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ABSTRACT The main goal of this paper is to introduce a Motor Imagery (MI) classification system
for electroencephalography (EEG) that is extremely precise. To achieve this goal, we propose using a
feature-extracted deep one-dimension (1D) convolutional neural network (CNN) which provides a model
that can be further improved through hyperheuristic multi-objective evolutionary search.We can improve the
classification performance by training this deep CNN model with feature-extracted data from the Physionet
MI dataset. We also present a semi-deep fine-tuning approach that can yield improvements with just four
epochs. Our findings using the Physionet MI dataset illustrate that the approach we suggest surpasses most
contemporary techniques used for classifying EEG signals. Our system is computationally efficient and can
be trained using reliable EEG data for individual patients, allowing for accurate classification of their EEG
records. Because of its straightforward and parameter-independent characteristics, our system is versatile
and can be utilized with any EEG dataset.

INDEX TERMS Brain-computer interface, classification, deep learning, electroencephalogram, transfer
learning.

I. INTRODUCTION
Brain-Computer Interfaces (BCI) are novel technologies that
are advancing in their development for real-world usage.
Engaging with electronic technologies establishes commu-
nication between the brain and external environments [1].
Over the past few decades, BCI technology has seen progress
due to the development of machine learning algorithms,
resulting in better classification accuracy and performance.
BCIs have vast applications in augmenting, and treating
cognitive [2], [3] and sensory-motor impairments [4], [5],
as well as recreational purposes [6], [7], [8].

The electroencephalogram (EEG) is a frequently utilized
brain signal in BCIs due to its noninvasive nature and supe-
rior temporal resolution [9]. Different neurophysiological
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patterns have been utilized in brain-computer interfaces
(BCIs), such as motor imagery (MI), visual evoked potentials
(VEP), readiness potentials, and P300. Motor imagery based
BCIs and VEPs have received greater focus than others. It has
been shown that MI, unlike many other types of BCI, does
not require external stimuli and can be used in a self-directed
manner closer to natural control [10], [11], [12], [13].

In macaque V1, researchers used scalp EEG andmultiscale
recordings of Multiunit Activity (MUA) and Local Field
Potential (LFP) to describe how suppression affects the
temporal frequency (TF) axis and alters Steady-State Visual
Evoked Potential (SSVEP) responses. The modulation varies
depending on the two driving stimuli’s relative temporal
frequency and orientation. Although this technique is effi-
cient, it necessitates individuals to gaze at a monitor and
is prone to significant external influences [14]. In contrast,
MI involves imagining specific movement that leads to
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the desynchronization of neurons in the contralateral and
ipsilateral sensorimotor cortex. Although this approach
requires training, it can be applied to various situations.

The use of EEG-based BCI for motor imagery has
great potential in the field of medical applications, such as
stroke rehabilitation, wheelchair control, prostheses control,
exoskeleton control, cursor control, speller, and thought-
to-text conversion. This promising technology is highly in
demand due to its potential to improve the lives of individuals
with motor disabilities and can have significant medical
implications [15].

In addition to its usage in machine learning, Deep
Learning (DL) has been applied in computer vision and
natural language processing, surpassing traditional machine
learning techniques. Machine learning approaches that rely
on assumptions, such as support vector machines (SVMs),
linear discriminant analysis (LDAs), random forests, and
transformer-based models [16], [17], are all based on the
extraction of relevant features. The extraction of features may
therefore exclude some essential features. Using DL models,
features that are difficult to extract via traditional methods
may be learned.

Deep neural networks can learn thanks to their ability
to discover complex feature representations from raw data.
Neuro-engineering researchers are increasingly interested in
using DL for BCI development because it eliminates the need
for domain-specific expertise in manual feature extraction,
which is required in traditional BCIs [18]. EEG-based BCIs
have recently been developed using DL approaches [1].
Artificial neural networks organized in layers form the basis
for DL [19]. Each layer uses various nonlinear units for fea-
ture extraction and nonlinear signal mapping. Deep learning
methods are employed in feature extraction and classification
in MI EEG-based BCI systems [20]. In various brain activity
research and clinical investigations, wavelet transform coef-
ficient matrices categorize event-related potential (ERP) and
EEG signals. The performance of wavelet-based classifiers
can be significantly enhanced by utilizing the cone of
influence (COI) of the continuous wavelet transform (CWT),
as proposed in [21].
InMI-based EEG classification tasks, convolutional neural

networks (CNNs) have been successfully used in various
DL paradigms. Convolutional neural networks (CNNs or
ConvNets) are a type of artificial neural network (ANNs)
that are primarily employed for analyzing visual images [22].
In CNNs, a set of convolutional kernels or jointly weighted
filters are employed to slide across the input features,
producing a translation-equivalent output referred to as
feature maps. Each convolutional layer consists of multiple
convolutional filters (or kernels). Convolutional layers are
activated and trained by sliding a filter over a spatially
organized input layer and performing a convolution operation
on points on the vertices of the grid. The two essential
characteristics of a convolutional layer are its parameter
sharing and sparse interaction. We can concentrate on local

features in the spatial domain by employing smaller filters,
resulting in sparse interaction. Furthermore, the filter’s
connection weights are multiplied by the number of locations
visited in the input pattern, which allows the convolutional
layer to be trained for multiple locations through parameter
sharing.

The most widely used technique for extracting distinctive
features from EEG data during MI tasks is common
spatial patterns (CSP) [23]. CSP develops spatial filters that
emphasize the difference between two classes of data. Using
these filters to extract spatial features has been shown to
significantly improve the performance of brain-computer
interfaces based on motor imagery [24]. Several techniques
exist to enhance performance utilizing the CSP extension
algorithm [23], [24], [25], [26], [27]. The sparse common
spatial pattern (SCSP) method, as outlined in [25], enhances
classification performance by reducing the number of chan-
nels used for the common spatial filter while maintaining
classification accuracy. The success of the SCSP method
suggests that employing all channels or generating a global
CSP may not be the best approach for EEG. The locally
generated common spatial pattern (LRCSP) method, detailed
in [23], improves performance by forming local regions
through the grouping of adjacent channels starting from
several central channels.

