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ABSTRACT Artificial intelligence stands for an excellent alternative to be considered in development
of new adaptive high-efficiency control design methodologies for uncertain modern complex engineering
systems driven by electric motors. In this sense, artificial neural networks can be embedded within
innovative nonlinear control design strategies to add capabilities to neutralize various kinds of dynamic
perturbations or uncertainties that can significantly deteriorate the operating efficiency of nonlinear electric
motor systems. This paper introduces a novel adaptive sliding mode nonlinear control method based on
B-spline artificial neural networks for efficient tracking of optimal smooth operating reference trajectories in
induction or asynchronous motors under substantially disturbed operational scenarios. Robustness regarding
nonlinear theoretical mathematical modelling errors, parametric uncertainty and unknown external multiple-
frequency oscillating disturbing influences is considered. Numerical experiments involving multiple
disturbed operating case studies are presented to demonstrate the effective performance of the proposed
robust adaptive artificial neural-network control scheme on large horsepower three-phase induction motors.
Finally, a comparative evaluation is conducted, emphasizing system performance through the use of index
performance criteria, and comparing the proposed adaptive robust B-spline approach with a nonlinear
passivity-based controller. New insights to extend the introduced adaptive neural network robust control
design strategy to other considerably perturbed practical nonlinear engineering systems are thus provided.

INDEX TERMS Artificial neural networks, intelligent control, machine control systems, artificial
intelligence.

I. INTRODUCTION intelligence technologies have been successfully exploited

Artificial intelligence has permeated nearly every global
industry sector, initiating a paradigm shift in approaching
the most intricate problems. Defined as a computing sys-
tem’s ability to perform tasks typically requiring human
intervention, like decision-making, pattern recognition, and
autonomous learning, artificial intelligence is driving this
digital revolution [1]. A broad array of tools and techniques
fuel this change, including but not limited to artificial
neural networks, machine learning, deep learning, fuzzy
logic, expert systems, and genetic algorithms [2]. Artificial
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to develop innovating applications in several engineering
fields and important sectors such as in the food production
ecosystem, agriculture, healthcare, finance, signal process-
ing, remote sensing, forecasting, computer vision and social
media [3], [4]. Artificial neural networks have been also
proposed for health monitoring of rotating machinery based
on information of vibration signals [5].

Moreover, many commercial technological applications of
artificial intelligence for the transportation sector have been
developed [6], [7]. Transportation stands for an important
component in the construction of smart cities [7]. In fact,
this sector is undergoing a transformation process driven
by the adoption of electric vehicles. This change benefits
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the environment and opens the door to new possibilities
for improving energy efficiency and control technology,
particularly in electric motor control. In this context,
Artificial Intelligence (Al) offers several advantages. First,
it allows for increased motor operation efficiency through
real-time optimization of control parameters. This can lead to
improved energy efficiency and, therefore, greater autonomy
for electric vehicles [8]. Second, AI systems can adapt
and learn from different operating conditions, enhancing
the robustness of motor control against variations in road
conditions or vehicle load [9]. Furthermore, integration
of artificial intelligence in control of electric motors can
facilitate the development of autonomous vehicles, as these
systems can process a large amount of information and make
complex control decisions in fractions of a second [10].

The implementation of neural networks in the control
of motors of electric vehicles represents a great promise
and a necessity in the contemporary context of electric
mobility [11]. Drawing inspiration from the functioning of
the human brain, these networks, within the context of
artificial intelligence, empower computer systems to acquire
knowledge from experience and adapt to novel situations. Its
utility lies in its ability to model and control complex systems
more effectively than traditional techniques [12]. For electric
motors with a complicated or ill-defined mathematical model,
neural networks can learn directly from sensor data without
needing a precise mathematical model. This ability to learn
and adapt results in more accurate and efficient control
and facilitates implementation [13]. Over time, as neural
networks know from the engine and driving data, they can
optimize engine performance and improve energy efficiency.
In addition, they bring remarkable robustness to the system,
handling variations in road conditions and vehicle load and
adjusting engine control accordingly [14]. This flexibility
is advantageous in unforeseen or extreme conditions where
conventional control models might fall short. Neural net-
works could play a crucial role in developing autonomous
vehicles [15]. These systems require the ability to process vast
amounts of information and make complex control decisions
in fractions of a second, a task for which neural networks
are ideally suited. Thus, artificial neural networks represent
an excellent choice to develop innovating adaptive motion
control technology for a wide variety of complex modern
engineering systems driven by electric motors, reducing
substantially dependency on detailed nonlinear mathematical
models based on physics and accurate knowledge of their
respective parameters.

This paper deals with the strategic integration of B-
spline artificial neural networks to create a novel effective
solution alternative to the robust control problem for the
efficient operating motion trajectory planning tracking on
uncertain three-phase induction or asynchronous motors
subjected to external, vibrating or oscillating disturbances.
In this regard, induction motors have been widely used as
controlled motion actuators in various industrial applications
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of electrical, mechanical, electromechanical and mechatronic
engineering systems under perturbed operating scenarios as
well. Several conventional control techniques for induction
motors based on nonlinear mathematical models have been
described in detail in [16], [17], [18], and [19] and references
therein. A wide range of industrial systems driven by electric
motors can be perturbed by uncertain multiple-frequency
harmful forced vibrations during their operation. Vibrations
or oscillations can be induced by commonly unavoidable
unbalance in conventional manufacturing processes of rotat-
ing components [20], [21]. In addition, electric motors are
currently used as actuators to suppress forced vibrations
affecting flexible mechanical systems [22]. Implementation
of an important variety of active vibration control techniques
utilizes properly controlled electric motors to generate
variable electromagnetic torque to suppress damaging vari-
able vibrations. In this sense, characteristics of dangerous
vibrations adversely influencing to linear or nonlinear,
oscillatory mechanical systems are first established. Next,
robust vibration control torques or forces should be efficiently
supplied by the employed actuators.

A new adaptive nonlinear control design approach for
robust tracking of desired smooth reference profiles for both
speed and rotor magnetic flux on uncertain induction motors
under influence of unknown external torque vibrations is
introduced in the present article. B-spline artificial neural
networks and sliding mode theory are integrated in the
predefined motion profile tracking control design process.
In contrast to other important contributions to efficiently
regulate the induction motor operation, capabilities to atten-
uate uncertain multiple-frequency vibrating disturbances
are incorporated in the presented neural network control
scheme. Moreover, active suppression of disturbances due to
unmodeled dynamics, parametric uncertainty and theoretical
modelling errors can be also attained. Incorporation of
additional observer algorithms for real-time disturbance
estimation is not required. Information of vibrating distur-
bances can be extracted from the neural adaptive control
scheme. Numerical results of several operating studies are
furthermore presented to reveal the effective performance of
the proposed control scheme on large horsepower three-phase
induction motors. The introduced adaptive neural network
robust control design approach can be extended to develop
solutions of nonlinear control problems for diverse types of
electric motors.

