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ABSTRACT In the domain of printed circuit board (PCB) defect detection and classification, the availability
of diverse and comprehensive datasets is fundamental for developing effective detection models. However,
existing datasets often lack comprehensive labeling and focus on specific defect types, limiting their
applicability to real-world scenarios. To address this gap, we introduce a new dataset named ‘dataset for
Mixed Defect Detection in PCB’ (MDD_PCB), which includes intentionally induced mixed PCB defects
to provide a more realistic representation of practical scenarios. We evaluate the MDD_PCB dataset
using YOLO models and implement it successfully for real-time inference on Jetson Nano, achieving
enhanced detection capabilities. Our optimized YOLOv5n model trained on theMDD_PCB dataset achieves
impressive metrics (accuracy 93%, precision 95%, recall 96%, mAP 95%, F1-score 94%) with a detection
speed of 120.69 frames per second (FPS). Real-time deployment on the Jetson Nano demonstrates practical
usability with a detection speed of 30 frames per second (FPS). These results underscore the significance
of the diverse dataset proposed, which contributes to robust detection solutions and advances in PCB defect
detection methodologies.

INDEX TERMS YOLO models, PCB defect detection, classification, printed circuit boards (PCBs), PCB
dataset, NVIDIA Jetson nano, deep learning.

I. INTRODUCTION
Printed circuit boards (PCBs) are indispensable compo-
nents for electronic devices, ensuring connectivity and
structural integrity. They are widely utilized in various elec-
tronic devices, extending beyond simple models. Valued at
$82 billion in 2022, the global PCB market is predicted
to expand to approximately $140.73 billion by 2032 [1].
Yet, as PCBs decrease in size, identifying flaws becomes
increasingly challenging. Therefore, implementing accurate
defect detection techniques during manufacturing is crucial
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for enhancing product quality and reducing company
expenditures.

Fig. 1 illustrates common PCB defects found in manu-
facturing industries. The methods for detecting PCB defects
include manual visual inspection, electrical testing, and opti-
cal inspection [2]. Manual inspection is inefficient due to
low accuracy and productivity. Electrical testing requires
complex circuits and expensive equipment, with limitations
in detecting issues in multi-layer PCBs and potential sec-
ondary damage. Automated Optical Inspection (AOI) utilizes
cameras and image processing to identify defects such as
missing components and soldering issues in PCBs during
manufacturing. AOI systems, widely used in electronics pro-
duction, offer a non-contact method using machine vision
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FIGURE 1. Common PCB defects found in manufacturing industries.

technology, ensuring more precise and faster defect detection
than alternative approaches [3], [4]. However, they are slow,
sensitive to environmental conditions, and are less effective
for complex defects [5].
Deep learning, particularly convolutional neural networks

(CNNs), has gained popularity for object detection in com-
puter vision. Object detection techniques in deep learning
are categorized into two main approaches: two-stage and
one-stage methods. Two-stage detection involves generating
potential candidate boxes and then classifying them using
CNNs, with common algorithms including RCNN and Faster
R-CNN. However, Faster R-CNN [6], while accurate, suf-
fers from slow processing speed due to the region proposal
network (RPN) component, posing challenges for real-time
applications.

One-stage detection methods such as SSD [7] and
YOLO [8] directly convert object localization into a regres-
sion problem without using candidate box sampling. They
offer higher accuracy and faster training compared to
multi-stage methods by capturing essential image features in
a single step. However, SSD can struggle with detecting small
objects due to its reliance on low-resolution features. As a
result, YOLOmodels, particularly YOLOv5 [9], are preferred
for object detection tasks [10], [11] because of their balanced
performance in terms of speed, accuracy, and robustness.

Having access to varied and comprehensive datasets is
essential for developing effective models to detect PCB
defects. Nonetheless, current datasets tend to concentrate
on specific defect types and have incomplete labeling.
To address this limitation, we have introduced a ‘dataset
for Mixed Defect Detection in PCB’ (MDD_PCB), which
includes mixed PCB defects to provide a more comprehen-
sive depiction of real-world defect scenarios. The dataset
‘MDD_PCB’ contains intentionally induced mixed PCB
defects in 640 × 640 pixel regions of interest (ROI), aimed
at improving training efficiency and practical applicability
for real-world scenarios. The dataset was evaluated with
YOLO models and successfully implemented for real-time
inference on Jetson Nano, demonstrating enhanced detection
capabilities.

