized personalized local differential privacy protection
based on the streaming histogram publication (SHP) method
of sliding window division. The proposal of this scheme is
mainly aimed at spatial data, which is not scalable for other
data. In 2018, Nie et al. [8] proposed a post-processing opti-
mization scheme for personalized local differential privacy
mechanism. They processed the disturbed data of users with
different privacy levels, assign privacy data no higher than
that level according to the credit ratings of different data
analysts, and finally output it through weighted optimization.
Their approach is aimed at local privacy protection under
univariate conditions, and there is no clear answer to how to
handle high-dimensional data.

In general, personalized local differential privacy tech-
nology is still in its infancy and has a good application
prospect, but the existing personalized centralized differential
privacy mechanism can not guarantee the security of user
privacy from the source. Besides, the existing personalized
local differential privacy mechanism cannot clearly solve
the data processing problem in the high-dimensional het-
erogeneous scenario. This paper will study the personalized
local differential privacy mechanism in high-dimensional
heterogeneous scenarios. In order to ensure the accuracy
of the estimation results, this paper will optimize the
result output according to the principle of minimizing the
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mean square estimation error and minimizing the maximum
error.

III. MPLDP: MULTI-LEVEL PERSONALIZED LOCAL
DIFFERENTIAL PRIVACY METHOD
A. LOCAL DIFFERENTIAL PRIVACY
Multi-level personalized local differential privacy [21] is
essentially local differential privacy. So let’s start with the
definition of local differential privacy. Local differential
privacy [22] is a rigorous privacy notion in the local
setting, which provides a stronger privacy guarantee than the
centralized differential privacy. The formal definition of local
differential privacy is defined as follows:
Definition 1: Given n users, each user corresponds to

a record, a randomized algorithm F satisfies ϵ-local
differential privacy, if for any two records t and t ′ ∈ D, and
for any output m ⊆ Range(F),

Pr[F(t) = m] ≤ exp(ϵ) · Pr[F(t ′) = m] (1)

where ϵ denotes the privacy budget, and D represents the
domain of privacy data.

In this paper, we use OBRR [23] perturbation mechanism
to realize the perturbation of user data. In fact, The perturba-
tion mechanism in OBRR actually uses binary randomized
response method (BRR) [24], so we’ll introduce the loss
function definition for the BRR mechanism next.
Definition 2: Suppose there is an attribute data x = xi ∈

χ = {x1, · · · , xm}, and express xi as a bitmap bx ∈ {0, 1}m. ∀
1 ≤ j ≤ m, the j-th position of the bitmap bxj outputs the true
value with probability p and 1 − bxj with probability 1 − p.

Suppose there are l attributes, then each user possesses
exactly l items (Only one value can be selected for each
attribute). Two such bit vectors can differ by at most 2l bits,
meaning that the sensitivity is 2l. According to the definition
of local differential privacy, the binary randomized response
mechanism needs to be satisfied p

1−p ≤ e
ϵ
2 or 1−p

p ≤ e
ϵ
2 .

We can get the following theorem.
Theorem 1: If the privacy budget ϵ in the binary random-

ized response mechanism meets:

ϵ = 2 log(max{
p

1 − p
,
1 − p
p

})

Then the binary randomized response mechanism satisfies the
ϵ-local differential privacy guarantee.

Multi-level personalized local differential privacy
(MPLDP) is an extension of local differential privacy (LDP)
that takes into account the individual privacy needs and
preferences of users. Under MPLDP, each user can choose
a different level of privacy budget ϵiτ for each attribute ai
according to their own preferences and privacy concerns, thus
providing different levels of privacy protection for different
attributes. ‘‘Multi-level’’ in MPLDP means that users can
assign different levels of privacy to each attribute in a dataset.
Similar to LDP, MPLDP ensures that the different noise or
randomization is directly applied to the individual user’s
attributes before it leaves the user’s device. So that no

TABLE 1. Notation.

trusted third party intervention is required. This prevents the
inference of original data even if the data is collected. The
goal of MPLDP is to balance the privacy needs of users
with the utility of the data. By allowing for personalized
privacy budgets, MPLDP aims to provide sufficient privacy
protection while still enabling useful data analysis and
mining.

B. PROBLEM DESCRIPTION
This paper focuses on the problem ofmulti-level personalized
local differential privacy in high-dimensional heterogeneous
aggregate data. Given a set of l attribute set data from
n different users, different attribute dimensions may be
different. Each attribute will involve different privacy budget.
This paper assumes that the optimal privacy budgets for all
attributes have been calculated by OBRR [23]. Considering
that each user has a personalized privacy level requirement
for each attribute, the main purpose of this paper is twofold.
First, it aims to help users design a multi-level personalized
local differential privacy mechanism, so that users can freely
choose the privacy level of different attributes; Second,
it enables the data collector to create a more effective
combination method for estimating the frequency statistics
of each attribute candidate value under various privacy levels,
subsequent to the user’s independent selection of the privacy
level for each attribute. Some notations employed in this
paper are listed in Table 1.

Formally, suppose that there is high-dimensional heteroge-
neous set dataA = {a1, a2, · · · , al}, and each attribute ai has
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a number of candidate values, ai = {ai1, ai2, · · · , aiki}, where
ki is the number of candidate values for the i-th attribute,
it can also be interpreted as a dimension, that is, |ai| = ki,
i = 1, 2, · · · , l. The optimal privacy budget for each attribute
is {ϵ1, · · · , ϵl}. Each user um holds a dataset of l attributes
vm = {vm1, vm2, · · · , vml}, where vmj ∈ aj. Let n represents
the total number of users, and d = k1 + k2 + · · · + kl
represents the total length of the bitmap. It is assumed that
the privacy level of each attribute is divided into three levels:
high,medium and low. The corresponding privacy budgets are
ϵ
high
i , ϵmidi and ϵlowi , where i = 1, · · · , l stands for attribute
index. The allocation of different levels of privacy budget
ϵ
high
i , ϵmidi and ϵlowi is not within the scope of this paper, which
assumes ϵ

high
i =

ϵi
3 , ϵ

mid
i =

ϵi
2 and ϵlowi = ϵi.