Moreover, their nonlinear transformations allow deep
neural networks to extract low-level features without pre-
processing. They can therefore be used for classifying and
predicting EEG signals using classification and regression
techniques [28], [29], [30], [31], [32]. The discrete wavelet
transform was employed in [33] to identify and filter out
unwanted frequency components from the raw EEGs.

DL can be used to develop BCI systems for rehabil-
itation therapy using EEG inputs. Recent research has
employed Transformer models based on EEG signals to
detect sleep stages, classify imagined speech, and recognize
emotions [34], [35], [36], [37], [38], [39]. Dose et al. [40]
reported achieving a classification accuracy of 65.73% by
utilizing a range of EEG channel setups (from 9 to 64) to
categorize raw signals from a 4-task MI dataset. They used
a creative per-person performance enhancement approach,
and this technique allows for the model to be extended
to individuals using transfer learning. Tang et al. [41]
proposed a newmethod using CEMD (Conditional Empirical
Mode Decomposition) and 1DMSCNN (One-dimensional
Multiscale Convolutional Neural Network) to enhance the
classification accuracy of MI EEG signals. The standard
EMD algorithm is optimized in their work by using
the condition addition strategy to select effective intrinsic
modal components (IMFs). For each participant, an average
accuracy of 85.83% was achieved. Lun et al. [42] introduced
a CNN structure along with the appropriate network archi-
tecture and parameters that can classify raw MI-EEG data
from symmetric electrodes on the left and right hemispheres
of the brain without the need for preprocessing or artificial
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feature extraction techniques. The experimental outcomes
demonstrate that their models converge effectively on training
and testing datasets. The Physionet database serves as the
source of data. Their model achieved an accuracy of 97.28%.
Chawla et al. described a method for creating classifiers from
imbalanced datasets in [43]. The researchers demonstrated
that integrating their over-sampling method for the minority
class (abnormal) with the under-sampling of the majority
class (typical) could improve the performance of the classifier
(in the Receiver Operating Characteristic (ROC) space)
compared to solely under-sampling the majority class. They
also showed that combining minority class oversampling
with majority class under sampling can improve classifier
performance.

Transfer learning is a machine learning technique that
involves reusing a pre-trained model to improve the perfor-
mance of a related but different task. In deep learning, transfer
learning is particularly useful because pre-training a model
on a large dataset can help the model learn general features
that can be applied to new, smaller datasets. This not only
saves time and resources but also improves the accuracy of
the model.

Transfer learning involves leveraging knowledge learned
from one task or dataset to improve learning on a related
task or dataset, even with minimal additional training. This
approach can help predict data from a similar dataset (such
as one associated with a new individual). A large dataset,
such as MI-EGG data from multiple individuals, can be
used to train a neural network to learn general patterns and
extract features. There are three contexts in which transfer
learning approaches are used in BCI. Among the most
popular approaches is instance transfer learning [44], [45],
[46], which assumes detailed data from a source domain can
be transported to a target domain and reused. Second, feature
transfer is used to transfer knowledge by identifying the
standard features between the source and target domains [47],
[48], [49]. The latest transfer learning technique involves
transferring a model’s parameters from a source domain to
a target domain [50], [51].

Existing transfer learning methods can face several chal-
lenges related to the number of fine-tuned layers, speed and
accuracy. In transfer learning, fine-tuning toomany or too few
layers can affect the performance of the model. Fine-tuning
too many layers can lead to overfitting, while fine-tuning
too few layers can result in underfitting. Determining the
optimal number of fine-tuned layers is a critical challenge
in transfer learning. Transfer learning methods typically
require a large amount of data and computational power.
This can result in slow training times, which can be a
challenge in many applications. Additionally, the accuracy of
transfer learning methods may be limited by the quality and
quantity of the available data. Moreover, novel techniques
for selecting the optimal number of epochs and fine-tuned
layers are being developed. In this paper, we propose a
method of EEG signal classification which involves using
a feature-extracted deep one-dimension (1D) convolutional

neural network (CNN) that can be further improved through
hyperheuristic multi-objective evolutionary search. By train-
ing this deep CNNmodel with feature-extracted data from the
Physionet MI dataset and applying a semi-deep fine-tuning
approach, the classification performance can be improved in
just four epochs. The results obtained using the Physionet
MI dataset demonstrate that this approach outperforms most
contemporary techniques used for classifying EEG signals.
The system is computationally efficient, can be trained using
reliable EEG data for individual patients, and can accurately
classify their EEG records. Due to its parameter-independent
nature, the system is versatile and can be used with any EEG
dataset.

II. METHODS AND MATERIALS
The codes of our 1DCNN and Semi-deep fine-tuning
approach are publicly available for download at: https://github.
com/MohamadTaghizadeh/EEG-1DCNN.

A. DATASET
The EEGMotorMovement/ImageryDataset V 1.0.0 [52] was
the data source used in this study. The dataset records contain
EEG data from 64 scalp electrodes while the subjects perform
four tasks:

I. The participant performs hand movements by opening
and closing the fists on the side where a target appears
on the screen.

II. The participant imagines hand movements by opening
and closing the fists on the side where a target appears
on the screen.

III. The subject is instructed to open their fists when a target
appears at the top of the screen, close them when the
target appears at the bottom, and then relax, depending
on the target’s position on the screen.

IV. The subject is instructed to imagine opening their fists
when a target appears at the top of the screen, closing
them when the target appears at the bottom, and then
relaxing, depending on the target’s position on the
screen.