The subsequent sections of this document are orga-
nized as follows: Section II offers a concise introduction
to the hardware implementation of neural networks in
microcontroller-based embedded systems, highlighting the
feasibility of employing this type of controllers. Description
of the mathematical model for the nonlinear induction motor
system, perturbed by uncertain vibrating torque with multiple
excitation frequencies is presented in section III. The problem
of efficient motion planning trajectory tracking control
on uncertain three-phase electric induction motor systems
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under influence of completely unknown multiple-frequency
external torque vibrations is addressed in Section IV. The
proposed adaptive robust nonlinear control design strategy
based on B-spline artificial neural networks and sliding mode
theory executes an efficient tracking of the angular speed
and rotor magnetic flux, where the capability of robustness
with respect several classes of disturbances or uncertainties
is demonstrated. In Section V numerical simulation results
to successfully corroborate the planning motion tracking
efficacy and robustness of the proposed neural nonlinear
control design strategy are discussed. A very good active
attenuation level of multi-frequency forced oscillations is
evidenced. Finally, the main conclusions of the present
contribution and subsequent relevant research works are
finally summarized in Section VI.

Il. NEURAL NETWORK IMPLEMENTATION IN
MICROCONTROLLER-BASED EMBEDDED SYSTEMS
Artificial neural networks are distributed parallel processing
systems comprising nonlinear elements designed to emulate
the essential functions of biological neurons. These net-
works can be implemented using either general-purpose or
specialized hardware. The practical deployment of artificial
neural networks can be achieved through hardware, providing
flexibility to adapt to diverse applications and computational
environments emulating the distributed and highly intercon-
nected nature of the biological nervous system, offering
potential solutions to complex and varied problems across
fields ranging from artificial intelligence to specific task
resolution.

In the realm of automatic control, integrating sliding mode
control schemes and B-Spline neural networks represents
an advanced amalgamation of robustness and computational
efficiency. Sliding mode controllers are renowned for their
robustness and capability to manage uncertainties and dis-
turbances, though they can be computationally demanding in
complex systems. Conversely, B-Spline neural networks are
noted for their computational efficiency, with complexity and
runtime performance contingent on the neurons employed.

The study by [23] delves into applying B-Spline neural
networks in control systems, emphasizing their effectiveness
in real-time control environments. These networks can locally
control their output behaviour, making them suitable for
on-line estimation of system dynamics, a crucial capability
in nonlinear control applications requiring adaptability and
swift response to dynamic changes. B-spline neural networks
are essential in estimating unknown dynamics of nonlinear
systems, enabling efficient local tuning of weights and
facilitating rapid learning of arbitrary nonlinear functions.

In [24], feedforward neural networks with tangent sigmoid
activation functions are used for precise real-time estimation
of muscle forces during cycling activities. These networks,
tailored for embedded systems, balance precision and
performance, considering the computational limitations of
these environments. The activation function of the hidden
neurons is optimized to enhance performance in embedded
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settings, with highlighted methods to optimize computa-
tional performance. Reference [25] addresses the real-time
implementation of position control algorithms using B-Spline
neural networks for voice coil motors. These networks offer
faster convergence rates and lower computational loads,
making them suitable for microcontrollers with limited
computing capabilities. They also mitigate common control
system problems like ‘‘chattering,” facilitating smoother,
more stable control.

Furthermore, implementing neural networks in micro-
controllers, especially for real-time applications, requires
balancing network performance with hardware limitations.
Reference [26] addresses memory optimization in imple-
menting binary neural networks in microcontrollers. This
approach significantly reduces computational load and mem-
ory usage, which is crucial for real-time deployment in
resource-limited microcontrollers.

Binary neural networks show improvements in accuracy,
memory footprint, and latency, which are essential for
real-time applications. Reference [27] presents a strategy
for implementing multilayer perceptron neural networks in
microcontrollers. Their study reveals a linear relationship
between hyperparameters and processing time, suggesting
suitability for real-time applications requiring neural network
capabilities. Subsequently, [28] proposes a memory optimiza-
tion technique for multilayer perceptron neural networks in 8-
bit microcontrollers, enabling more extensive, more complex
network architectures in low-cost, low-power devices.

On the other hand, [29] compared machine learning
algorithms for estimating lithium-ion battery parameters,
focusing on neural network implementation in STM32
microcontrollers. This study demonstrates the feasibility
of efficiently implementing neural networks in microcon-
trollers, balancing the model size and accuracy, which
is crucial for real-time applications. Additionally, in [27]
and [30], it is indicated that neural network implementations
in microcontrollers for real-time applications are feasible
without incurring a significant computational burden. Ref-
erence [27] demonstrates the effective use of multilayer
perceptron neural networks in microcontrollers, highlighting
a direct correlation between neural network hyperparame-
ters and processing time, thus enabling efficient real-time
performance. Reference [30] extends this by successfully
integrating more complex neural network architectures into
real-time control applications. These findings underscore
that with strategic design and optimization, deploying neural
networks in microcontroller-based systems can be done
effectively, catering to the demands of real-time operations
without overwhelming the system’s computational resources.