II. MATERIALS AND METHODS
A. EXISTING DATASET
The dataset TDD_PCB, derived from [12] and abbreviated
as Tiny Defect Detection Printed Circuit Board, comprises
693 annotated images of PCB defects with a high resolution
of 2777× 2138 pixels. It covers various defect categories like
missing holes, mouse bites, open circuits, shorts, spurs, and
spurious copper [13]. This dataset is valuable for studying
and developing detection and classification algorithms tai-
lored for PCB defect analysis. The dataset’s high resolution
and narrow focus on single defect types could slow down
training and limit diversity in PCB defect types due to insuf-
ficient labeling, leading to increased computational demands
and longer training times, potentially affecting testing and
training accuracy.

B. PROPOSED DATASET
The current dataset, facing the aforementioned issues, was
considered inappropriate for real-world applications. The
proposed solution involves creating a specialized dataset for
PCB defect detection and classification, focusing on ROI by
intentionally inducing multiple mixed defects. Intentionally
introduced defects in the dataset improve algorithm train-
ing by providing diverse and realistic scenarios, essential
for precise detection and classification of PCB defects in
manufacturing. The dataset, consisting of images sized at
640 × 640 pixels, went through multiple processing stages
including image labeling, preprocessing, defect detection,
and classification. This was done to improve training effi-
ciency and reduce memory usage. Afterward, we utilized the
Roboflow annotation software for image labeling due to its
user-friendly interface and cost-effectiveness [14]. To illus-
trate, Fig. 2 displays each annotated point generated with
Roboflow, which contributed to enhancing the overall quality
of the dataset. These annotations were saved in.txt format for
subsequent use in training the YOLO algorithm for evalua-
tion purposes. The ‘Bounding box annotations tool’ feature
improved accuracy and expanded the number of annotations
for the target object.

FIGURE 2. Labeling image in Roboflow bounding box tool.

The resulting dataset comprises 1741 PCB images, each
featuring two to three defects, offering a diverse training
set with multiple defect combinations. In total, there are
3704 distinct defects, with precise labeling for each image
reflecting the specific defect types. These classifications
represent common defects that arise in PCB manufacturing.
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TABLE 1. Comparison of the existing and proposed datasets.

The proposed dataset can be openly accessed from
‘Mendeley Data’, link: https://data.mendeley.com/datasets/
fj4krvmrr5/2.

C. EXISTING VS PROPOSED DATASET COMPARISONS
Table 1 provides the dataset’s distribution of various defects
alongwith the number of images with the specific defect type.
In the existing dataset, each image containsmultiple instances
of a single type of defect, resulting in 693 images with a
total of 2953 defects. Furthermore, the dataset has a high
resolution. These factors make model learning challenging
and complex, making it unsuitable for real-world scenarios.
In the proposed dataset, there are multiple unique defects in
each image, but each defect occurs just once in each image.
As a result, the dataset has 1741 images with 3704 defects
in total. Fig. 3 provides a visual comparison between the
existing and proposed datasets, showcasing one sample image
from each dataset for illustration purposes.

FIGURE 3. (a) TDD_PCB Dataset (b) MDD_PCB dataset.

D. PREPROCESSING
To address the scarcity of large-scale PCB defect datasets
due to confidentiality and cost constraints, we used data

augmentation techniques to enrich and diversify our dataset.
Six traditional augmentationmethodswere applied, including
adding Gaussian noise, adjusting lighting, rotating images,
flipping, random cropping, and shifting. Fig. 4 demonstrates
the sample representation of the augmentation methods uti-
lized in this dataset preparation.

FIGURE 4. Example of the augmentation methods used in the proposed
dataset (a) Flip horizontal/vertical (b) Rotation - range [−14◦ 14◦]
(c) Shear ±15◦ (d) Saturation - range [−73 73] (%) (e) Brightness - range
[-51 51] (%) (f) Exposure - range [-25 25] (%).