Features were extracted from the raw data, and the EEG
dataset’s Region of Interest (ROIs) and channels are listed
in TABLE 1. The 64 EEG electrodes’ scalp positions were
indicated by the letters ‘‘A’’ to ‘‘F’’, as shown in FIGURE 1,
representing the six regions. Furthermore, we use only task
(II) and (IV) combinations.

The dataset consists of 64 EEG signals, each sampled at
160 samples per second, and an annotation channel. This
dataset comprises over 1500 EEG recordings, each lasting
one or two minutes, and obtained from 109 volunteers
involving 14 experimental runs and 4 tasks. Each annotation
in this dataset includes one of three codes (T0, T1, or T2): T0
corresponds to rest, T1 corresponds to the onset of the motion
(real or imagined) of the left fist (in runs 3, 4, 7, 8, 11, and 12)
and both fists (in runs 5, 6, 9, 10, 13, and 14). T2 corresponds
to the onset of the motion (real or imagined) of the right fist
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FIGURE 1. The tasks and channels of EEG regions of interest (ROI).

TABLE 1. ROI and channels of brain EEG.

(in runs 3, 4, 7, 8, 11, and 12) and both feet (in runs 5, 6, 9, 10,
13, and 14). The sample sizes vary across different classes,
as evident from the channels depicted in FIGURE 1. These
recordings are categorized into Regions of Interest and are
presented in TABLE 1.
The division is based on the 10-20 system rule. The

international 10-20 system was created by Herbert Jasper
in the mid-20th century as a standardized method for
positioning EEG electrodes on the scalp. The ‘‘10’’ and ‘‘20’’
refer to the actual and nominal percentages of the distance
between specific landmarks on a subject’s head. The regions
and channel selection follow the standard placement of EEG
electrodes referring to the motor cortex and motor function
areas, mainly corresponding to the brain activities related to
motor imagery. Each region includes both right and left EEG
channels on the scalp to ensure capturing the motor function
activities. The main purpose of the channel selection for the
ROIs in our paper is:

I. To reduce the computational complexity of any pro-
cessing task performed on EEG signals by selecting the
relevant channels and hence extracting the features of
major importance.

II. To reduce the amount of overfitting that may arise due to
the utilization of unnecessary channels, for the purpose
of improving the performance.

III. To reduce the setup time in some applications.

In this paper, five classes are defined as L: opening
and closing the left fist, R: opening and closing the right
fist, LR: opening and closing both fists, F: opening and
closing both feet, and B: described as a baseline (which
enables the network to discriminate between EEG signals
associated with intentional movements and irrelevant or noisy
signals generated when participants are not actively issuing
commands to the device under control). Regarding task
combinations, the class label ‘L’ corresponds to T1 when
associated with the left fist gesture in task (II). Conversely,
the class label ‘LR’ represents T1 in the context of left-right
fists in task (IV). Similarly, for T2, the class label ‘R’
pertains to the right fist gesture in task (II), whereas the class
label ‘F’ signifies T2 in the context of both feet movements
in task (IV). In the context of task combinations, T1
corresponds to the imagined movement of the left fist during
the experimental run associated with task (II). Similarly,
for T1 in task combination (IV), it signifies the imagined
movement of both fists. Regarding T2, it pertains to the
imagined movement of the right fist in the experimental runs
related to task combination (II). Furthermore, in the context of
task combination (IV), T2 represents the imagined movement
of both feet. Each run adheres to a stereotyped repeated
timeline consisting of 4 seconds of baseline, followed by
4 seconds of T1, another 4 seconds of baseline, and finally
4 seconds of T2.

To facilitate model training and evaluation, we partitioned
the dataset based on its volume. Specifically, 80% of the
data was allocated for training, while the remaining 20% was
reserved for testing. Within this test data, we further allocated
10% for validation and 10% for final testing. To ensure data
integrity, we prevented any sample duplication across these
distinct sets. Due to the data properties and characteristics,
we used SMOTE [43] which is an oversampling technique
where synthetic samples are generated for the minority
class. This algorithm helps overcome the overfitting problem
posed by random oversampling. After applying SMOTE, the
number of instances of ROIs A, B, C, D, E, and F are 110160,
110160, 110160, 183600, 220320, and 330480, respectively.
Without data augmentation, the accuracy will be very low.
Using SMOTE for data augmentation causes the number of
minority class instances to become closer to the number of
instances in other classes.

B. FEATURE EXTRACTION
Processing biological signals are often challenging due to
the data’s non-stationary, nonlinear, and stochastic nature.
In order to achieve accurate classification, it is necessary to
observe the temporal behavior of the signals rather than rely
on a single point in time.

Therefore, to achieve accurate classification, observing
short segments of the wave and generating a feature matrix
based on the temporal segment is necessary. When using
a non-temporal learning process, it is essential to perform
feature extraction on the non-stationary and random EEG
signal. For segmenting the data, sliding windows of 1 second
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Algorithm 1 EEG Signal Feature Extraction
Algorithm
Output: For every wt , features extracted from raw data
Input: EEG raw data sequence;
Variables initialization init=1, wt =0;
While getting a sequence of raw data
(> 1min) do
if init then

prev_lag = 0;
post_lag = 1

end
init=0;
for each sliding window (wt - prev_lag) to
(wt + post_lag) do

Compute the mean of all wt values
y1y2y3. . .yn;ȳk=

1
N

∑N
i=1 yki;

Compute the asymmetry and waves peakedness
represented by 3rd and 4rd order moments

kurtosis and skewness g1k=
∑N

i=1 (yki−ȳk)
3

N3
sk

and

g2k=
∑N

i=1 (yki−ȳk)
4

N4
sk

−3;
Compute the minimum and maximum value of each
signal wtmin= min(wt ) and wtmax =

max(wt );
Compute the sample variances K×K matrix S for each
signal pair Skl= 1

N−1

∑N
i=1 (yki−ȳk)