For the implementation of adaptive control using B-
spline neural networks in a microcontroller, Digital Signal
Processors (DSPs) can be a suitable selection, but careful
consideration should be made. The choice hinges on factors
such as the computational prowess to handle the real-time
demands of the adaptive control algorithm, the availability
of ample memory for storing neural network parameters,
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and robust peripheral support for seamless interfacing with
sensors and communication modules.

lll. DYNAMIC MODEL OF THE INDUCTION MOTOR
UNDER INFLUENCE OF MULTIPLE-FREQUENCY
OSCILLATORY TORQUE

The transformed two-phase equivalent mathematical model
employed to approximately describe the nonlinear dynamics
into an operational window of time of the three-phase
squirrel-cage induction motor considered in the present study
is given by using (1), [17]. It is assumed that this multi-
variable nonlinear energy conversion system is balanced
and symmetrical. Reasonable theoretical modelling errors,
related to unpredictable disturbances impacting the nonlinear
induction motor model, can be effectively addressed from a
control design perspective through the use of artificial neural
networks. Interested reader on derivation of mathematical
models of the induction motor dynamics in several reference
frames is also referred to the books [18], [19], [31].

d s RRw N— ReM |

dr Ra = Lr Ra pPRVRD Lr Sa

i = —E ey + Nyorma + 2

dr Rb = Lx Rb P@RVRa Lr Sb

d 1 b 1 0
—WR=—T, — —WR — =T

a Ry Ryt

In the two-phase motor model representation (1), trans-
formed magnetic fluxes in rotor are described by g, and
Yrp. The phase electric currents s, and Igp, are used as control
variables or signals. Stator, rotor and mutual inductance
parameters are respectively denoted by Lg, Lg and M. Stator
and rotor winding resistance parameters are represented by
Rs and Rg. N, stands for the number of rotor pole pairs.
Equivalent parameters of the mechanical subsystem are the
moment of inertia J, and the viscous damping b.

The electromagnetic torque t, generated by the induction
motor is given by

N, M
T, = z—R (Usv¥ra — Isa¥'rb) 2)

which should compensate the possibly uncertain mechanical
load dynamics 77 () and regulate the operating angular veloc-
ity wg of the electric motor rotor simultaneously. Indeed,
there are several architectures of electrical drive motors to
electromagnetically generate control torque 7, for the same
rotational mechanical dynamics representation. Thence, the
presented control design approach can be extended to other
kinds of electric machines under substantially perturbed
operational environments.

In the present work, it is considered that the motor
rotor can be subjected to uncertain hazardous multiple-
frequency oscillatory torque disturbances 77 () into an
operating window of time described as

() =70+ Z?j (Sil’l Qit + (pj) 3)
j=1
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where 7;, Q; and ¢; stand for unknown amplitudes, fre-
quencies and phases of the m harmonic constitutive torque
terms. Variable parameters of vibrating torque components
can be also admitted. Rotor unbalance in rotating machinery
can lead to the induction of oscillatory disturbances or
harmonic vibrations [32]. In electric vehicles driven by in-
wheel motors, exogenous disturbances can provoke perilous
vibrations as well [33]. Oscillatory torque with several
excitation frequencies can be provided by the perturbed
multiple-degree-of-freedom vibrating mechanical system
connected to the motor rotor. Possible theoretical modelling
errors, parametric uncertainty and external perturbations in
mechanical system dynamics can be incorporated in the
uncertain load torque for control design.

Oscillatory load torque can be generated by the perturbed
uncertain multidegree-of-freedom vibratory rotational sys-
tem

dZ
J 2 0 + Ko

1, =P8 )

Tp

Here 8§ € R™ represents the angular displacement vector of
the vibrating rotor system driven by the electric motor, and
T, € R™ stands for a harmonic excitation perturbation vector.
Inertia and stiffness matrices are denoted respectively by
J,K € R™ and P € R™* denotes a perturbation output
matrix. Multidegree-of-freedom rotor system dynamics is
assumed to be uncertain in the presented artificial intelligence
control design perspective. Then, the new adaptive control
approach should perform desired motion planning tracking
without knowledge of theoretical dynamic modelling, rotor
system parameters and harmonic perturbations.

Relationships of three-phase to two-phase electric signals
are given by [17] and [19]

_ | _
1 __ __
ARa 2 2 Yr1
2 V3 V3
A = \/j 0 -—= == 5
Rb 3 2 3 YRr2 (5)
ARO 1 1 1 Yr3
V2 V2 V2
_ | | -
1 __ __
Isq 2 2 Isy
2 NN
I = \/j 0 = _IZ||I 6
sb 3 5 5 52 (6)
Iso 1 1 1 Is3
V2 V2 V2

with

1
Iso = 7A Us1 +1s2 +1s3) =0

7
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1
AR) = —=
V3
By defining the complex variables
VR 2 YRa + VRS = VR &Y
Is £ Isy + jlsp = |Is| € (7

Wr + Y2+ Yr3) =0

the mathematical model (1) can be expressed for purposes of
control design as follows

d N,M
JECL)R = _LR Vop — wa — T
ELRE [Yr|" = —Rg [Yr|= + ReMvy, + Dy, (8)
with
YR )
Is = —— (vag + jvax) )
[¥R|

In (8), possible bounded additional disturbances could be
considered like Zy,.

Notice that magnetic fluxes can be estimated on-line as
proposed by the authors in previous contributions [16], [34].
In contrast, the robust adaptive neural-network control design
objectives introduced in this article are the following:

i. Incorporate suppression capabilities of uncertain oscil-
latory torque disturbances with multiple frequencies in
electric current controller signals. Theoretical mathe-
matical modelling errors and parametric uncertainties
are furthermore considered.

ii. Accurate tracking of velocity and flux reference trajec-
tories planned for the operation of the induction motor
system under influence of unknown oscillatory torque
has to be simultaneously performed.

IV. A NEURAL SLIDING-MODE CONTROL APPROACH
A new induction motor control design strategy based on
sliding modes and B-spline artificial neural networks is
presented in this section. Auxiliary controllers vy, and vy
in (8) and (9) are established.
Consider the sliding surface coordinate functions
t

Owpgr = €wp + ,BwR/ ewr(N) d

fo
t

oup = ewy + ﬁwR/ eyr(A) dA (10)

fo
where the reference trajectory tracking errors are given by

ewp = WR — Wk, ey, =Yg — Vg (11)

Here w}(¢) stands for some smooth reference profile prede-
fined for the angular speed wg. Wi (1) denotes the reference
trajectory planned for W = |yg|>.