Let hm represents the private bit vector of the m-th
user. The length of the hm is d . Firstly, the private
data vm will be converted to a bitmap hm, and hm =

{h11, · · · , h1k1 , h21 · · · , h2k2 , · · · , hlkl }, where hij ∈ ai, i =

1, 2, · · · , l, j = 1, 2, · · · , ki. Assume that the privacy level
selected by user um is τm = {τ1, · · · , τl}, the user um then
perturbs the data with the privacy levels corresponding to
different attributes. Finally, the user um sends the perturbed
data h′

m to the data collector. The true histogram frequency
can be expressed as H =

∑
{h1, · · · ,hn}. The estimated

frequency of the disturbed data can be expressed as H̃ =∑
{h̃1, · · · , h̃n}. In order to estimate the frequency of the

interfered data, it is necessary to make a comprehensive
estimation of the data of users with different privacy levels
of the same attribute. Under different privacy levels, the
estimation results are inconsistent, and the estimation errors
are also very different.

The running process of the multi-level personalized
local differential privacy histogram publishing method for
aggregated data proposed in this paper is shown in Fig.1.
The aggregator publishes the query request set data A =

{a1, · · · , al} to each participant alongwith global parameters,
including the optimal privacy budget allocation scheme ϵ =

{ϵ1, · · · , ϵl} and privacy level τ = {high,mid, low}. After
the participant ui selects the privacy level, the privacy data
vm held by um is converted into a bitmap hm and perturbed to
h′
m. For example, the privacy levels selected by user1 for the

three attributes are respectively high, high and low. Therefore,
when the user disturbs the three attributes, ϵ

high
1 ,ϵhigh2 and

ϵlow3 are used to independently perform differential privacy
calculations for the attributes. After receiving the list of
perturbed data, the aggregator attempts to decode the estimate
on H′. Based on the candidate estimation results of the
perturb data set, the aggregator tries to provide better network
services for users.

C. PERSONALIZED LOCAL DIFFERENTIAL PRIVACY
SYSTEM MODEL
In this paper, the OBRR method proposed in [23] is used
as the client data perturbation mechanism, and then the
histogram of different attributes estimated according to

different privacy levels of users. OBRR is an improved
version of BRR [24] in high dimensional data conditions.
BRR has been proved by literature [25] to be the optimal
mechanism under the condition of high privacy level and low
privacy budget. Secondly, according to the characteristics of
histogram estimation under different privacy levels, different
utility evaluation functions are designed, and the results are
combined and optimized. Algorithm 1 shows the process of
perturbing data on the client side. Algorithm 2 shows the
process of estimating the histogram at the data collector side,
where [h′

m]ij represents the value of user m after disturbing
the j-th candidate value of the i-th attribute.

Algorithm 1 Data Disturbance
Input: ϵ-Privacy budget; {k1, k2, · · · , kl}-Candidate values

for each attribute; v ∈ {0, 1}k1+···+kl -Private data
expressed as bitmap; vij denotes the j-th value of the i-
th attribute of v; {ϵ1, ϵ2, · · · , ϵl}-Optimal privacy budget
allocation scheme; τ = {τ1, · · · , τl}-User privacy level

Output: h′
∈ {0, 1}k1+···+kl -Disturbed data satisfying ϵ-

local differential privacy, where h′
ij is the j-th value of the

i-th attribute of h′

1: initialize d = k1 + k2 + · · · + kl , h′
= 0 ∈ 0d , m = 0

2: for i = 1 to l do
3: for j = 1 to ki do
4: p = random[0, 1]
5: if p <

exp(ϵiτi/2)
exp(ϵiτi/2)+1 then

6: h′
ij = vij

7: else
8: h′

ij = 1 − vij
9: end if
10: end for
11: end for

Algorithm 2 Histogram Estimation
Input: ϵ-Privacy Budget; {k1, k2, · · · , kl}-Candidate values

for each attribute; {ϵ1, ϵ2, · · · , ϵl}-Optimal privacy bud-
get allocation scheme, τ = {τ1, · · · , τl}-User privacy
level; nτi -Number of users with privacy level τi; h′-
Disturbed data; h′

m is the disturbed data of the m-th user;
[h′
m]ij is the j-th value of i-th attribute of h′

m
Output: H̃-Histogram estimation
1: for i = 1 to l do
2: for j = 1 to ki do

3: H̃ij =

∑nτi
m=1[h

′
m]ij(exp(ϵiτi/2)+1)−nτi
exp(ϵiτi/2)−1

4: end for
5: end for

Firstly, OBRR is used to perturb user data. The total privacy
budget ϵ not only affects the intensity of privacy protection,
but also directly affects the availability of data. Smaller
ϵ values, while providing greater privacy protection, may
result in data distortion or reduced availability. Therefore,
in local differential privacy, the relationship between privacy
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FIGURE 1. Personalized local differential privacy framework for set data. For example, The first user in the figure holds
values 2, 3, and 6 of the three attributes respectively. The corresponding positions of the bitmap are set to 1, and the
remaining positions are 0, which noted as [X01, X12, X25]. User1 perturbs the bitmap they hold using the privacy budget
ϵ
high
1 , ϵ

high
2 and ϵlow

3 for each attribute and send it to the aggregator. The aggregator combines and decodes the disturbed
data and then publishes the results.

protection and data availability needs to be carefully weighed
to find the optimal ϵ value. Under multi-attribute conditions,
the total privacy budget is still a global constraint even
if each attribute is independent of each other. This means
that when allocating privacy budgets to different attributes,
it is necessary to ensure that the privacy protection needs
of all attributes are met and that the privacy protection
intensity of the entire process meets the predetermined
requirements. In order to make the privacy budget allocated
to each attribute maximize data availability in the process
of unbiased estimation, we adopt the optimal privacy budget
allocation scheme OBRR under the condition of multiple
attributes. OBRR satisfies ϵiτ -local differential privacy guar-
antee in each attribute of high-dimensional set data. Assume
ϵ = ϵ1+· · ·+ϵl , then the local differential privacy guarantee
is satisfied on l mutually independent disturbing attributes.
When the data collector receives the disturbed data from
the user, he/she first classifies the user data according to
different privacy levels, and then uses the Algorithm 2 to
unbiased estimate the data of each category. This involves
a problem: how to combine the estimation results from
different privacy levels but with the same attributes to ensure
the correctness of the overall estimation results as much as
possible? This is the focus of this paper’s research, which
is to find a solution suitable for the final estimated result
by weighting the results of unbiased estimates of different
privacy levels. In this paper, the utility function of minimizing
square error and minimizing maximum error are used to

evaluate the final results. The perturbation, estimation and
optimization models proposed in this paper are shown in
Fig.2.