Basic augmentation techniques like Gaussian noise addi-
tion and lighting adjustment do not require annotation
changes for bounding boxes. However, advanced augmen-
tation techniques like image rotation, cropping, and shifting
necessitate modifications to the corresponding bounding box
annotations [15]. Overall, after preprocessing the dataset
resulted in 8705 images with 18520 defects.

The augmented dataset with precise annotations improves
practical applicability by incorporating realistic defects found
in real-world scenarios, enabling efficient development and
evaluation of PCB defect detection and classification models.
Following this, the MDD_PCB dataset underwent evaluation
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using YOLO models and was implemented on Jetson Nano
to validate enhanced capabilities for detecting PCB defects.

III. METHODOLOGY
A. DATA
During experiments, to ensure consistency and comparability
between the TDD_PCB andMDD_PCB datasets, we cropped
each image from TDD_PCB to a central area of 1280 ×

1280 pixels and resized it to 640 × 640 pixels, matching the
resolution of MDD_PCB. This preprocessing step ensures
almost complete defect coverage and standardizes image
sizes. Post-preprocessing, MDD_PCB contains 8705 images,
and TDD_PCB contains 3465 images, all at a resolution of
640 × 640 pixels. The dataset has been split into a ratio of
8:1:1 for training, validation, and testing purposes.

B. MODELS
YOLO models are popular for object detection because
of their speed, accuracy, and reliability. YOLOv5 offers
enhanced performance over earlier versions due to its
improved architecture and optimizations, making it an ideal
choice for detecting PCB defects in our study. While simula-
tions were conducted across various versions from YOLOv5
to YOLOv8, this paper focuses specifically on the architec-
ture of YOLOv5 due to simulation results indicating that
YOLOv5 yielded the highest performance.

The YOLOv5 architecture, depicted in Fig. 5, consists of
threemain components: backbone, neck, and detection heads.
The backbone, utilizing CSPDarknet53, extracts fine features
at different scales using pre-trained networks and improves
feature quality with focus structures and the Cross-Stage
Partial Network (CSPNet) [16]. The neck networks, incor-
porating Feature Pyramid Network (FPN) [17] and Path
Aggregation Network (PANet) techniques, facilitate efficient
spatial function sharing. The prediction head handles con-
fidence estimation and bounding box regression based on
anchor priors.

All YOLOv5 models share common components, includ-
ing CSP-Darknet53 for the backbone, SPP (Spatial Pyramid
Pooling), PANet in the neck, and the detection head
from YOLOv4. YOLOv5 models are categorized based
on size: YOLOv5n (nano), YOLOv5s (small), YOLOv5m
(medium), YOLOv5l (large), and YOLOv5x (extra large),
which are adjusted using parameters like depth_multiple
and width_multiple to vary network depth and width. These
adjustments affect the number of Bottleneck Cross-Stage
Partials (BCSPs) and convolution kernels, to suit different
application needs.

Among all the versions, choosing YOLOv5n was essen-
tial for maximizing efficiency within platform constraints
and maintaining real-time processing capabilities on Jetson
Nano. This focused approach provided valuable insights into
practicality and performance. As a result, all nano models
ranging from YOLOv5n to YOLOv8n were evaluated for
further analysis and comparisons.

FIGURE 5. Architecture of Yolov5 model.

IV. SIMULATION RESULTS
All YOLO models from YOLOv5n to YOLOv8n [18], [19],
[20] were examined using the stochastic gradient descent
optimizer, with specific hyperparameters including an initial
learning rate of 0.001, momentum of 0.9, and weight decay
of 0.0005 for both TDD_PCB (existing) and MDD_PCB
(proposed) datasets. The datasets were split into training,
validation, and testing sets at a ratio of 8:1:1 for evaluation.
To ensure effective learning, we trained the models for
300 epochs in each trial, maintaining consistency and opti-
mizing performance on the datasets.