Globally exponentially stable closed-loop reference track-
ing error dynamics can be thus specified as

EewR + ﬁa)RewR = O

d
Ee\PR + IBlI/RelI/R =0 (12)
with design parameters: B, By, > 0.
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Auxiliary controllers can be then synthesized as

Jr[d
NEY Ea)R - IBa)Rea)R + ja)R

v, =
KT NM

—kegOwp — Wagsign (awR)i|

Ly [d wi_p N 2RRW
YR T DReM |ar R PVRCYR T R
—kq;RO‘q;R — Wq;Rsign (Uq/R) :| (13)

with k., kg, > 0, and discontinuous control action
parameters selected as

1 2
Weor > 7 ltel, Wy, > e | D (14)

Uncoupled disturbed discontinuous dynamics of the slid-
ing surface coordinate functions are then governed by

d
dt
d ) 2
—oy, = —kyyop, — Wy,sign (o\pR) +—%y, (16)
dt Lg

Consider the Lyapunov functions associated with uncou-

pled dynamics described by (15) and (16)

Owg = —KwpOwp —

. 1
Wagsign (awR) — er (15)

1 1
Voug (Our) = 5000 Vou, (0wg) = Eo\%,k (17)

2
1
(WwR - j |TL|) |Ua)R|

1
<0, for Wy, > 7|tL|, Owg 70 (18)

where
2
_t‘/ R(G R)<_k RUR_

d 2
7 Vouy (owg) < —kwgog, — (WwR T In |DwR|) |ow |

, Owp 7é 0
(19)

2
<0, for Wy, > — |Dy,
Lg

Therefore sliding surfaces o4, = 0 and oy, =
0 are reachable in finite time [35]. Tracking of reference
trajectories is then performed as follows

lim wg = wi(r), lim Wg = Wi(7) (20)
t—00 —>00
Furthermore, for operational scenarios in which the system

parameters are completely unknown the following auxiliary
controllers are proposed:

Vor = —kagOwg — Wapsign (0ux)
Vo, = —kq;RO’q;R — Wq;RSigH (O’\pR) (21)
with kyyp, ky, > 0, and

D (22)

Wor > 1T, Wap >
Unknown disturbances 7;, and @q,,\, are given by
d b 1

T = Buoglor — Ew} —JORT STL
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~ d 2R 2
Dy = Pugewy — Vi = L—RRwR + T @3)

The significatively disturbed, controlled uncoupled discon-
tinuous dynamics of sliding surface coordinate functions are
now described by

d ~ ~ _

E‘ka = —korOwpr — Wagsign ((TwR) + 1L

d ~ ~ ~

EO’\I/R = —ky,0u, — Wy,sign (O’\pR) + Dy, (24)

where
- d , b 1

7L = BwrCwr — TR T FORT L

. d . 2Rg 2
‘@‘I’R = IB‘J’R&I‘R — E\DR — E‘IIR + a@lyR (25)

Similarly, first time derivatives of Lyapunov function
candidates (17) along system trajectories (24) are given by
d

— Vg (ka) = _F];wRO'aZJR -

dt (WwR - |?L|) |O-a)Ri

<0, for Wop > TLl, 0w #0  (26)

EVG‘I’R (U\IJR) = _E\PRG&/R - (W\I’R - |f)\I”R|) iULI/R|
<0, for Wy > |Dug|, owg #0 (27)

Hence sliding surfaces o,, = 0 and oy, = 0 are also
reachable in finite time by implementing controllers (21).
Similarly, tracking of velocity and magnetic flux reference
trajectories is then achieved: wg — wp, Yg — Vg
Moreover, B-spline artificial neural networks are integrated
to intelligently improve the stringent robust control perfor-
mance against uncertain complex dynamic external influ-
ences, parametric uncertainty and nonlinear mathematical
modelling errors. The control parameters are adjustable on-
line from an artificial intelligence perspective in this fashion.
Artificial intelligence indeed offers potential opportunities
to develop innovations in adaptive optimal nonlinear control
design for considerably uncertain operational scenarios.

In an Artificial Neural Network (ANN), a node - neuron
or perceptron - constitutes a fundamental unit that receives
input, processes it through a mathematical operation, and
produces an output. Nodes are structured into layers within
the neural network, typically comprising an input layer, one
or more hidden layers, and an output layer.

In this context, B-spline Neural Networks (BsNN’s) are
intelligent agents that can provide to control systems the
capability to adjust their performance when facing significant
changes in the plant and the operational environment
whilst meeting strict controller specifications, such as the
minimization of the system output error and the control input
effort. Therefore, in spite of the model uncertainty increases
as the system complexity does, and the presence of undesired
external disturbing signals during system operation might
degrade the system performance, BsNN’s efficiently holds
a progressive learning by means of their learning rule and
the update of their synaptic weights allowing a proper system
functioning.
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FIGURE 1. Main architecture of a B-spline Neural Network (BsNN).

The presence of unpredictable disturbances may lead
to difficulties to perform a satisfactory control of the
process or system, then novel designs of complex and more
sophisticated controllers is an open research area. In this
research, authors propose a novel control approach where
a sliding mode-based controller is further enhanced by
employing BsNN’s for the real-time computation of the
control parameters.

In the neuron architecture, the choice of inputs is
determined by the close correlation between the output
tracking error and the control inputs signals [36]. The neuron
output is derived from a weighted linear combination of the
transformed inputs. A generalized architecture for a BsNN is
depicted in Fig. 1. A couple of basis functions is considered
per input signal, Vn = 2k : k € Z, where n represents the
number of synaptic weights.

In this work, the reference trajectory tracking errors and
the sliding surfaces are used as the main inputs signals, and
the output is given by

y=alw (28)

The weight and basis function outputs (or transformed input)
column vectors are given as follows

T

wo=[wi wa...wy], aT:[alaz...an] 29)

with
wit)=w(it—1)+Aw(E —1) (30)

In this study, each control parameter is computed by
implementing a BsNN as displayed in Fig. 1. Output tracking
errors and sliding surface functions are used as main inputs
throughout the simulation experiments. The artificial neuron
is continuously trained by using the following instantaneous
learning rule:

Aw(t—l)z/\e—(t)za(t) 31
a@) I3
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Here e(f) and X stand for the instantaneous system output
tracking error and the learning rate index, respectively.
Instantaneous error correction rules allow the update of the
weight vector of the network to reduce the error in the
output after each training sample is presented to the network.
In this sense, adaptation occurs through backward output
error propagation [37], [38].

The operation of the BsNN can be furthermore analysed
by using a Functional Flow Block Diagram (FFBD) [39].
A scenario in which the output tracking error can be utilized
as the correction input signal in the BsNN to compute the
control parameters on-line is exemplified in Fig. 2. The
measured tracking error is firstly employed as the central
input to the neuron and transformed by the B-spline basis
functions to get the transformed input vector a in function
block 1.0.

Furthermore, the incorporation of a dead band can enhance
the update process and promote the convergence of the learn-
ing rule. Specifically, weight factors are either not updated
or retained if the error magnitude falls below a specified
threshold, as outlined in functions 2.0 and 3.0. Storage
of the current weights values is continuously performed
for the update stage in the next iteration, as summarized
in the function block 4.0. Lastly, the weighted sum is
the result of the scalar product of weights and weighted
inputs vectors producing the adaptive output. The weights
magnitude determines the strength of the connection from
each input with the output.