IV. HISTOGRAM PUBLISHING OPTIMIZATION METHOD
Due to the different privacy level settings, the estimation
accuracy within each level group is reduced. If the esti-
mation results of different levels are directly added as the
final estimation results, it will inevitably lead to a large
difference between the estimated results and the actual
results.

Excessive privacy levels create confusion and hinder user
selections. For instance, a privacy level set at 10 makes it
difficult for users to accurately evaluate their private data,
rendering the ratingmeaningless. This paper proposes simpli-
fying privacy levels into three categories: high, medium, and
low. The corresponding privacy budgets are ϵhigh, ϵmid , ϵlow.
Assume that the total privacy budget assigned to the attribute
i is ϵi, then let ϵhigh =

ϵi
3 , ϵ

mid
=

ϵi
2 , ϵ

low
= ϵi.

Let H = [H1,H2, · · · ,Hl] represents the statisti-
cal results of the original privacy data, where Hi =

[hi1, · · · , hiki ] represents the statistical result of the i-
th attribute. H̃ = [H̃high, H̃mid , H̃low]T represents the
unbiased estimation result after user disturbance. H̃τ

=

[̃hτ
11, · · · , h̃τ

1k1
, h̃τ

21, · · · , h̃τ
2k2

, · · · , h̃τ
lkl ] represents the unbi-

ased estimation result of the data whose privacy level group
is τ after the disturbance, where τ = {high,mid, low}. There
are l attributes in the user’s aggregate data, and the number
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FIGURE 2. Collection Data Privacy Protection Publishing. If the user chooses a high privacy level τ = {high, high, high},
then according to Algorithm III-C, the user has a probability of

exp(ϵi /6)
exp(ϵi /6)+1 telling the truth and 1

exp(ϵi /6)+1 telling lies for
all the attributes. Assume that the bitmap of the privacy data held by the user is [[01][001][00001]], and the bitmap after
the disturbance is [[11][0100][01000]]. The user sends the disturbed bitmap to the aggregator. The aggregator makes
statistics on the disturbed user data according to the privacy level, and then estimates the real attributes of different
privacy levels according to Algorithm 2.

of candidate values for the i attribute is ki.

H̃i =

̃h
high
i1 · · · h̃highiki
h̃midi1 · · · h̃midiki
h̃lowi1 · · · h̃lowiki

 .

Let � = [W1,W2, · · · ,Wl]T represents the weight used to

estimate the distribution, where Wi = [
nωhighi
nhigh ,

nωmidi
nmid ,

nωlowi
nlow ]

denotes the weight of the combination, that is, each attribute
is assigned three weights. So the combination result of the
i-th attribute is

Ĥi = WiH̃i, ω
high
i + ωmid

i + ωlow
i = 1 (2)

Then, on the i-th attribute, we can get the square sum
residue between the unbiased estimate and the real result

E(RSS(Wi)) = E[Hi − WiH̃i][Hi − WiH̃i]T (3)

Thus, the residual of the sum of squares between the unbiased
estimate on all attributes and the true result can be expressed
as

E(RSS(W)) =

l∑
i=1

E[Hi − WiH̃i][Hi − WiH̃i]T (4)

It can be seen from the Equation (4) that the weightW affects
the accuracy of the evaluation results. Equation (4) is a kind
of linear regression problem. If the evaluation standard is to
minimize the mean square error, it can be solved by the least
square method [26]; If the evaluation criterion is to minimize
the maximum error, the perturbation method proposed in this
paper can be used to solve the problem.

A. OPTIMAL COMBINATION METHOD OF HIGH
DIMENSIONAL DATA
Next, we will illustrate the process of identifying the optimal
weight based on various evaluation criteria. This paper
addresses high-dimensional, heterogeneous data collections
and accommodates users with the flexibility to choose from
three levels of privacy. As can be seen from the Equation (4)
that there are 3l parameters for weight � to be calculated.
In fact, using the least square method to calculate the
residual sum of square of Ĥi in Equation (4) is equivalent to
calculating the minimummean square estimation error of Ĥi.
Let’s start with a lemma.
Lemma 1: Ĥi is the unbiased estimation result of real

statistical data Hi.
Proof: E(Ĥi) =

∑3
τ=1

nωτ
i

nτ
E(H̃τ

i ), Assume that there are
nτ users who choose privacy level τ , and H̃τ

i is the unbiased

estimation results on nτ , it’s easy to deduce
E(H̃τ

i )
nτ =

Hi
n . This

is because the selection of user privacy level is independent
of the specific private data held, so the estimate of the
probability of different candidate values on the sample space
nτ is equivalent to the probability distribution on the entire
sample space n. We can get

E(Ĥi) =

3∑
τ=1

nωτ
i

nτ

nτHi

n
=

3∑
τ=1

ωτ
i Hi = Hi (5)

that is

E(Ĥi) = Hi (6)

Therefore, the lemma is proved. □
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Based on unbiased estimation characteristics, the mean
square error of Ĥi is calculated as follows

MSE(Ĥi) = E[||Ĥi − Hi||
2
2] = E[

ki∑
j=1

(Ĥij − Hij)2]

=

ki∑
j=1

E[Ĥ2
ij − 2ĤijHij + H2

ij]

=

ki∑
j=1

E[Ĥ2
ij] −

ki∑
j=1

H2
ij (7)

Since E(Ĥij) = Hij, and E[Ĥ2
ij] = Var[Ĥij] + E2[Ĥij],

Therefore, it can be obtained from the Equation (7).