(
yli

−ȳl
)
;∀k, ℓ ∈ [1, k];

Compute the covariance matrix eigenvalues S, which are
the λ solutions to: det(S− λIk) = 0, where Ik
is the K×K identity matrix, and det(·) is the
matrix determinant;

Compute the logarithm of each element in the upper
triangular matrix of the covariance matrix S, and
the matrix for S is defined via Taylor expansion
eB=Ik+

∑
∞

n=1
Sn
nW , then B ∈CK×K is a matrix

logarithm of S;
Compute the frequency’s magnitude components of each

signal, achieved using a Fast Fourier Transform
(FFT), magFFT (wt );

Get the frequency values of FFT’s ten most energetic
elements, and for each signal, get FFT (wt ,10);

end
wt=wt+1s;
prev_lag = 0.5s; post_lag = 1.5s;
Output Features Fwt extracted within the current wt
end

with 0.5-second overlap were introduced. Algorithm 1 out-
lines the hand-crafted features extracted. The samples’ mean,
standard deviation, maximum and minimum values were
calculated to determine the differences in the two 1-second
windows divided into two 0.5-second half-windows. The
sample means, paired differences of the sample mean,
maximum (minimum) values, and paired differences between
the quarter windows were all generated by two-quarter
windows of 0.25 seconds each. A Discrete Fourier Transform
was applied to analyze the time windows, and all resultant
values were treated as attributes. Algorithm 1 is utilized
to produce a vectorized representation of the behavior of
the EEG wave, resulting in the generation of numerical
characteristics.

III. 1D-CNN
The conventional deep CNNs described in the previous
section work exclusively with 2D data, such as images and
videos. Therefore, they are often referred to as ‘2D CNNs’.
In addition, 1D Convolutional Neural Networks (1D CNNs)
have been developed as an alternative to 2D CNNs [53], [54],
[55], [56], [57], [58]. The studies suggest that 1D CNNs offer
benefits for specific applications and are more desirable than
2D CNNs. TABLE 2 shows a comparison between 1D-CNN
and 2D-CNN.

The low computational requirements of compact 1DCNNs
make them ideal for low-cost and real-time applications [53],
[54], [55], [56], [57], [58], [59], [60].

Recently, compact 1D CNNs have demonstrated their
superior performance in applications with limited labeled
data and high signal variation, as shown in the above
studies (electro-cardiograms of patients, civil, mechanical,
or space structures, high power circuits, jet engines or motors,
etc.). The structure of the proposed model is presented
in FIGURE 2. There are two different types of layers in
1D-CNNs, as shown in FIGURE 2: 1) The CNN layers
go through a process that involves 1D folding, activation
functions, and subsampling (pooling), and 2) The fully
connected (dense) layers are the same as those found in a
typical multilayer perceptron (MLP) and are referred to as
MLP layer. For a 1D CNN, the following hyper-parameters
determine its configuration:

I. There are 4 CNN layer in the sample 1D CNN shown in
FIGURE 2.

II. The filter size (kernel) in each CNN layer; in the sample
1DCNN in FIGURE 2, the filter size is 10 for two initial
layers, and is 4 for the rest of CNN layers.

III. Each CNN layer has a subsampling factor (can be seen
based on the input size).

IV. Activation functions and padding are available.

Traditional 2D CNNs consist of an input layer that
receives the raw 1D signal and an output layer with neurons
corresponding to the number of classes. As shown in
FIGURE 2, a 1D CNN consists of three consecutive CNN
layers. This figure illustrates that the 1D filter kernels in
the hidden CNN layer l, are three-dimensional and have a
subsampling factor of 2. The k th neuron performs a sequence
of convolutions, which are then summed by the activation
function f and subsampled. The main difference between
1D and 2D CNN is that the kernels and feature maps are
represented as 1D arrays instead of 2D matrices. The CNN
layer then processes the raw 1D data and learns to extract the
features that are used by the MLP layer for classification.

TABLE 3 shows the model hyperparameters that we used
for our system. Categorical cross-entropy was used because
our task is a multiclass classification problem. Also, the value
of batch size is designated according to Random Access
Memory (RAM) limitation. Other parameters are selected for
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TABLE 2. 1D-CNN and 2D-CNN comparison.

FIGURE 2. The overall structure of proposed 1D convolutional neural network model: In this model, four CNN layers undergo a process that involves 1D
convolution, activation functions, and subsampling (pooling). The filter size is 10 for the first two layers and 4 for the remaining CNN layers. The fully
connected (dense) layers are the same as those found in a typical multilayer perceptron (MLP) and are referred to as MLP layers. For a 1D-CNN, the
hyperparameters determine its configuration.

TABLE 3. Model hyperparameter.

the best performance. TABLE 4 provides an overview of the
network architecture in this paper.

The purpose is to combine feature extraction and clas-
sification into a single process that can be optimized for
the best classification results. 1D-CNNs have this great
advantage because they only need to perform a sequence
of linear weighted sums of two 1D arrays, which can
also lead to low computational complexity. It is possible
to perform such a linear operation simultaneously during
the forward and back propagation operations. Furthermore,
it is an adaptive implementation since the CNN topology
allows the dimension of the input layer to vary such that the
sub-sampling factor of the CNN output layer can be adjusted
accordingly.

One kind of neural network requires an M×N matrix as
input, where M denotes the duration of the relevant time
frame and N represents the count of EEG channels. 1D
convolutional layer is widely used in deep learning for tasks
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TABLE 4. Our deep 1D-CNN model definitions: 1 dimension convolutional neural network (1DCNN), batch normalization (BN), Spatial dropout (SD),
Dropout (D), Pooling (P), Flatten (F), Fully connected (FC).

such as image and speech recognition, natural language
processing, and many other applications where the input data
has a sequential or temporal structure.