In this research, the on-line computing of the control
parameters related to the tracking control for wg, based
on the tracking error, is carried out by means of the
artificial network, adopting the structure presented in Fig. 1.
Notwithstanding, in the first case study in the results sections,
BsNN’s are used effectively for demonstrating the computing
of the magnetic flux control design parameters: ky, and Wy,.

The computational cost of the neuronal outline employed
in this research is lower than traditional neural algorithms,
such as the multilayer perceptron or radial basis functions.
This efficiency stems from the fact that the definition in these
networks primarily depends on their base functions, which
can be established by understanding the value intervals that
may arise in input variables. Furthermore, the continuous and
on-line training strategy ensures its constant adaptation to the
desired velocity output, mitigating the challenge associated
with selecting a training dataset for the neural model,
a predicament encountered with the multilayer perceptron
during offline training.

The B-spline neural network architecture design consists
of the same number of neurons as the computed control
design parameters, which varies in each case study. The
B-spline basis functions are specified as third-order and
constructed over knot vectors. It is important to note that the
input is normalized. Additionally, regarding the learning rate,
it initially assumes a value within the [0, 2] range for stability
purposes [38]. This value undergoes iterative adjustment in
small intervals, guided by the measurement of the neural
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network’s dynamic response characteristics. In this research
the adopted BsNN structure for case studies are portrayed in
Fig. 3.

If A is close to zero, the learning process becomes sluggish.
Conversely, if the value is large, oscillations can arise
and grow. In this study, to ensure rapid learning and the
convergence of the training rule, a learning rate is set in the
range of (0.001 —0.5) during the simulation experiments,
where optimal performance was determined through offline
tests. It is proposed that during the update procedure, a dead-
band be included to enhance the convergence of the learning
rule. The weight factors are not updated if the magnitude of
the error is less than 0.1% as

[w(t — D+ Aw(@ —1) if|e(?)] > 0.001
w(t) =
w(t—1) else

(32)

The BsNN demonstrates the capability to compute its
response in real-time, exploiting a compact structure and a
minimal set of fundamental mathematical operations. This
characteristic is particularly advantageous for the efficient
control in diverse engineering applications. In summary, the
design of the B-spline ANN during simulations involves
configuring the network architecture and fine-tuning param-
eters to achieve optimal performance. This iterative process
includes determining the number of nodes or neurons,
defining the order and number of basis functions, and
adjusting connection weights between nodes. Through these
simulations, the refinement of these design aspects ensures
that the B-spline ANN effectively learns from the gathered
data.

The implementation of adaptive control with B-spline
neural networks offers a versatile approach that aligns with
the demands of complex nonlinear systems. The ability
to adapt in real-time, the simply three-layer structure and
robustness to uncertainties, positions this methodology as a
valuable tool for achieving acceptable control performance
in diverse dynamic environments.

Moreover, gradient descent techniques, as the adopted in
this work (31), are more suitable for B-spline networks com-
pared to more complex recursive least squares algorithms.
These techniques are particularly well-suited for on-line
implementations, providing a more efficient and effective
alternative in terms of simplicity and performance.

V. CONTROL PERFORMANCE OUTCOMES UNDER
CONSIDERABLY DISTURBED OPERATIONAL
ENVIRONMENTS

Efficacy of the predefined motion planning tracking control
technique based on artificial neural networks and sliding
modes for induction or asynchronous motors is furthermore
demonstrated in this section through numerical experiments.
The Runge-Kutta-Fehlberg method was implemented to
solve nonlinear differential equations of the controlled
nonlinear dynamics of the electric motor under influence of
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FIGURE 3. Proposed B-spline artificial neural network structures for case studies.

multiple frequency oscillatory torque. A fixed step size of
1 ms was employed in numerical implementations. Values
of the parameters of the three-phase asynchronous motor
system, with nominal specifications: 500 HP, 2300 Vs and
60 Hz, are indicated in Table 1 [31].

A general block diagram of the introduced tracking control
method is portrayed in Fig. 4. An inner block associated with
controllers (13) is displayed in Fig. 4b. In this way, artificial
intelligence adaptation capability of the nonlinear induction
motor control approach to suppress uncertain multiple-
frequency dynamic disturbances using BsNN’s and sliding
modes is depicted. The control parameters are continually
tuned to actively reject possible external uncertain dynamic
disturbances. In this section, four case studies are evaluated
throughout numeric simulations to highlight the kindness of
our outline for facing vibrating load torques and regulating
the induction motor towards reference trajectories planned for
the angular velocity and magnetic flux. In all the cases, the
expressions (36) and (34) are adopted for the smooth transient
responses between initial and final operational conditions of
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TABLE 1. Electric motor system parameters used in numerical
implementations.

Parameter Value  Unit
X5 1206 Q
X 1.206
X 54.02 Q
Rg 0.262
Rp 0.187 Q
J 11.06  kgm?
b 0.001 Nms
the induction motor system:
o 0<t<T
M ={To+ [y —To)B(t,T1,. 1) T1<t=<T
Iy t>T1,

(33)

where I'g and I'y stand for the initial and final desired values,
respectively. On the other hand, 77 is the time when the
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FIGURE 4. Overall block diagram of the new proposed adaptive robust control method based on B-spline

artificial neural networks and sliding modes.

transition begins and 7, when finishing. Therefore,

n k
t—T
B.(t, T, T») = —_— 34
2(t, T1, T2) kE:OMk (TZ_TI) (34
Here n = 6, u1 = 252, pup = 1050, u3 = 1800, pug4 =

1575, ps =700, pue = 126.

A. CASE STUDY 1: UNPERTURBED ANGULAR VELOCITY
TRACKING

In this experiment the BsNN structure portrayed in Fig. 3a
is adopted in an unperturbed tracking scenario while imple-
menting controllers (13). The control parameters k;, W; and
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Bi, I = wg, Vg, are on-line computed by the B-spline neural
mechanism where the tracking error e; and o; are used as
the inputs. A satisfactory closed-loop tracking of the motor
velocity reference trajectory by implementing the neural
sliding-mode control approach can be observed in Fig. 5.
Moreover, it can be appreciated from Fig. 6 the behaviour of
the computed control parameters by using the BsNN which
are adjusted according to the tracking error evolution.