MSE(Ĥi) =

ki∑
j=1

Var[Ĥij]

=

ki∑
j=1

3∑
τ=1

(
nωτ

i

nτ

)2Var[H̃ τ
ij ]

=

ki∑
j=1

3∑
τ=1

(
nωτ

i

nτ

)2(
exp(ϵiτ /2) + 1
exp(ϵiτ /2) − 1

)2Var[H ′τ
ij]

=

ki∑
j=1

3∑
τ=1

(
nωτ

i

nτ

)2(
exp(ϵiτ /2) + 1
exp(ϵiτ /2) − 1

)2nτ (
exp(ϵiτ /2)

(exp(ϵiτ /2) + 1)2
)

=

3∑
τ=1

ki(nωτ
i )

2 exp(ϵiτ /2)

nτ (exp(ϵiτ /2) − 1)2
(8)

where H ′τ
ij denotes the statistical results of the data after the

disturbance of the j-th candidate value of the i-th attribute.
It has been proved that Ĥi is an unbiased estimate in Lemma 1,
the sum of its squares and the expectation of residual RSS(W)
is equal to the mean square error of Ĥi. Therefore, the optimal
weight obtained by the least square method is consistent
with the weight obtained by minimizing the mean square
error. For simplicity, the optimal weight problem is directly
solved by minimizing the mean square error. Therefore,
in the l-dimensional set data, the weight value satisfying the
user’s personalized local differential privacy protection and
utility maximization can be obtained by solving the following
equation: 

min
3∑

τ=1

ki(nωτ
i )

2 exp(ϵiτ /2)

nτ (exp(ϵiτ /2) − 1)2

3∑
τ=1

ωτ
i = 1

(9)

where i = 1, · · · , l, then
Theorem 2: when

ωτ
i =

Dτ∑3
τ=1 Dτ

(10)

where Dτ = nτ
(exp(ϵiτ /2)−1)2

exp(ϵiτ /2) ,equation (9)can get minimum
value, and have

MSE(Ĥi) =
kin2∑3
τ=1 Dτ

(11)

Proof: Equation (9) is a minimum optimization problem
under conditional constraints. By calculating the partial
derivative of ωτ

i , it can be concluded that the extreme point
of the equation is the optimal parameter that minimizes the
mean square error. Using the Lagrange method, the equation
can be changed into

ℓ(Wi) =

3∑
τ=1

ki(nωτ
i )

2 exp(ϵiτ /2)

nτ (exp(ϵiτ /2) − 1)2
+ C(1 −

3∑
τ=1

ωτ
i ) (12)

where C is a constant greater than zero. By calculating the
partial derivative of ωτ

i , we get

∂ℓ(Wi)
∂ωτ

i
=

2kin2ωτ
i exp(ϵiτ /2)

nτ (exp(ϵiτ /2) − 1)2
− C (13)

Let ∂ℓ(Wi)
∂ωτ

i
= 0, then have

ωτ
i =

Cnτ (exp(ϵiτ /2) − 1)2

2kin2 exp(ϵiτ /2)
(14)

where
∑3

τ=1 ωτ
i = 1. Bring in Equation (14) can get

3∑
τ=1

Cnτ (exp(ϵiτ /2) − 1)2

2kin2 exp(ϵiτ /2)
= 1 (15)

have

C =
2kin2∑3

τ=1 nτ
(exp(ϵiτ /2)−1)2

exp(ϵiτ /2)

(16)

Substitute C back to the Equation (14), we have

ωτ
i =

nτ
(exp(ϵiτ /2)−1)2

exp(ϵiτ /2)∑3
τ=1 nτ

(exp(ϵiτ /2)−1)2
exp(ϵiτ /2)

=
Dτ∑3

τ=1 Dτ

(17)

where Dτ = nτ
(exp(ϵiτ /2)−1)2

exp(ϵiτ /2) . then

MSE(Ĥi) =
kin2∑3
τ=1 Dτ

(18)

So the theorem is proved. □
The value of ωτ

i is the weight value calculated when the
grade of the i-th attribute in the set data is τ , Similarly,
the ownership values of 3-levels of l attributes can be
calculated. The reasoning proof of Theorem 2 is based on
the combination of weights obtained by minimizing the mean
square error. The minimum mean square error serves as a
valuable evaluation method in some cases, yet it’s crucial to
recognize that it may not always be the optimal approach.
Minimizing themean square error could result in disregarding
the error values of certain individuals, leading to uneven
error distribution and excessive error values for some. For
seasonal commodities like watermelon and moon cakes, it’s
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acceptable for estimation errors to fluctuate within a certain
range due to minimal difference between purchase and sales.
However, a substantial estimation error for a specific item
can result in significant waste, contrary to the supermarket’s
desired outcome, even if the estimation of other items is
highly accurate.

In order to solve this problem, this section studies the
optimization method of frequency estimation based on
perturbation theory, that is, the perturbation method is used
to minimize the maximum estimated error on the premise of
reducing the overall error as much as possible, and finally all
the error values tend to be stable.

B. OPTIMIZATION METHOD BASED ON PERTURBATION
THEORY
Since the mid-1980s, perturbation analysis has received
enough attention in numerical linear algebra. Component
perturbation theory and error analysis have been widely
used in linear systems [27], [28], Matrix inversion [29],
[30], Matrix decomposition [31], Least squares problem
[32], [33], Eigenvalue and singular value solution [34],
[35]. The problem we have encountered in this section is
the approximate solution of the least squares. The norm
perturbation theory was used to solve the perturbation
problem of unitary least squares in [33], and the upper bound
of error between the true solution and perturbation solution
was given. Look at the following lemma:
Lemma 2: [33] Let A ∈ Rm×n(m ≥ n). A and A+1A are

full rank. Let

||Ax − b||2 = min, r = b− Ax,

||(A+ 1A)y− (b+ 1b)||2 = min,

||1A||2 ≤ ϵ||A||2, ||1b||2 ≤ ϵ||b||2. (19)

the premise is K2(A)ϵ < 1, then have

||x − y||2
||x||2

≤
K2(A)ϵ

1−K2(A)ϵ
(1+

||b||2
||A||2||x||2

+K2(A)
||r||2

||A||2||x||2
)

(20)

whereK2(A) = ||A||2||A+
||2, A+represents the pseudo

inverse of matrix A.
The above lemma gives the upper bound of the error

between the solution x and y in the matrix equation. In fact,
there is a similar relationship between the residuals of ||Ax−

b||2 and ||(A + 1A)y − (b + 1b)||2. The basic idea of
the perturbation method used in this section to solve the
least squares problem is consistent with the above lemma,
that is, adding perturbation to the matrix A to optimize
the least squares solution. Different from the above lemma,
the problem to be solved in this section is the equilibrium
problem of a class of residual series, that is, to reduce the
maximum error in the residual series. The following sections
present problems and theorem proofs to verify the validity of
the proposed method.