A. TRAINING
Transfer learning is used to accelerate training and improve
object detection accuracy by leveraging pre-trained models.
In this study, a model initially trained on the COCO dataset
is adapted for PCB detection [21], [22], [23], [24], [25], [26]
(depicted in Fig. 6), enhancing its ability to recognize and
classify PCB defects in real-world scenarios.

B. EVALUATION METRICS
The essential metrics for assessing network applicability in
real-world defect detection include precision (P), recall (R),
speed (measured by frames per second (FPS)), and network
complexity (evaluated by the total number of parameters).
These metrics reflect the model’s efficiency and accuracy
in practical deployment scenarios. P, R, and mean average
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TABLE 2. Performance of YOLO models using TDD_PCB and MDD_PCB.

FIGURE 6. PCB defect detection training process (Transfer learning
utilization).

precision (mAP) are calculated as follows:

P =
TP

TP+ FP
(1)

R =
TP

TP+ FN
(2)

mAP =

M∑
n=1

APn

M
(3)

where M is the total number of classes and APn is the average
precision of the class ‘n’. TP, FN, and FP are the true positive,
false negative, and false positive, respectively. The detection
speed is measured in FPS and for mAP, higher mAP values
indicate improved detection performance.

C. PERFORMANCE OF YOLO MODELS
All simulations were conducted using Ubuntu 22.04.2 LTS,
Python 3.8, PyTorch 1.10.0-GPU, CUDA 11.3, and CUDNN
8.2.2. The experiments with the TDD_PCB and MDD_PCB
datasets were carried out, and the results were tabulated in
Table 2. This table provides a comprehensive overview of
each dataset’s performance with the YOLO models. The pro-
posed datasets demonstrated significantly enhanced results
compared to the existing dataset, highlighting their effective-
ness in improving the accuracy and reliability of PCB defect
detection. Furthermore, accuracy and mAP comparisons
using both datasets are illustrated in Fig. 7, underscoring the
promising potential of the proposed dataset for enhancing
defect detection systems in the PCB domain. Careful labeling
and organization of defect classes in the proposed datasets
played a critical role in achieving these improvements, mak-
ing them suitable for resource-constrained applications.

The YOLOv5 model was employed to demonstrate PCB
defect detection using test images from TDD_PCB and
MDD_PCB datasets, and is as shown in Fig. 8. The
results demonstrate enhanced detection accuracy with con-
sistently higher confidence scores for MDD_PCB compared
to TDD_PCB, achieving a detection speed of 120.69 FPS for
MDD_PCB. This enhancement in precision and reliability
is attributed to MDD_PCB’s intentional inclusion of mixed
defects, which offers a more diverse learning environment
for the model and demonstrates significant progress in PCB
defect detection. Therefore, the proposed MDD_PCB dataset
offers a more accurate and comprehensive benchmark for
evaluating PCB defect detection approaches.

Also, we tested the performance and memory utilization
of all YOLO models, and the results are tabulated in Table 2.
The table shows that YOLOv6n, YOLOv7n, and YOLOv8n
exhibit increasingly lower frames per second (FPS) with
larger inference times. Among these, YOLOv7n has the high-
est memory utilization at 71.3 MB. Despite this, all versions
maintain a high degree of processing speed, with YOLOv5n
achieving the highest total efficiency, making it ideal for real-
time applications. These results indicate that YOLOv5n has
the fastest FPS at 120.69 and the lowest memory consumption
at 3.87MB,making it themost efficient in terms of both speed
and resource utilization. This is attributed to YOLOv5n’s
optimized design, which effectively balances computational
efficiency with resource management.

Of all the models, YOLOv5n exhibits the best performance
with the fewest parameters and flops, making it ideal for real-
time deployment. Next, we demonstrate the implementation
of a real-time PCB defect detection system using the trained
model’s deployment on the Jetson Nano board by refining
and adapting the model with Python scripts optimized for the
board’s CUDA capabilities.

V. EXPERIMENTAL RESULTS
A. IMPLEMENTATION DETAILS OF A REAL-TIME PCB
DEFECT DETECTION SYSTEM
We utilized the Jetson Nano board to deploy the selected
model. The Nvidia Jetson Nano, known for its compact
size and energy efficiency, features a quad-core processor,
128-core Max GPU, and ARM Cortex-A57 CPU, with a
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FIGURE 7. Accuracy and mAP of using TDD_PCB and MDD_PCB datasets.