In this control method, the initial design considers
the current operating conditions of the system, structure,
characteristics of the inputs and its response. However,
its adaptive nature allows the neural network to learn the
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FIGURE 5. Closed-loop induction motor performance for the unperturbed scenario.

performance of the system and update the control signals as
a consequence of the possible modification of the structure,
inputs and environment. In this sense, it can be considered
that despite the fact that a large number of operating
conditions, parametric variations in the system or in its
environment were not taken into account in the design of
the neural controller, the same learning and updating of the
weights will allow consider aspects in future control signals
to ensure satisfactory performance in a wide range of actual
operating conditions.

The training data includes the transient and steady-state
response of the system. One of the advantages of the proposed
neural controller is that these data can originate from either
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an exact or approximate mathematical model or, alternatively,
from measured data of the real system (inputs, outputs,
control signals, etc.). Besides, in the proposed scheme, four
base functions have been employed, two for the error input,
and two for the sliding surface.

The knot vectors points of the base functions are proposed
as [-10 —4 2 8], [-8 4 2 6] for the tracking error,
and [-5 =3 —1 1], [-2.5 —0.5 1.5 3.5] for the sliding
surface input signal. This definition was developed in the
offline training stage by experimentally testing some control
parameters values. However, all cases remained within a
range of —10 to 10, aiming to ensure that changes in the
output of the base functions concerning the input signal were
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FIGURE 6. Adaptive control parameters in case study 1 for robust induction motor control.

not too abrupt, and consequently, the output of the neural
network.

B. CASE STUDY 2: SINGLE FREQUENCY LOAD TORQUE
For purposes of closed-loop performance assessment, in the
second scenario, the velocity trajectory tracking is evaluated
when the induction motor is subjected to a vibrating load
torque, 20 seconds after the motor started moving, as shown
in From Fig. 7, given by the following expression:

77, (1) = Asin (Qpt + @) 35)
where
0 0<r<20
Ao | F[1=e05] 20<r <55 36)

F [670‘1(1755)] t>55
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FIGURE 7. Single frequency oscillatory load torque for the second case
study.

with F = 1500 Nm, Q; = 15 rad/s, ¢ = % rad and ¢
is given in seconds. From Fig. 7 it can be appreciated that
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FIGURE 8. Closed-loop induction motor performance in case study 2.

the undesired vibrating load torque starts to vanishing after
35 seconds from when it was applied.

It is worth to mention that the first controller in (13) is
employed in this operation scenario where the BsNN is used
for computing the parameters W, k., and B, as portrayed
in Fig. 3b. In this case study arbitrary low gain values are
considered for highlighting the effectiveness of the BsNN
for adapting different operation scenarios in contrast with the
fixed picked values. In this way, it is also corroborated that
the off-line training stage of the BsSNN’s can be efficiently
employed for tuning of the fixed control parameters. Learning
rate values A\ of 0.43, 0.09 and 0.0046, for computing the
parameters Wo,, ko, and B, have been adopted in this
scenario.

In Fig. 8 and Fig. 9 it is portrayed a satisfactory system
performance by using the proposed control method, where in
spite of using relatively low values of the control gains, they
are properly on-line adjusted by the neural network. Besides,
the effects of the single frequency oscillatory load torque are
acceptably attenuated while a proper trajectory tracking of the
planed velocity reference is achieved.

To further demonstrate the relevance of including the
continuously training capability in the BsNN, it is presented
results for the fixed, adaptive, and optimized values of the
control parameters for a second comparative analysis in the
second case study, where the system is subjected to changes
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in the velocity reference trajectory, as depicted in Fig. 10.
Besides, the time span has been extended to 130 seconds for
purposes of illustrating the system’s proper operation through
the time.

First, consider the scenario when control gains are updated
on-line by the BsNN’s. Observing from Figs. 1la, llc
and 1le, it is evident that the parameters reach an optimized
value after the second change in the velocity reference,
transitioning from 188.5 rad/s to 100 rad/s. In this manner, the
comparison of system responses is conducted by contrasting
the initial, final and adaptive control parameters values
computed by the BsNN’s.

It is worth noting that although optimized values in the
initial scenario may facilitate proper system functioning, such
stability is not guaranteed in uncontrolled scenarios where
operational conditions involve constant and unpredictable
load torques affecting system behaviour, as depicted in the
tracking error plots in Fig. 10b, 10d and 10f. Thus, it becomes
evident from the figures that real-time updates of the control
parameters further enhance the system’s capabilities.

The system performance evaluations, in this section and
in the case study 4, are conducted using diverse index
criteria [40], [41], including the Integral Squared Error
(ISE), the Integral Time multiplied Squared Error (ITSE), the
Integral Absolute Error (IAE), the Integral Time multiplied
Absolute Error (ITAE), and the Root Mean Square Error
(RMSE), which is a widely used metric for assessing the
accuracy of predictions or control system performance.

The bar graphs shown in Fig. 12 compare the system
performance for the second comparative analysis in the
second case study. These results provide a comprehensive
insight into the controllers’ effectiveness, with a particular
emphasis on the adaptive controller’s superior performance.

From a control theory perspective, the ITAE index is highly
sensitive to sustained deviations from the desired output,
as it penalizes errors more heavily over time. The adaptive
controller demonstrated a substantially lower ITAE value
of 430.5, compared to 8883.4 for the fixed controller and
1099.5 for the optimized controller. This indicates that the
adaptive controller properly reduce long-term errors, thereby
achieving a better reference trajectory tracking.

The ISE index, which emphasizes the magnitude of errors,
showed that the adaptive controller achieved an exceptionally
low value of 7.4, while the fixed and optimized controllers
recorded 923.4 and 18.2, respectively. This suggests that
the adaptive controller is highly effective in minimizing the
output tracking error, leading to a more precise and efficient
system response.

On the IAE index, the adaptive controller again outper-
formed the others with a value of 6.1, significantly lower than
the fixed controller’s 196.1 and the optimized controller’s
23.0. Since IAE measures the total accumulated error,
the adaptive controller’s low IAE value indicates superior
performance in reducing overall deviation from the reference.

Finally, the ITSE index, which combines the sensitivity
to both error magnitude and error duration, highlighted
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FIGURE 9. Trajectory tracking control parameters in case study 2.

an important improvement with the adaptive controller
achieving a value of 131.5, compared to 13973.3 for the
fixed controller and 548.4 for the optimized controller. The
adaptive controller’s low value emphasize its ability to effec-
tively manage both transient and steady-state performance,
minimizing both the amplitude and duration of tracking
errors.