First, let’s calculate the weight combination through the
least square method. On the i-th attribute, there are

Ĥi = WiH̃i, ω
high
i + ωmid

i + ωlow
i = 1 (21)

In order to express more simply and clearly, Let ω̄τ
i =

nωτ
i

nτ
,

then we have Wi = [ω̄high
i , ω̄mid

i , ω̄low
i ]. It has also been

proved in Lemma 1 that Ĥi is an unbiased estimate of Hi,
so the following approximate equation is obtained

Hi ≈ WiH̃i, ω
high
i + ωmid

i + ωlow
i = 1 (22)

By simple transformation of Equation (21), we can get

HiH̃T
i ≈ WiH̃iH̃T

i (23)

This leads to

Wi = (HiH̃T
i )(H̃iH̃T

i )
−1 (24)

The results obtained by the above least square method are
consistent with the results obtained in the Theorem 2, which
is the optimal solution obtained on the basis of minimizing
the mean square error, that is, it guarantees the minimization
of E[

∑ki
j=1(Ĥij − Hij)2]. But there is no guarantee that the

minimization of

dk = max
1≤j≤ki

|Ĥij − Hij| (25)

The purpose of this program is to find the equilibrium point
between the maximum single point error and the minimum
mean square error. Look at a theorem.
Theorem 3: Assume that the solution of equation (24)

obtained by least square method isW(0)
i , takeW(0)

i as initial
value, The parameter obtained by using the perturbation
method after 1 iteration is W(1)

i , If constant perturbation
δ1 satisfies

sign(δ1) = sign(Hik − Ĥ(0)
ik )

|δ1| ≤
d (0)k − d (0)j

|H̃T
ij (H̃iH̃T

i )
−1H̃ij|

|δ1| ≤
d (0)k

H̃T
ik (H̃iH̃T

i )
−1H̃ik

(26)

then we have

max
1≤j≤ki

d (1)j ≤ max
1≤j≤ki

d (0)j

where

d (1)j = |Ĥ(1)
ij − Hij|

d (0)j = |Ĥ(0)
ij − Hij|

d (0)k = max
1≤j≤ki

d (0)j

Ĥ(0)
ij = ω̄

high(0)
i h̃highij + ω̄

mid(0)
i h̃midij + ω̄

low(0)
i h̃lowij

Ĥ(1)
ij = ω̄

high(1)
i h̃highij + ω̄

mid(1)
i h̃midij + ω̄

low(1)
i h̃lowij (27)

Proof: Let

d (0)k = max
1≤j≤ki

d (0)j (28)
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That is, the maximum error is obtained at the k-th position.
Define δ1 as a non-negative constant perturbation. LetH

(0)
i =

Hi, and let

H(1)
i = (hi1, · · · , hik + δ1, · · · , hiki ) = H(0)

i + θ
(1)
k (29)

where θ
(1)
k = (

k︷ ︸︸ ︷
0, 0, . . . , δ1, . . . , 0). Let H

(1)
i replace Hi to

solve the Equation (23) again:

H(1)
i H̃T

i ≈ W(1)
i H̃iH̃T

i (30)

then obtain

W(1)
i = (H(1)

i H̃T
i )(H̃iH̃T

i )
−1 (31)

where W(1)
i is the perturbation parameter obtained after

the first iteration, which can be expressed as W(1)
i =

{ω̄
high(1)
i , ω̄

mid(1)
i , ω̄

low(1)
i }Then Ĥ(0)

ij and Ĥ(1)
ij can be obtained

in the qeuation (27). We have

Ĥ(1)
ij − Ĥ(0)

ij

= W(1)
i H̃ij − W(0)

i H̃ij

= (H(1)
i H̃T

i )(H̃iH̃T
i )

−1H̃ij − (H(0)
i H̃T

i )(H̃iH̃T
i )

−1H̃ij

= θ
(1)
k H̃T

i (H̃iH̃T
i )

−1H̃ij

= δ1H̃T
ij (H̃iH̃T

i )
−1H̃ij (32)

where H̃ij = [̃hhighij , h̃midij , h̃lowij ]T . Then

d (1)j = |Ĥ(1)
ij − Hij| = |Hij − Ĥ(0)

ij − (Ĥ(1)
ij − Ĥ(0)

ij )|

= |Hij − Ĥ(0)
ij − δ1H̃T

ij (H̃iH̃T
i )

−1H̃ij| (33)

(1)when j = 1, · · · , l and j ̸= k

d (1)j ≤ d (0)j + |δ1||H̃T
ij (H̃iH̃T

i )
−1H̃ij| (34)

So, as long as δ1 satisfied

|δ1| ≤
d (0)k − d (0)j

|H̃T
ij (H̃iH̃T

i )
−1H̃ij|

(35)

then have

d (1)j = |Ĥ(1)
ij − Hij| ≤ d (0)k = max

j
|Ĥ(0)

ij − Hij| (36)

(2)when j = k

d (1)k = |Hik − Ĥ(0)
ik − δ1H̃T

ik (H̃iH̃T
i )

−1H̃ik | (37)

As long as δ1 meets

sign(δ1) = sign(Hik − Ĥ(0)
ik ) (38)

and

|δ1H̃T
ik (H̃iH̃T

i )
−1H̃ik | ≤ d (0)k (39)

or

|δ1| ≤
d (0)k

H̃T
ik (H̃iH̃T

i )
−1H̃ik

(40)

have

d (1)k = |Hik − Ĥ(0)
ik − δ1H̃T

ik (H̃iH̃T
i )

−1H̃ik | ≤ d (0)k (41)

The inequality H̃T
ik (H̃iH̃T

i )
−1H̃ik ≥ 0 is used. The theorem is

proved. □
The perturbation method can reduce the maximum error

when iterating once, and it has the same effect when iterating
n times. Let

d (n)kn = max
1≤j≤ki

|Hij − Ĥ(n)
ij | (42)

be the maximum estimation error after iteration n times. d (n)kn
is a monotonically decreasing sequence. First, let’s look at the
following definitions
Definition 3: C = limn d

(n)
kn is the error limit of frequency

estimation of personalized local differential privacy model,
actually C > 0.
From this definition, the following theorems can be obtained
Theorem 4: If Hij > C > 0, Then for sufficiently large

iterations n, we have Ĥ(n)
ij > 0.