FIGURE 8. Illustration of PCB defect detection in (a) TDD_PCB and (b) MDD_PCB using YOLOv5.

FIGURE 9. Implementation of real-time PCB defect detection system.

memory bandwidth of 25.6 GB/s facilitating fast CPU-
GPU communication [27]. Its low power consumption and
high memory bandwidth make it well-suited for AI system
deployments.

To implement a real-time PCB defect detection system,
we opted for the YOLOv5n model due to its superior perfor-
mance with minimal parameters and flops, ideal for real-time
applications. We utilized a Lenovo FHD webcam to capture
live stream images of PCBs, which were displayed on a mon-
itor. The Nvidia Jetson Nano served as the processing unit,
with an additional monitor used for displaying the effective
detection and classification of PCB defects. The complete

implementation of the real-time PCB defect detection system,
incorporating the described details, is illustrated in Fig. 9.

B. PERFORMANCE OF THE REAL-TIME PCB DEFECT
DETECTION SYSTEM
The deployment process involves fine-tuning and adapting
the selectedYOLOv5nmodel for the JetsonNano board using
Python scripts optimized for CUDA. PCB images captured by
the Lenovo FHD webcam were sourced from the live display
on the monitor. We aimed to assess the model’s performance
when deployed on the Jetson Nano. To achieve optimized
inference, we converted our model from PyTorch training to
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FIGURE 10. Performance of the real-time PCB defect detection system using the MDD_PCB dataset.

TensorRT. This successful transition significantly reduced the
memory footprint and computational demands and resulted
in a compact 3.87 MB model with an inference time
of 33.32 ms.

Real-time PCB defect detection using the Jetson Nano
board and the optimized YOLOv5 model (implemented as
a TensorRT model) demonstrated significant improvements
in detection accuracy and confidence scores, as depicted in
Fig. 10. Jetson Nano’s computational capabilities helped to
achieve quick inference in defect identification, making it
suitable for industrial settings requiring rapid and accurate
defect detection. Results also highlight the cost-effective
and efficient solutions for PCB defect detection, addressing
critical needs in manufacturing quality control and demon-
strating the feasibility of real-time object detection on edge
computing systems like the Jetson Nano.

VI. CONCLUSION
In this work, we introduced the MDD_PCB dataset, a dataset
for mixed defect detection in PCB, to address the limita-
tions observed in current datasets for PCB defect detection.
Existing datasets primarily emphasize single defect types
and often lack detailed labeling. In contrast, the MDD_PCB
dataset overcomes these challenges by intentionally intro-
ducing mixed defects into the images. By incorporating
mixed defects, the proposedMDD_PCB dataset offers a more
comprehensive representation of real-world defect scenarios
encountered in manufacturing industries, thus addressing the
shortcomings of existing PCB defect datasets. The dataset
was assessed using YOLO models, particularly YOLOv5
when compared with other models, which demonstrated high
accuracy in defect detection as evidenced by metrics such as
precision, recall, mAP, and F1-score. The increased diversity
of defects in the dataset facilitated the learning of more robust
and generalized features by the models, while the standard-
ized resolution contributed to improved model training and
generalization capabilities.

The model’s successful deployment on the Jetson Nano
underscores its practical usability in real-world deployment
scenarios. The advancements introduced by the proposed
dataset significantly advance PCB defect detection method-
ologies by offering a curated dataset featuring intentionally
induced mixed defects, which is critical in robust and reliable
PCB defect identification systems. These methodologies find
applications in electronics manufacturing, quality control,
and automated inspection processes, enhancing defect detec-
tion precision and reliability. Future works will focus on
expanding the dataset’s defect diversity and variants to refine
the model by reducing parameters and floating-point calcula-
tions, resulting in more efficient and lightweight models with
high performance. Additionally, future work will explore
integration with emerging technologies such as artificial
intelligence and edge computing. Collaboration with industry
partners will be critical for testing these advancements in
real-world production environments, fostering acceptance,
and maximizing impact.
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