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ABSTRACT Image compression methods based on machine learning have achieved high rate-distortion
performance. However, the reconstructions they produce suffer from blurring at extremely low bitrates
(below 0.1 bpp), resulting in low perceptual quality. Although some methods attempt to reconstruct sharp
images using Generative Adversarial Networks (GANs), reconstructing natural textures at low bitrates
remains challenging. In this paper, we propose a novel image compression method that explicitly utilizes
semantic information. Specifically, we send a semantic label map to the decoder, which takes it as input.
This semantic information enables the decoder to reconstruct appropriate textures consistent with the
corresponding semantic classes. Although semantic label maps can be compressed into relatively small data
sizes using common methods (e.g., PNG), the data size is not negligible in an extremely low-rate setting.
To address this problem, we propose simple yet effective label map compression strategies, including an
autoregressive label map compressor. Our strategies significantly reduce the data size of the label map while
maintaining the critical semantic information that allows the decoder to reconstruct realistic and suitable
textures. By utilizing this data-efficient semantic information, our method can reconstruct realistic images
even at an extremely low bitrate. As a result, the proposed method outperformed existing models, including a
GAN-based model designed for low-rate settings and a state-of-the-art semantically guided method, in both
quantitative evaluation and user studies. Furthermore, we analyzed the effect of semantic information by
switching the input label map, confirming that the model synthesized textures appropriate to the given
semantic labels.

INDEX TERMS Image compression, semantic information, perceptual image compression, GANs, neural
image compression.

I. INTRODUCTION
Lossy image compression is essential for efficient image
storage and transmission. Many image compression methods
have been developed over the past several decades, such as
JPEG, BPG [1], andVVC [2], which are based on handcrafted
algorithms. With the recent advancements in deep learning,
neural-network-based lossy image compression methods
have been developed [3], [4], [5]. Most such methods
adopt an encoder-decoder architecture, and their parameters
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are optimized using large image datasets. State-of-the-art
methods outperform traditional codecs, such as BPG and
VVC, in terms of rate-distortion performance.

The challenge lies in extremely low-bitrate compression,
which involves compressing images to bitstreams below
0.1 bpp (bits per pixel). Even state-of-the-art compression
models [6] suffer from blurring at low bitrates, leading to
poor perceptual quality, as shown in Fig. 1 (b). To address
this, Generative Adversarial Networks (GANs [7]) have
been employed to enhance sharpness in compressed images.
However, achieving sharpness alone is inadequate for the
reconstruction of realistic images, suggesting the need for
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FIGURE 1. Comparison of compressed images using Cheng et al. [6],
FCC [8], and our proposed method. While other methods suffer from blur
or artifacts, our method reconstructs realistic textures by leveraging a
semantic label map. Specifically, it appropriately renders textures of
clouds and the sea, which are highlighted in blue and red squares.

more advanced solutions For example, as shown in Fig. 1 (c),
the output of a representative GAN-based method, fidelity-
controllable compression (FCC) [8] is sharper than that
of Cheng et al. [6]. However, it looks unnatural owing to
compression artifacts in a part of the image. This example
shows that even sharp reconstructions do not look realistic
unless their textures are semantically correct.

To synthesize appropriate textures even at low bitrates,
we propose a semantically guided image compression model
that leverages semantic information. We employ a semantic
label map, enabling the model to reconstruct textures that
are consistent with their semantic classes. Fig. 1 (d) shows
the image compressed by our proposed method. As can be
observed, it clearly retains the characteristic textures of the
sea and clouds, free from blur or noise, unlike those produced
by other methods.

Our proposed method achieves perceptually pleasing
images at extremely low bitrates by compressing input
images and semantic information. Existing methods [9], [10],
[11], [12], [13] require a full-resolution semantic label map.
Thus, they are unsuitable for the low bitrates. To address this
problem, we introduce three strategies: (1) downscaling the
label map, (2) reducing the number of classes in the label
maps, and (3) using an autoregressive compression model to
compress label maps losslessly. These strategies reduce the

average bitrate of the label maps to 0.001 bpp on the COCO
dataset [14].

In our experiments, we conducted quantitative evaluations
and user studies on both a general dataset (COCO) and a
domain-specific dataset (Cityscapes [15]). In both datasets,
our method surpassed existing methods, including a state-
of-the-art semantically guided compression method [11].
The results showed that even with its small data size,
semantic information significantly enhanced perceptual
quality. Futhermore, our analysis demonstrated that the
model generates textures aligned with the input semantic
classes.

The contributions of this study are summarized as follows.

• We propose a novel GAN-based image compression
method that utilizes semantic information for extremely
low bitrate compression. The semantic information
enables the decoder to synthesize textures aligned with
their semantic classes.

• We introduce three label map compression strategies.
These strategies reduce overhead data size drastically
and realize extremely low bitrate compression.

• We analyzed the effect of semantic information in
our method by switching semantic classes. The results
demonstrate that the proposed method synthesizes
appropriate textures corresponding to the input semantic
class.