Equation (1) denotes 1D convolutional layers, where Q
represents the time window covered by the filter and N is
equal to 2.

yr = f (
∑Q

q=1

∑N

n=1
wqnxr+q,r+n + b) (1)

The number of feature maps in a convolutional layer is
determined by the number of filters applied to the input. The
size of the feature maps depends on the size of the input
image, the size of the filter, the stride used in the convolution
operation, and whether or not padding is used.

R = [
M − (K − 1) + 2 × P

S
] (2)

Equation (2) shows the filter feature map of size R (where
R = M if the stride = 1) with padding results in the output
yr (Equation (1)); x represents the input range that intersects
with the filter; w is the connection weight of the convolution
filter; b is the bias term; and f is the activation function. This
equation can help us determine the size of the filter feature
map (R) following convolution.

The purpose of padding is to preserve the input-output
ratio equivalent to the stride during convolution, and this is
achieved by adding pixels with a value of 0 to the edges of
the image. The symbol S represents the stride value, which
determines the number of positions skipped by the filter
during each shift while performing convolution. The first
convolutional layer is followed by a batch normalization (BN )

[39]. BN involves adjusting the input to the next layer
to speed learning and improves generalization through
regularization effects. The training and testing phases are
handled differently for this technique. While training, the
inputs of the entire batch are normalized by BN, which refers
to the group of instances used to calculate the loss and
gradient for the learning algorithm. Additionally, it sets the
normalized inputs to zero. The model can effectively scale
the inputs by learning to do so.

µ =
1
b

∑b

i=1
X (i)

σ 2
=

1
b

∑b

i=1
(X (i)

− µ)2 (3)

Equation (3), estimates the mean and variance that depends
on parameters and are derived from the stack.

In this case, X (i) is an instance of the batch. The normalized
value of each instance refers to the transformed value of a
feature or variable in the dataset such that it has a mean
of zero and a standard deviation of one. Normalization is a
common preprocessing step in machine learning that helps to
scale the features of the dataset to a similar range, making it
easier for the model to learn and reduce the impact of outliers.
The calculation of X̂ i refers to the normalized value of each
instance in the batch, which has been centered around zero,
based on the total number of instances in the batch denoted
by ‘‘b.’’

X̂ i =
X (i)

− µ√
σ 2 + ξ

(4)
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Equation (4) calculates X̂ i (ξ = 10−5 avoids zero
divisions).

Since normalization may not be sufficient for a particular
task, BN employs an additional training step. By introducing
the scaling and shifting parameters, BN allows the model
to learn the optimal scale and shift for the normalized
activations, which can improve the performance of the
model. The scaling and shifting parameters are learned
independently for each feature dimension of the activations,
allowing the model to adapt to the specific characteristics of
each feature.

zi = γ X̂ i + β (5)

Equation (5) involves adjusting values through scaling and
shifting using the trained parameters.

A scaling parameter is obtained by multiplying each input
value by the corresponding scaling parameter, and an offset
parameter is obtained by subtracting the input value from
the scaling parameter (both parameters were trained by
backpropagation).

An activation layer is a layer in a neural network that
applies an activation function to the output of a previous layer
or input, introducing non-linearity and enabling the network
to learn complex patterns and relationships in the data.

y(l)j = f (
∑I

i=1
w(l)
ji .x(l−1)

i + b(l)j ) (6)

Equation (6) computes the activation y(l)j for each unit in
each of these layers. Unit j of layer l is connected to unit i of
the previous layer via the weight w(l)

ji , and bias b(l)j which is
the bias term of unit j, with f being the unit transfer function.
Except for the output layer, all layers have a rectified linear
unit (ReLU) transfer function f .

f (x) =

{
x if x > 0
0.01.x otherwise

(7)

Equation (7) denotes the ReLU function. Softmax is a
commonly used activation function in the output layer of
a neural network for multi-class classification tasks. Five
categories of the MI classification task are encoded using a
Softmax function.

ŷi = argmax(
eyi∑5
i=1 e

yi
) (8)

Equation (8) shows the Softmax function which is applied
in the last output layer. It is a mathematical function
that transforms a vector of real values into a probability
distribution over the classes.

Cross-entropy loss is a commonly used loss function
in machine learning and deep learning, particularly in
classification tasks. It is used to measure the difference
between the predicted probability distribution and the true
probability distribution of the classes.

loss = −

∑5

i=1
(y∗i .logŷi) (9)

Equation (9) denotes the categorical cross-entropy loss
function [18] which optimizes the neural network’s param-
eters. In this equation, ŷi is the ith output prediction and y∗i
is the corresponding target value (1 for the correct class and
0 otherwise).

The MI-EEG BCI system suggested in this paper utilizes
a type of neural network known as a one-dimensional
convolutional neural network (1D-CNN), which operates
by sliding convolutional kernels solely over the elements
of a single dimension of the input pattern. The proposed
architecture of the network shown in FIGURE 2, consists of
several layers, each with a specific function:

The first layer takes the input EEG data with a size of
(640, 2) and applies 64 filters with a size of 10 to extract
64 feature maps. The activation function used is Leaky ReLU,
and padding is set to ‘same’ to preserve the input shape. The
normalization process may not be optimal for this task, and
therefore, the batch normalization (BN) technique is used to
add an additional step during training. This involves using
trained parameters to further adjust and scale the input values
as needed, allowing the network to learn more effectively.
For this reason, the next layer is a batch normalization layer
(BN1) that is applied to normalize the feature maps obtained
from the previous convolutional layer. The second layer takes
the normalized feature maps from the previous layer and
applies 64 filters of size 10 to extract 64 new feature maps.
The activation function used in this layer is also Leaky ReLU,
and padding is set to ‘valid’ to reduce the output size. Another
batch normalization layer is applied to the feature maps
obtained from the second convolutional layer (BN2). After
that, a spatial dropout layer (SD1) is applied to the feature
maps obtained from the second batch normalization layer to
prevent overfitting.