The presented results consistently emphasize the adaptive
controller’s capability in minimizing the tracking error and
improving the overall operation of the induction motor
system. It exhibits exceptional ability to dynamically adjust
to changing conditions and disturbances, thereby achieving
remarkable efficiency in the control system.
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C. CASE STUDY 3: MULTIPLE FREQUENCY LOAD TORQUE
The accuracy and responsiveness of induction motor control
are advanced by integrating B-spline neural networks into
sliding mode robust controllers. The adaptability of B-spline
neural networks is leveraged to enhance the controller’s
ability to adapt promptly and effectively to fluctuations,
disturbances, and varying conditions during motor operation.
This integration leads to controllers that understand motor
behaviour nuances and respond swiftly to dynamic changes,
even in the absence of a precise system dynamical model.
The overall performance of induction motor control
systems is significantly enhanced by this collective improve-
ment, making it valuable for practical applications in control

101691



IEEE Access

F. Beltran-Carbajal et al.: B-Spline Artificial Neural Networks in Robust Induction Motor Control

200

o,

50
t [s]

(a) Velocity reference tracking using adaptive gains.

200

........................

oL |
50
t [s]

(c) Velocity reference tracking using optimized gains.

200

........................

50
t s

(e) Velocity reference tracking using fixed gains.

5
1w
~
F
= 0
&
3
1
-5 ‘
0 50 100
t [s]
(b) Velocity tracking error using adaptive gains.
5
1w
~
=]
£ o0
=
3
1
-5 ‘
0 50 100
t [s]
(d) Velocity tracking error using optimized gains.
5
1w
~
e
£ o0
=
3
1
-5
0 50 100
t [s]

(f) Velocity tracking error using fixed gains.

FIGURE 10. Velocity reference tracking for the second comparative analysis in case study 2.

engineering. For this case study, it is intentionally exposed to
the controlled system to a critical scenario where it is assumed
that information from system parameters is not available, thus
the selection of control parameters in expression (21) are
computed on-line by the BsNN. Thus, arbitrary fixed and
initial adaptive control parameter values (sz = 180 s~!
and ka = 550 rad/s?) have been selected to highlight how
the adaptive approach can be used for the off-line tuning of
control parameters as well.

Additionally, a multiple frequency load vibrating torque is
intentionally injected after 20 seconds the simulation starts,
and stopped at a time t = 40 s, as portrayed in Fig. 13, and is
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given by
4
W)= T (37)
i=1
with
T; (1) = vsin (2t + ;)
— .\ I —\ I
+T;sin [(Q,» + Q) 5] sin [(Q,- - Q)) 5} (38)

where the oscillatory load torque parameters are summarized
in Table 2.
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FIGURE 11. Parameter control set for the second comparative analysis in case study 2.

TABLE 2. Parameters of the multiple-frequency oscillatory load torque in

the third case study.

Amplitudes Frequencies Phase Angles
Nm rad/s rad

71 = 1500 21 =30 p1=m/4
19 = 300 Qo =28 p1=7/3
T3 = 400 Q3 =32 2 =2m/3
74 = 500 Qu =34 p3 =3m/4
71 =1500 1 =305 -

T2 =400 Q=275 -

T3 =300 Q3=325 -

T4 =200 Q=335 -

From the yielded results in Fig. 14, it is evident the
improved performance of the controlled system by using
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the proposed robust tracking control scheme in spite of
the presence of significant multiple-frequency vibrating load
torques. The suitably integration of the Bézier polynomials
as reference velocity profiles allows a properly operation
from the start to the stop of the electric system motor
in different operation scenarios. It is also corroborated a
satisfactory performance of the system while acceptable
levels of vibration attenuation are achieved as demonstrated
previously analytically.

Additionally, low dependence of the system physical
parameters information is attained by including the BsNN’s
in the sliding modes based-control scheme. Finally, it is
important to note that the proposed approach can be further
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FIGURE 12. System performance evaluation for the second comparative analysis in the second case study.
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FIGURE 13. Multiple frequency oscillatory load torque for the third
operational scenario.

extended to another electric motor architectures where
minimal adjustments are required.

Notice from Fig. 15 and Fig. 16 the adaptive capabilities
of the control scheme allows to update the control parameters
based on information of the tracking error without previous
information of the system parameters. It is evident the
magnitude of the parameters is greater than the values
used when implementing the controller in (13), since the
control input address the lack of system information. It is
important to highlight that the proposed control approach
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can handle satisfactory the system uncertainties, unmodeled
dynamics and disturbance load torques in an efficient
way, as corroborated in the multiple operational simulation
scenarios.

Lastly, notice that by implementing the proposed controller
it is achieved an acceptable closed-loop performance of
the induction motor system which is further improved
by the adaptive computation of the control parameters with
the BsNN, as demonstrated trough the diverse simulation
operational scenarios. Moreover, since induction motors
are frequently subjected during its operation to undesired
vibrating load torques, it is meaningful to have a control
scheme with low dependence on the system model as well as
external disturbance information, as required in demanding
applications such industrial drives and electric vehicles.
Therefore, it is evident that the integration of intelligent
agents as individual and multilayer artificial neurons net-
works in control systems design benefits the optimization
and improvement of the closed-loop performance while strict
operational requirements are meet.

The performance of BSNN’s in control systems is influ-
enced by several sensitive parameters. The number and
placement of control points, the degree of B-spline basis
functions, and the network architecture impact the system
adaptability. Choosing an appropriate learning rate and
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FIGURE 14. Closed-loop induction motor performance for the third scenario.
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FIGURE 15. Update time-line of the weights for computation of the velocity control parameters by using expression (30) in the third

case study.

weight initialization is crucial for preventing overfitting. Bal-
ancing these parameters is crucial to avoid slow convergence,
ensuring that the BsNN effectively respond to change in the
system performance.

D. CASE STUDY 4: EVALUATION ON ADAPTIVE ROBUST
B-SPLINE AND NONLINEAR PASSIVITY-BASED
CONTROLLERS

The application of the passivity theory in designing con-
trollers for induction motors has demonstrated its effective-
ness, as noted in previous research [42]. In this section,
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it is introduced an additional case study to assess the
performance of the proposed approach using the criteria
introduced in the second case study. This case study serves
as a comparative analysis, highlighting the effectiveness of
our approach in contrast to other efficient nonlinear control
design methodologies previously proposed in the literature.
Here, a time-step simulation of 0.25 ms is adopted for both
scenarios as proposed in [16].

The chart depicted in Fig. 17a illustrates the criteria evalu-
ation for the unperturbed scenario. Notice from this figure
that each axis indicates the system tracking performance,
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FIGURE 17. Comparative analysis of the system responses using performance index criteria for the fourth case study.