Proof: AssumeHij − Ĥ(n)
ij ≥ 0 (IfHij − Ĥ(n)

ij < 0, we have

Ĥ(n)
ij > Hij ≥ 0, So the theorem is proved.) Since Hij > C >

0, then ∃ ϵ0 > 0 make

Hij > C + ϵ0 > 0 (43)

Consider the fact that d (n)kn is monotonically decreasing from
condition

lim
n→∞

d (n)kn = lim
n→∞

max
1≤j≤ki

(Hij − Ĥ(n)
ij ) = C (44)

Therefore, for any ϵ, as long as the number of iterations n is
large enough, we have

Hij − Ĥ(n)
ij ≤ d (n)kn = max

1≤j≤ki
(Hij − Ĥ(n)

ij ) < C + ϵ (45)

Without losing generality, let ϵ = ϵ0, so we can get

Hij−C − ϵ0 < Ĥ(n)
ij (46)

then

Ĥ(n)
ij > 0 (47)

□
The result Ĥ(n)

ij > 0 of Theorem 4 is consistent with the
non-negative weight combination parameter, that is, as long
as Hij > C > 0 is met, it can be ensured that the weight
parameters obtained are non-negative, which is actually
required in this section. Because in all privacy levels, the
estimated results are positively correlated. If the weight is
negative, it is actually an incorrect frequency estimation. This
theorem is particularly important in conditional heteroscedas-
tic models. The specific perturbation algorithm is shown in
Algorithm 3.
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Algorithm 3 Perturbation Method

Input: Hi-Real statistical results of users; H̃i-Unbiased
estimation result matrix of different levels; iter-Iterations

Output: Wα-Weight parameter vector
1: initialization [row, column] = size(Hi)
2: for i = 1 to iter do
3: [Wα, bint, r, rint, stats] = regress(Hi, H̃i)
4: r = (Hi − H̃i ∗ Wα)
5: [dk , k] = max(abs(r))
6: for t = 1 to row do
7: if t ̸= k then
8: M (t) =

|r(k)|−|r(t)|
|H̃T

it (H̃iH̃T
i )

−1H̃it |

9: else
10: M (k) =

|r(k)|
|H̃T

ik (H̃iH̃T
i )

−1H̃ik |

11: end if
12: end for
13: δ = min(M )
14: if r(k) < 0 then
15: δ = −δ

16: end if

17: θ = (

k︷ ︸︸ ︷
0, 0, . . . , δ, . . . , 0)

18: Hi = Hi + θ

19: end for

V. ANALYSIS OF PERSONALIZED LOCAL DIFFERENTIAL
PRIVACY MECHANISM
A. PERSONALIZED LOCAL DIFFERENTIAL PRIVACY
MECHANISM PRIVACY GUARANTEE AND SECURITY
ANALYSIS
The calculation steps involved in this paper are all based
on the private data generated by the binary randomized
response mechanism. The binary randomized response
mechanism has been proved to meet the requirements
of ϵ-local differential privacy. The optimization methods
based on the criterion of mean square error minimization
and maximum error minimization are both post-processing
processes. Those based on post-processing also meet the
local differential privacy [2]. The following theorem can be
obtained.
Theorem 5: If the privacy data holder has l attributes

in total, the privacy level set for attribute i is τi, the
corresponding privacy budget is ϵτi , the output results
of OC and OP optimization methods satisfy ϵτi -Local
differential privacy guarantee on the i-th attribute, and
satisfy

∑l
i=1 ϵτi -Local differential privacy on all attributes.

Further, if the initial privacy budget of the i-th attribute is
ϵ∗
i , then data records from different privacy levels on the
i-th attribute meet the requirement of ϵ∗

i -local differential
privacy, which satisfies ϵ-local differential privacy on all
attributes.
Proof:Let’s first prove that the ϵτi -local differential privacy

is satisfied on the i-th attribute. Let the dimension of the i-th
attribute be ki, and for any two records t and t ′ in the data set,

express them as bit bitmaps in the following forms:

Bt = (

t∗︷ ︸︸ ︷
0, . . . , 1, . . . , 0),Bt ′ = (

t ′∗︷ ︸︸ ︷
0, . . . , 1, . . . , 0) (48)

where the t∗-th position of the recorded t is 1, and the other
positions are 0; The t ′∗-th position of recording t ′ is 1, and the
rest positions are 0. Binary randomized response equation is
as follows:

F(b′
i|bi) =

{
p, bi = b′

i

1 − p, bi = 1 − b′
i

(49)

where p =
eϵτi /2

eϵτi /2+1
, and bi is the value of the i-th position of

Bt . Then for any identical output z, we just need to prove

e−ϵτi ≤
Pr[F(t) = z]
Pr[F(t ′) = z]

≤ eϵτi (50)

Because the global sensitivity of OBRR is 2, that is, for
any same output, Bt and Bt ′ have at most two different
perturbation probabilities. So the max value of Pr[F (t)=z]

Pr[F (t ′)=z]

is max{ p2

(1−p)2
,
(1−p)2

p2
}, that is max{eϵτi , e−ϵτi }, Thus the

inequality is established.
For each attribute, the binary randomized response mech-

anism satisfies ϵτi -Local differential privacy, Let x =

{x1, · · · , xl}, x′
= {x ′

1, · · · , x ′
l} are any two records with l

attributes in the dataset, z = {z1, · · · , zl} is a bit sequence
with length k1 + · · · + kl , where zi is a bit sequence with
length ki, then

Pr[F1,··· ,l(x1, · · · , xl) = (z1, · · · , zl)]
Pr[F1,··· ,l(x ′

1, · · · , x ′
l ) = (z1, · · · , zl)]

=

l∏
j=1

Pr[F1(xj) = zj]
Pr[F1(x ′

j ) = zj]

≤

l∏
j=1

eϵτj

= eϵτ1+···+ϵτl

= exp(
l∑
i=1

ϵτi ) (51)

Similarly, Pr[F1,··· ,l (x1,··· ,xl )=(z1,··· ,zl )]
Pr[F1,··· ,l (x ′

1,··· ,x
′
l )=(z1,··· ,zl )]

≥ exp(
∑l

i=1 −ϵτi ).
Furthermore, for the attribute i, there are three independent
data sets, which are subsets of records from high, medium
and low privacy levelsDhi,Dmi,Dli. Suppose that the random
disturbance mechanism on different subsets is Fhi, Fmi and
Fli, And these three disturbance mechanisms meet ϵhi , ϵmi ,
ϵli -local differential privacy. Let Fi = ∪τFτ i, by definition