The third convolutional layer takes the output from SD1
and applies 32 filters of size 4 to extract 32 new feature
maps. The activation function used is Leaky ReLU again, and
padding is set to ‘valid’ to reduce the output size. Next, a max
pooling (P) layer is applied to the feature maps obtained from
the third convolutional layer to further reduce the output size.
1DCNN-4 is the fourth layer that takes the output from Max-
P1 and applies 32 filters of size 4 to extract 32 new feature
maps. Another spatial dropout layer (SD2) is applied to the
feature maps obtained from the fourth convolutional layer to
prevent overfitting. The output of the fourth convolutional
layer is flattened into a 1D feature vector (F) and passed
through three fully connected layers (FC) with Leaky ReLU
activation functions. Another dropout layer is applied after
the first fully connected layer to avoid overfitting. The
output of the last fully connected layer is passed through the
final fully connected layer with 77 neurons and a Softmax
activation function, which produces the final output of the
network as a probability distribution over the possible classes.
Our consideration for the scale of each FC layers was problem
complexity. More complex problems often require deeper
networks with more layers. The four FC layers in our model
are designed to capture a high level of abstraction in the data.
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FIGURE 3. This figure illustrates transfer learning from original weights to
a Motor Imagery domain using the source domain from the original
weights [64].

IV. TRANSFER LEARNING
In CNN-based MI-BCI classification algorithms, there is
a large amount of data, which increases the computation
time and requires a large amount of training data [61], [62].
Using pre-trained weights from different subject cases can
be an efficient transfer learning method. Nevertheless, the
transfer of knowledge in the MI-BCI system presents a
formidable challenge due to substantial differences among
subjects [63]. For developing an efficient MI-BCI classifier
based on transfer learning, paying particular attention to
fine-tuning the model parameters is essential.

Each model must have some initial weights as part of the
training process. Gradient descent is usually used to optimize
the weights of neural networks. As a result, the weights
tend to reach local minima, although globally optimized
network weights can be achieved with some effort. Deep
convolutional networks learn generic, simple features in all
image processing tasks. On the other hand, higher layers learn
high-level features specific to the trained dataset. Shallow
tuning involves adjusting or fine-tuning only the last few fully
connected layers of a deep neural network to improve the
extraction of high-level features. Using a pre-trained network,
features are extracted and trained on another classifier, such
as a Support Vector Machine. However, this method does not
significantly increase the accuracy of the model.

We also found that the degree of fine-tuning required for
different applications varies, suggesting that shallow or deep
tuning may not be the best option. Adapting the layers of
a pre- trained model, also known as fine-tuning, can be an
effective method to attain optimal performance for a specific
use case. Instead of tuning all layers or only the last layer,
we tuned several layers of the model along with the last layer
by trial and error, which we called semi-deep fine-tuning,
which is shown in the block diagram in FIGURE 4.
Furthermore, we investigated some strategies shown

in TABLE 5 to check for underfitting, overfitting, and
bias-variance tradeoffs for the best performance based on the
amount of data and our proposed method. In addition, we fig-
ured out that when the network has a high degree of freedom
(DOF), it will converge slower in this situation. As a result,
we selected a condition to have an optimal convergence.
The DOF and convergence relationship in transfer learning
pertains to the extent towhich the pre-trainedmodel’s weights

FIGURE 4. Semi-deep fine-tuning approach.

TABLE 5. Semi-deep fine-tuning strategies for overfitting (OV),
underfitting (UN), bias-variance tradeoff (BVT), and degree of freedom
(DF): where F means that the network convergence is fast, OK means that
the network convergence is done optimally, and S means that the
network convergence is slow.

can be modified and the rate at which the model reaches its
optimal solution—generally, the more freedom and the faster
the convergence, the better the performance.

A. TUNING STRATEGY
Fine-tuning a 1D Convolutional Neural Network (1DCNN)
requires careful consideration. The first step involves select-
ing a suitable architecture for the task at hand. The selection
of the architecture should depend on the type of data that must
be processed. After modeling the architecture, the next step
is to define the hyperparameters, such as the learning rate,
the number of layers, and the number of neurons. After that,
the model should be trained on the data, and the performance
should be monitored during training. Finally, the model
should be fine-tuned to obtain the desired performance. Fine-
tuning involves adjusting the model’s hyperparameters to
optimize for the specified task. This process requires careful
experimentation and evaluation of the model’s performance.
The model’s hyperparameters can be tweaked to obtain
optimal performance during this process. Algorithm 2 shows
the strategy for fine-tuning, as we call semi-deep fine-tuning.

B. METRICS
In a one-dimension network, we used some metrics to assess
the performance. Precision is a metric that calculates the
proportion of accurately identified positive instances to all
the positive instances predicted by the model. To evaluate the
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Algorithm 2 Semi-deep Fine-tuning Algorithm
Input: Pre-trained Deep 1D-CNN with the best features

Output: High accuracy EEG motor imagery classification
Fine-tune: 1DCNN-3, 1DCNN-4.
Trained: 1DCNN-2, 1DCNN-3, 1DCNN-4.

1: Randomly initialize the weights of 1DCNN-2, 1DCNN-3,
and 1DCNN-4.

2: Initialize the rest of the weights using the pre-trained
weights.