Here, one can appreciate the capability of the proposed
approach to effectively drive the system.

Based on the data presented in the radar charts depicted in
Fig.17, itis evident that, despite adjustments in the simulation

demonstrating acceptable system performance using both
approaches. On the other hand, Fig. 17b presents the data
obtained for criteria evaluation under the influence of a
vibrating load torque, highlighting the system’s performance.
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FIGURE 18. Comparative analysis of the velocity motor control in the last case study.

step time, the proposed robust induction motor controller
is functioning properly. Furthermore, proficient performance
in terms of output tracking velocity error is achieved when
implementing the proposed approach, even when the system
is subjected to a completely unknown and undesired vibrating
load torque, as illustrated in Figure 18.

Observe that by implementing the passivity-based non-
linear controller, it is achieved an acceptable performance.
Nevertheless, by using the proposed adaptive robust B-spline
controller the system exhibits a superior performance. While
the passivity theory offers notable advantages in designing
induction motor controllers, it is important to acknowledge
that a significant challenge lies in its inherent difficulty in
compensating for disturbances. The rigid adherence to the
principles of passivity can sometimes limit the controller’s
ability to effectively mitigate external disturbances, posing
a potential limitation in dynamic environments. Addressing
this challenge requires careful consideration and additional
strategies to enhance the system’s resilience to disturbances.

While the integration of B-spline neural networks presents
promising advancements in control design, it is essential to
acknowledge potential challenges in their implementation.
One notable issue lies in the selection of appropriate
control parameters. B-spline neural networks demand careful
tuning to strike a balance between model complexity and
computational efficiency, posing a challenge in achieving an
optimal trade-off.

VOLUME 12, 2024

Additionally, an improperly selection of the learning rate
value may lead to increased computational costs, mak-
ing real-time applications challenging. Moreover, ensuring
robustness in the face of uncertainties and variations in
dynamic systems introduces complexities, as the adaptability
of B-spline networks must be carefully managed to avoid
overfitting or underfitting issues. Addressing these chal-
lenges is crucial for harnessing the full potential of B-spline
neural networks in control designs.

These techniques are particularly well-suited for on-line
implementations, providing a more efficient and effective
alternative in terms of simplicity and performance. For the
implementation of adaptive control using B-spline neural
networks in a microcontroller, DSPs can be a suitable
selection, but careful consideration should be made.

The choice hinges on factors such as the computational
prowess to handle the real-time demands of the adaptive
control algorithm, the availability of ample memory for
storing neural network parameters, and robust peripheral
support for seamless interfacing with sensors and communi-
cation modules. Equally critical is assessing the development
environment, ensuring that the tools provided facilitate
efficient programming and debugging.

VI. CONCLUSION

In this article, a new neural adaptive robust nonlinear control
design strategy for performing efficient tracking tasks of
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predefined motion profiles on uncertain induction motor sys-
tems under a wide spectrum of completely unknown, external
and internal dynamic disturbances or uncertainties has been
proposed. B-spline artificial neural networks, smooth motion
reference trajectory tracking and sliding mode theory were
utilized to construct the new introduced induction motor
control design method. The efficient tracking of smooth
operating reference trajectories planned for both the angular
velocity and the rotor magnetic flux on the induction motor
in substantially disturbed operational environments was
demonstrated. Capability of robustness with regard to para-
metric uncertainty, theoretical dynamic modelling errors and
multi-frequency external oscillatory torque perturbations was
incorporated in electric current control signals. In contrast to
other existing conventional techniques, real-time estimation
strategies of system parameters and dynamic disturbances is
unnecessary. Analytical and numerical evidence has proved
the efficacy of the adaptive trajectory tracking control
strategy. A satisfactory control performance without utilizing
information of system parameters was corroborated as well.
Furthermore, a comparative analysis is carried out using
performance criteria for both unperturbed and perturbed sce-
narios, contrasting with a nonlinear passivity-based controller
suggested in the literature. The results demonstrate superior
performance with the proposed adaptive robust approach.
It can hence be concluded that the introduced adaptive
sliding mode neural network nonlinear control strategy
represents a very good solution alternative to the problem of
external multi-frequency oscillatory perturbation suppression
for this controlled nonlinear energy conversion dynamic
system, while a tracking of specified motion planning
is efficiently fulfilled. It has been confirmed how neural
networks and sliding modes theories can be capitalized to
enhance the existing body of knowledge about robust tracking
control design methodologies of uncertain modern complex
engineering systems driven by electric motors. In future
research endeavours, it is planned to explore other variants
of sliding modes and leverage various artificial intelligence
techniques to derive novel solutions for efficient trajectory
tracking control problems. This exploration will extend to
various types of electric machines and encompass a wide
class of multivariable uncertain complex energy conversion
nonlinear dynamic systems, where internal and external
uncertainties play a crucial role. Additionally, real-time
experimental implementation of the introduced approach will
be addressed, extending its application to various electric
motor configurations.

APPENDIX A

LIST OF ACRONYMS AND SYMBOLS
Acronym Description

DSP Digital Signal Processor.
ANN Artificial Neural Network.
BsNN B-spline Neural Network.
FFBD Functional Flow Block Diagram.
ISE Integral Squared Error.

101698

ITSE Integral Time multiplied Squared Error.
ITAE  Integral Time multiplied Absolute Error.
IAE Integral Absolute Error.

RMSE Root Mean Square Error.

Symbol Description

YRa> VRb Transformed magnetic fluxes in rotor.
Isq, Isp Phase electric currents.

N, Number of rotor pole pairs.

Rg, Rs Rotor and stator winding resistances.
Lg, Lg Rotor and stator inductances.
M Mutual inductance.
J Rotor moment of inertia.
199 Mechanical load torque.
WR Rotor angular velocity.
Te Control torque.
2 Bounded disturbances.
Vogs VW Auxiliary controllers.
Owgs Oup Sliding surface functions.
Cops CWR Trajectory tracking errors.
g Reference angular rotor speed.
e Magnetic flux modulus.
2 Reference magnetic flux modulus.
kogs kwy Control gain parameters.
Bwr> Bur  Control design parameters.
Weg» Wa,  Discontinuous control action parameters.
B; Bézier polynomial.
A Learning rate index.
w Weights vector.
a Basis function outputs vector.
A Vibrating load torque amplitude.
Qr Vibrating load torque frequency.
© Vibrating load torque phase.
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