Pr[Fi(t) = z] ≤ eϵτiPr[Fi(t ′) = z] (52)

If

Pr[Fi(t) = z] ≤ eϵiPr[Fi(t ′) = z] (53)
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if and only if ϵi ≥ ϵτ i. So ϵi can be expredssed as

ϵi = min{ϵi| ∧τ={h,m,l} (ϵi ≥ ϵτ i)}

= min{ϵi|ϵi ≥ max
τ={high,mid,low}

ϵτ i}

= max
τ={high,mid,low}

ϵτ i

≤ ϵ∗
i (54)

Thus, it can be proved that the ϵ∗
i -local differential privacy

guarantee is satisfied on the i-th attribute. Similarly, there are

Pr[F1,··· ,l(x1, · · · , xl) = (z1, · · · , zl)]
Pr[F1,··· ,l(x ′

1, · · · , x ′
l ) = (z1, · · · , zl)]

=

l∏
j=1

Pr[F1(xj) = zj]
Pr[F1(x ′

j ) = zj]

≤

l∏
j=1

exp( max
τ={high,mid,low}

ϵτ j)

≤ exp(ϵ∗

1 + · · · + ϵ∗
l )

= eϵ (55)

Thus, the theorem is proved. □
The threat of multi-level personalized local differential

privacy mechanism can be summarized as follows. (1) Data
reconstruction threat: If the perturbation mechanism is not
strong enough or there are vulnerabilities, an attacker may
be able to combine the disturbed data of multiple users
to infer some sensitive information. (2) Collusion attack:
When multiple users join forces, they may share information
about the perturbing data or perturbing algorithms they
receive, in an attempt to infer the original data of other
users. (3) Threat of parameter disclosure: In the multi-level
personalized differential privacy mechanism, the choice of
parameters is crucial to protect privacy. If an attacker can
obtain information about these parameters, they may use
them to optimize their attack strategy.

In order to deal with these threats, the following measures
are taken in our mechanism to overcome these problems:
(1) Enhanced perturbation mechanism: We introduce noise
intensity of different privacy levels in the multi-level
personalized local differential privacy mechanism for users
to choose to minimize the success rate of data reconstruction
and collusion attacks. (2) Protect parameter security: Ensure
the safe storage and transmission of privacy protection
parameters (such as ϵ values) to prevent attackers from
obtaining information about these parameters. Later, we will
combine public key cryptography to ensure the safe trans-
mission and storage of parameters, tamper-proof and so
on. (3) Using theorem proof: In Theorem 5, we give that
the mechanism proposed by me strictly meets the local
differential privacy guarantee, and verify the effectiveness
and security of the differential privacy mechanism through
theorem proof to ensure its robustness under various attack
scenarios.

B. ERROR BOUNDS AND COMPLEXITY OF PERSONALIZED
LOCAL DIFFERENTIAL PRIVACY MECHANISM
It has been proved in Theorem 2 that when ωτ

i =
Dτ∑3

τ=1 Dτ

,

the error can be taken to the minimum value MSE(Ĥi) =
kin2∑3
τ=1 Dτ

. This result is better than that when the ownership

weight is 1, that is, Wi = {1, 1, 1}. Therefore, in any case,
the method proposed in this section has an error upper bound,
which is

MSE(Ĥi) ≤

3∑
τ=1

kinτ exp(ϵiτ /2)
(exp(ϵiτ /2) − 1)2

(56)

As can be seen from the above formula, the relation-
ship between privacy budget (i.e. privacy level) and data
availability can be intuitively seen through the calculation
error. Changes in privacy budgets will lead to changes
in privacy levels, which will lead to changes in data
availability. Specifically, the mean square estimate error is
inversely proportional to the privacy budget. The larger the
privacy budget, the lower the privacy level, the smaller
the mean square estimation error, indicating the better the
data availability; Conversely, smaller privacy budgets lead
to lower data availability. For the user, the data disturbance
mentioned in Algorithm 1 requires the computation of O(d),
and the communication complexity is also O(d). In addition,
no additional complexity is added. For data analysts, the
optimizationmethodOC based on the criterion of minimizing
the mean square error needs to calculate additional weights
of different privacy levels, which costs O(1) computational
complexity. The optimization criterion based on minimizing
the maximum error requires additional calculation of weights
with a complexity ofO(3ki∗d ∗m), where ki is the dimension
of the attribute, d is the binary bitmap length of all attributes,
and m is the number of iterations. The number of iterations
is often small. Actually, the number of iterations is directly
related to the selected perturbation. In order to balance the
minimum maximum error and the minimum mean square
error, the number of iterations selected should not be too
large. In addition, the calculation complexity ofO(nτd+d) is
required to estimate the frequency in different privacy levels
separately, so the calculation complexity of O(nd + 3d) is
required to estimate the frequency in all levels, where n is
the number of users. Therefore, the overall computational
complexity for data analysts is O((n+ 3 + 3kim)d).

VI. SIMULATION EXPERIMENT OF PERSONALIZED LOCAL
DIFFERENTIAL PRIVACY MECHANISM
Suppose that the privacy data value of each participant is
extracted from histogram H , and H is generated uniformly
and randomly in each aggregation process. The dimension
of the dataset is [n, d]. The selection of data sets guarantees
the following criteria. First, each participant can only vote l,
that is, the sum of each row of the dataset binary matrix is
l. Second, the total number of votes cast by all participants is
l ∗n. Without losing generality, suppose there are 5 attributes,
and each attribute has a different number of candidate values.
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Without losing generality, select the dimension of each
attribute as {k1, k2, k3, k4, k5} = {5, 10, 15, 20, 25}. The
data set generation algorithm is shown in Algorithm 4. The
paper utilizes the optimal privacy budget allocation scheme
from the OBRR method [23]. We conducted comparative
experiments to demonstrate the correlation between privacy
budget allocation and the number of users. Additionally,
we tested the robustness of the proposed method with
1000 and 10000 users, respectively. Aggregators should
ensure that the total amount of the privacy budget is limited
and that the privacy budget allocated to each attribute and
each user is manageable. This requires setting a reasonable
initial privacy budget for the entire system according to
the scenario requirements and the size of the user group.
As the number of users increases or decreases or the
sensitivity of data changes, the total privacy budget needs to
be dynamically adjusted to ensure that it is always within
reasonable bounds. In the experimental part, we assume
that the range of the total privacy budget is [1, 6], and the
aggregator can decide which privacy budget to use as the
upper limit according to the data availability under different
privacy budget conditions. This section uses standardized
square error (NSE =

SE
n ) as an indicator to measure the

performance of the mechanism, where SE is the square error.