3: forepoch=1,2,3,4 do
Retrain
for acc_fine_tuning>before_fine_tuning then

print train_loss, validation_loss,

train_accuracy, validation_accuracy.

performance of a model, recall measures the proportion of
actual positives that were correctly identified, while accuracy
measures the proportion of all correctly identified examples,
not just the positives. Finally, the F1-score is a metric that
uses the harmonic mean of recall and precision to evaluate
a model’s performance. It is often used as a single score to
assess the model’s overall performance.

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(12)

F1-score =
2×Recall × Precision
Recall + Precision

(13)

Equations (10) and (11) compute separately precision and
recall in multiclass classification for each class in the dataset,
respectively. This allows evaluation of the performance of the
model for each class individually. Equation (12) calculates
accuracy over the entire dataset based on the true positives
(TP), true negatives (TN), false positives (FP) and false
negatives (FN). The F1-score of a specific class calculated
by Equation (13) is the harmonic mean of precision and recall
for all classes. Additionally, a confusion matrix can be used
to visualize the model’s performance, which helps to identify
which classes themodel classifies correctly andwhich classes
it misclassifies.

V. RESULTS
To successfully apply DL, it is crucial to have a sufficient
amount of data. Acquiring such datasets may pose difficul-
ties. As recently suggested, a potential remedy to this issue
is employing transfer learning via fine-tuning. This approach
involves starting with a pre-trained model for a specific task
and then fine-tuning only particular neural network layers for
a related but different task. One major challenge with this
approach is selecting the appropriate layers for fine-tuning,
as no general rule guarantees optimal performance.

Furthermore, the fine-tuning technique can consume
significant time, and selecting the appropriate layers often

TABLE 6. Average metrics based on ROIs: Loss (L), Recall (R),
Precision (P), F1-score (F1), Accuracy (Acc).

FIGURE 5. Train and validation loss of the proposed deep 1-dimension
model using Physionet MI dataset. This figure shows the progression of
loss during the training of the proposed model. The training process did
not lead to overfitting as indicated by the curve patterns, with particular
attention to those in the validation set, which plateaued.

relies on a trial-and-error approach. In the future, we will
work towards identifying the optimal layers for fine-tuning to
achieve desired results more efficiently. Convergence in the
fine-tuning phase is significant, especially when dealing with
limited amounts of accurate data. TABLE 6 presents average
metrics based on ROIs. The results we achieved are superior
to other state-of-the-art methods, as depicted in TABLE 7 for
comparison.

Additionally, FIGURE 5 shows a loss curve that converges
to a minimum value for train and validation loss. FIGURE 6
illustrates learning progress for both training and validation
accuracy, and FIGURE 7 demonstrates a close similarity
in the loss values between the training and validation
steps, which supports our model assessment. Furthermore,
as depicted in FIGURE 8, the accuracy curve indicates an
enhancement in performance with a low cost. For further
elaboration, we performed tuning for four epochs, but the
curve plateaued at the third epoch, as the output remained
constant after that.

In order to show the versatility and robustness of our
work, we applied our pre-trained model to other datasets.
After preparing the datasets for fine-tuning the pre-trained
model, the vectorized inputs will be fed into the semi-deep
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FIGURE 6. Train and validation accuracy of the proposed deep
1-dimension network before applying semi-deep fine-tuning using
Physionet MI dataset. The plot exhibits improved accuracy in training and
validation sets. The curves indicate a plateau pattern, as particularly
noticed for the validation set, which is indicative of lack of overfitting
problems during training.

FIGURE 7. Train and validation loss after applying semi-deep fine-tuning
using Physionet MI dataset. The figure shows that after just four epochs,
the train and validation loss plateaued with relative values, indicating
that this process did not lead to overfitting.

TABLE 7. Comparison of the outcomes with other state-of-the-art works
that used the same dataset on the test set. Classes (C), Average Accuracy
(Avg-Acc), Accuracy after Transfer Learning (F-Acc).

fine-tuning step. The results shown in TABLE 8 depend on
using the original number of instances in the datasets or
applying augmentation.

FIGURE 8. Train and validation accuracy after applying semi-deep
fine-tuning using Physionet MI dataset. The plot shows a plateau pattern,
which means a lack of overfitting issues. After four epochs and applying
the semi-deep fine-tuning, the pre-trained model reached the highest
value in accuracy, indicating the fact that this approach could achieve the
best result with as low-cost as possible.

TABLE 8. Classification accuracy of the proposed model on other
datasets with and without data augmentation (aug.) steps. The BCI
competition sets are used.

Statistical analysis has been utilized to validate the
adequacy of the sample size and to substantiate the hypothesis
assertions regarding the enhanced classification accuracy
achieved through semi-deep fine-tuning compared to 1D-
CNN. The primary objective is to determine the minimum
sample size required for the experiments. The statistical
power of a test refers to the likelihood of rejecting the null
hypothesis H0 when it is incorrect, thereby supporting the
alternative hypothesis H1 when it is accurate.

Consequently, two contradictory hypotheses can be articu-
lated as follows:

H0 : µA ≤ µB (14)

H1 : µA > µB (15)

where µA is the classification accuracy of 1D-CNN after
applying fine-tuning step, and µB is the classification
accuracy before semi-deep fine-tuning.

The subsequent equations (16)-(21) have been utilized for
determining the sample size:

N2 = k.N1 (16)

q̄ = 1 − p̄ (17)
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TABLE 9. The performance of the system described in this study was compared with other state-of-the-art systems that utilized a CNN and similar
dataset. Test accuracy is reported.

p̄ =
p1 + kp2
1 + k

(18)

q1 = 1 − p1 (19)

q2 = 1 − p2 (20)

N1 =

{
z1−α/2.

√
p̄.q̄.(1 +

1
k
) + z1−β .

√
p1.q1 + (

p2.q2
k

)

}2

/12

(21)

where p1, p2 are proportion of Groups A and B,1 is |p2−p1|,
absolute difference between two proportions,N1 is the sample
size for Group A, N2 is the sample size for Group B, α is
probability of type I error (α = 0.01), β is probability of type
II error (β = 0.2), z is the critical z value for a given α or β,
and k is the ratio of sample size for Group B to Group A.

In this work, Group A corresponds to the mean classi-
fication accuracy of semi-deep fine-tuning step, and Group
B corresponds to the mean classification accuracy of 1D-
CNN. The conclusive result of the statistical power analysis
indicates that a minimum sample size of 2444 is required.

This is while the sample size that we are working on is
much more than 2444. This is more than sufficient to confirm
the accuracy claims that 1D-CNN results in less classification
accuracy compared to semi-deep fine-tuning.

Our paper reports achieving the highest classification
accuracy with just four epochs, surpassing other state-of-
the-art methods as shown in TABLE 9. This efficiency is
notable as extensive training often leads to overfitting. The
improvement in accuracy post-transfer learning is attributed
to the pre-trained model’s ability to optimize weights for
better classification outcomes.

Fig. 9 presents a 2D visualization plot of the feature
maps of our 1D-CNN model for the EEG classification
before applying semi-deep fine-tuning. The t-Distributed
Stochastic Neighbor Embedding (t-SNE) method was used
to project the high-dimensional feature space into a lower 2D
representation by creating probability distributions that can
capture the distance relationships between the data points.
The graph clearly indicates that our model extracts powerful
features to accurately differentiate the five classes. After
applying semi-deep fine tuning, the model achieves even
better classification performance, as seen from the results
reported in TABLE 9.

FIGURE 9. A 2D representation of our 1D-CNN features using t-SNE
method.

VI. DISCUSSION
In recent years, machine learning and deep neural networks
have been successfully utilized to classify various forms
of data, including linguistic features, images, sounds, and
natural texts. Due to a large amount of data, their classifiers
are very powerful. However, in practical BCI applications,
collecting high-quality and large EEG datasets is difficult due
to strict requirements on the experimental environment and
available subjects. Duringmodel training, a small sample size
can lead to overfitting, negatively affecting decision accuracy.
When a subject performs a specific EEG task, a significant
amount of data is required to calibrate a BCI system. The
calibration process will inevitably be time-consuming for a
new user. For example, calibration times are extended when
the subject performs an SSVEP spelling task. Nevertheless,
collecting calibration data is time-consuming and labor-
intensive, resulting in a less efficient system.

Due to its end-to-end structure and competitive perfor-
mance, DL has demonstrated its effectiveness in processing
EEG data [32]. A limitation in practical operation is the
computational power and the small amount of data. This
problem can be addressed with a hybrid structure that
combines transfer learning (TL) and DL. For example,
fine-tuning pre-trained networks is an effective method.
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Future research should focus on developing such a hybrid
structure using DL technology. Freezing particular layers and
fine-tuning specific layers have been shown to enhance the
performance of DNNs [69]. Using a parallel multiscale filter
bank CNN, it is possible to fine-tune a model with 10, 20, 50,
or 100 samples in the target domain. Based on the results of
this experiment, it was found that this method would improve
classification accuracy [75].

Decoding methods for two classes of MI tasks have
relatively matured in the available literature. Further research
is required for decoding studies related to four MI task
classes, as the number of MI task classes is more significant.
Additionally, obtaining large EEG datasets can be challeng-
ing. Deep learning-based decoding models may encounter
issues such as overfitting and reduced resilience when the
training data is restricted. Increasing the accuracy in the task
imaging engine, especially when the number of classes is
more than 4, is challenging and requires much work.

TABLE 8 and TABLE 9 display the comparison between
our system’s transfer learning performance with and without
augmentation on different datasets and the performance of
our system compared with the state-of-the-art works with a
similar dataset and fewer epochs. Despite the inclusion of
the challenging baseline class and other MI-related classes,
our system achieved superior performance compared to the
other systems. Moreover, TABLE 9 presents our system’s
performance in the transfer learning task.

The proposedmodel enhances 1D-CNN accuracy by incor-
porating serialized features from Algorithm 1, emphasizing
the significance of inputting quality features into CNNs (as
shown by the visualization graph of FIGURE 9 using t-SNE).
Annotators use signal characteristics to label EEG data,
which, when mathematically processed, improves model
performance by filtering out noise. Our paper proposes using
serialized feature learning and transfer learning to address
challenges like noisy and limited data. Training models with
structured data and fine-tuning pre-trained models with new
EEG datasets can expedite research and yield better models.
While our paper doesn’t focus on real-world implementation,
we suggest future research on online testing pipelines for
signal classification.

VII. CONCLUSION
Our approach for EEG signal classification, based on transfer
learning, has been proposed to achieve high accuracy. Our
system utilizes a feature-extracted deep 1D-CNN, which
can be fine-tuned to provide a dependable model. We have
utilized a semi-deep fine-tuning method to improve network
performance without requiring training from scratch. Our
proposed system achieved an accuracy level of 100%,
surpassing the current state-of-the-art model accuracy of
99.46%. Other works have not explored our approach of
using a feature-extracted deep 1D-CNN. We initially trained
our models by dividing the data into train and validation
subsets and manually selecting specific hyperparameters,
such as the activation function and optimization algorithm,

using gradient descent. During the semi-deep fine-tuning
step, some layers were tuned, and the remaining layer
weights were initialized using the pre-trained weights. Future
studies should investigate the implications of distinct sets
of hyperparameters, train the CNN for individual patients
for accurate classification results, and implement real-time
classification. In upcoming endeavors, it may be beneficial
to consider a synchronized feature selection approach to
properly align network inputs. We suggest introducing the
process of choosing attributes as a problem of combinatorial
optimization in more complex experiments. Additionally,
exploring the potential for exchanging knowledge between
different biological signal domains, including ECG, is a
promising research avenue for the future.
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