Algorithm 4 Dataset Generation Algorithm
Input: n- Number of participants; l- Total number of

attributes; {k1, k2, · · · , kl}- Number of dimensions per
attribute. {ϵ1, ϵ2, · · · , ϵl}- Optimal privacy budget allo-
cation scheme

Output: Dn∗l-Data set.
1: initialization index = 0; m = 0
2: for i = 1 to l do
3: if i ̸= 1 then
4: index = index + ki−1
5: end if
6: for j = 1 to ki do
7: for m = round( (j−1)n

ki
+ 1) to round( jnki ) do

8: D[m, index + j] = 1
9: end for
10: end for
11: end for

A. OPTIMAL COMBINATION METHOD OF HIGH
DIMENSIONAL DATA, OC
Because the scenario targeted in this paper is an optimal
combinationmethod of high-dimensional data, the first step is
to consider the allocation of the privacy budget. This section
uses the optimal privacy budget allocation scheme proposed
in [23] to allocate a reasonable privacy budget for each
attribute. The allocation results are shown in Table 2. Based
on the allocated privacy budget, the randomized response
mechanism is used to disturb the user’s private data, and
then the frequency of the disturbed data is estimated. The
experimental results are shown in Figure 3.

TABLE 2. The optimal privacy budget allocation scheme.

FIGURE 3. The relationship between the estimated histogram error
measured by log10(NSE) and the privacy budget ϵ. The black line in the
figure represents the total MSE (mean square error) of BRR method. The
MSE of BRR obtained by directly adding the frequency estimation results
of all different privacy levels and comparing them with the real
estimation results, and the red line represents the total mean square
error obtained by using the weighted combination method of OC.

The black line in the figure represents the total mean square
error obtained by directly adding the frequency estimation
results of all different privacy levels and comparing them
with the real estimation results, and the red line represents
the total mean square error obtained by using the weighted
combination method of OC. Figure 3(a) and Figure 3(b)
represent the error comparison results when the number of
users is 10000 and 1000 respectively. In general, with the
increase of privacy budget, the error gradually decreases, and
OC method is superior to BRR method [24], with the overall
error decreasing by about 60%. The estimated results in this
section are the actual optimization results obtained based on
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TABLE 3. The maximum estimation error.

the minimized mean square error. The figure clearly shows
how the mean square estimation error of the proposedmethod
changes based on the total privacy budget. A larger privacy
budget weakens privacy protection, resulting in a smaller
mean square estimation error and increased data availability.
Next, we’ll compare it with minimizing the mean square error
by minimizing the maximum error.

B. OPTIMIZATION METHOD BASED ON PERTURBATION
THEORY, OP
The experimental data used in this section are the same as
those used in the OC method. It has been proved previously
that the weight parameters obtained by the least square
method are consistent with those obtained by minimizing the
mean square error. Although these parameters can minimize
the overall mean square error, they cannot minimize the
maximum error. Therefore, the perturbation method is used
to adjust the actual estimated value of each iteration to ensure
that the overall mean square error does not increase too
much and that the maximum error continues to decrease.
The experimental results are shown in Table 3. There are
5 attributes in the experimental data. For the convenience of
the display, the maximum error of the 5 attributes obtained
by the least square method is added and its average value
is taken. (a) and (b) in Table 3 represent the maximum
error iterative decline results when the number of users

FIGURE 4. The relationship between the estimated histogram error
measured by log10(NSE) and the privacy budget ϵ. The black line in the
figure represents the total MSE (mean square error) of BRR method. The
MSE of BRR obtained by directly adding the frequency estimation results
of all different privacy levels and comparing them with the real
estimation results, and the red line represents the total MSE obtained by
using the weighted combination method of OC. The green line represents
the MSE of OP.

is 10000 and 1000 respectively. The experimental process
iterates a total of 20, but for convenience, only the first
10 results are shown.

It is evident from the table that the maximum estimation
error decreases as ϵ increases, and the maximum iteration
error continues to decrease. The rate of error reduction
is influenced by the selected perturbation δ, and in the
experiment, we utilize the upper limit value that complies
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with perturbation theory. The table clearly demonstrates a
rapid convergence rate, which is in line with our earlier
observations. The primary objective of this section is to
identify the optimal balance between the maximum error and
the minimum mean square error, while proving the viability
of our method. This approach can have a significant impact
on future, more intricate machine learning tasks such as
regression-based prediction.

Compared with the minimum mean square error, the mean
square error of frequency estimation obtained by perturbation
method will rise slightly, but it is still better than BRRmethod
shown in the figure on the whole. The specific comparison
results are shown in Figure 4. The OP method calculates
its weight parameters after each iteration, and calculates its
overall mean square error through the weight parameters. In a
word, theweight combination optimization algorithmOC and
the optimization algorithm OP based on perturbation theory
proposed in this paper have obvious improvement compared
with BRR.

VII. CONCLUSION
This paper introduces a multi-level personalized local
differential privacy mechanism to address the varying privacy
needs of individuals and protect their sensitive data. When
estimating data frequency, data analysts must consider
different user privacy levels. Current combination methods
often lead to excessive overall estimation errors or maximum
errors, which fail to adequately serve users. To address this,
the paper proposes two weight combination optimization
algorithms: one focuses on minimizing mean square error
(OC), and the other on minimizing maximum error (OP).
These algorithms calculate weight parameters for different
privacy levels, allowing for overall frequency estimation
through weighted combination. Experimental findings show
that the OC algorithm can reduce overall mean square error
by approximately 60% compared to BRR. While the OP
algorithm results in a slightly higher overall mean square
error than the OC method, it effectively minimizes the
maximum estimation error for each attribute, mitigating
overfitting or underfitting. Additionally, future plans include
introducing a reward and punishment mechanism, such
as privacy cost pricing compensation, to further clarify
the privacy classification standard and analyze the balance
between user privacy needs and data availability.
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