II. RELATED WORKS
A. LEARNED IMAGE COMPRESSION
Over the last several years, image compression methods
based on machine learning have been developed [3], [4], [5],
[6], [16], [17], [18], [19]. Balle et al. [3] developed an end-
to-end compression method for the first time. Some works
have investigated powerful entropy models for effective
compression. Balle et al. [4] developed hyperprior networks
designed to utilize side information. Minnen et al. [5] and
Lee et al. [18] adopted an autoregressive context model to
utilize information from known subsets. Cheng et al. [6]
introduced a Gaussian mixture model to parameterize the
distributions of latent codes, improving entropy estima-
tion performance. Other approaches have focused on the
architecture of the encoder and decoder. Some methods
have used RNN-based architectures [16], [17], [20] instead
of CNN. Attention modules have also been used. Chen
et al. [21] introduced a non-local attention module. Some
works [22], [23], [24] adopt Swin-Transformer [25]-based
architectures, improving performance further. Thanks to
these advancement, state-of-the-art methods [24], [26], [27]
outperform Versatile Video Coding (VVC) [2], the latest
coding standard. However, these methods are trained to
optimize the rate-distortion trade-off. In extremely low-
bitrate settings, the outputs tend to be blurry, resulting in
low perceptual quality. By contrast, our proposed method is
trained to improve perceptual quality by using GAN-based
training and semantic information.
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B. GAN-BASED IMAGE COMPRESSION
Some works have utilized GAN models to reconstruct visu-
ally pleasing images [8], [10], [28], [29], [30], [31], [32], [33],
[34], [35]. Rippel and Bourdev [28] introduced adversarial
training for image compression. Agustsson et al. [10] used
a GAN to reconstruct realistic images at an extremely
low bitrate. Iwai et al. [8] utilized a two-stage train-
ing method to avoid unstable training, and applied net-
work interpolation to control the effects of a GAN.
Mentzer et al. [29] developed a high-fidelity GAN-based
compression method. Inspired by Vector-Quantized GANs
(VQGANs) [36] vector-quantization-based methods have
also been proposed [33], [34], [35]. Following the recent
success of the diffusion model [37], some diffusion-based
image compression methods [38], [39], [40], [41], [42] have
been proposed. While they achieve high perceptual quality,
they require computationally expensive iterative process to
decode an image.

Although thesemethods can reconstruct sharp images, they
do not explicitly consider the semantic structure of an input
image. This leads to unnatural textures, as shown in Fig. 1 (c).
By contrast, we introduce a semantically guided decoder to
reconstruct natural and semantically accurate textures.

C. SEMANTIC GUIDED IMAGE COMPRESSION
Some existing image compression schemes do consider
semantic information. These methods can be divided into
two groups, including those that focus on the performance of
downstream tasks (e.g., classification) after compression and
those that focus on the perceptual quality of the reconstructed
images. The present work belongs to the latter group.

1) METHODS THAT FOCUS ON PERFORMANCE ON
DOWNSTREAM TASKS
Patwa et al. [43] utilized classification loss to develop an
image compression method designed to preserve semantics.
Le et al. [44] proposed training strategies to balance three
loss functions: rate loss, distortion loss, and task-specific loss.
Sun et al. [45] proposed a semantically structured image-
coding framework. In this framework, intelligent tasks, such
as classification and pose estimation, can be performed
without decoding an entire image. Yan et al. [46] proposed
semantics-to-signal scalable image coding (SSSIC). This
method stores deep features of an image to perform down-
stream tasks and reconstruct images. TransTIC [47] incor-
porates a visual-prompt tuning [48] technique to improve
performance on different downstream tasks while keeping the
original network weights fixed. Although these methods are
designed to achieve high performance on downstream tasks,
the proposed approach aims to reconstruct visually pleasing
images.

2) METHODS THAT FOCUS ON PERCEPTUAL QUALITY
Several methods [9], [10], [11], [12], [13], [49], [50]
have been proposed to improve the perceptual quality of

reconstructions by using semantic information. Wang et al.
[9] utilized Grad-CAM [51] to locate semantically important
regions and compensate for details. Chang et al. [49] used
edge detection to extract a structural map, helping the
decoder reconstruct an image. However, these methods do
not explicitly use the semantic classes of images. Agustsson
et al. [10] have proposed a GAN-based image compression
method that reconstructs images from latent code and feature
maps extracted from a semantic label map. However, their
approach used semantic label maps only for controlling the
bit allocation. Akbari et al. [13] developed a compression
framework that utilized a semantic label map to enhance the
quality of the decoded images. Duan et al. [11] designed
a semantically guided compression framework. It can be
applied to any image codec because it enhances the quality
of already decoded images using the corresponding semantic
label map. However, it applies post-processing using a
Pix2PixHD network [52] for decoded images, which makes
the entire pipeline complex and computationally inefficient.
Chang et al. [12] proposed a coding scheme based on a
semantic prior. It stores one representative vector for each
semantic class of the input image, enabling extreme com-
pression. However, it is limited to simple and low-resolution
image applications due to the lack of expressive ability of
the representative vectors. Their follow-up work [50] has
introduced a consistency-contrast regularization to improve
textural consistency between the original and reconstructed
images.

The main difference between our method and existing
works is the label map compression strategies. Specifically,
we introduce three label map compression strategies: down-
scaling the label map, reducing the number of classes, and
an autoregressive label map compressor. These strategies
reduce the data size of the label maps to around 0.001 bpp
on the COCO dataset. Although JPD-SE [11] compresses the
semantic maps by converting them into polygons, the average
bitrate of compressed semantic maps is 0.03 bpp, which is too
large in extremely low-bitrate settings (below 0.1 bpp). Our
experimental results demonstrate that the semantic label map
helps our model reconstruct natural textures despite its small
data size. Furthermore, we analyzed the effect of semantic
information by switching semantic classes, confirming that
ourmodel synthesized texture alignedwith the input semantic
classes.

D. GAN-BASED IMAGE SYNTHESIS FROM SEMANTIC
LABEL MAPS
Several works have studied GAN-based image synthe-
sis from a semantic label map [52], [53], [54], [55],
[56]. Isola et al. [53] developed a model based on U-Net
to generate realistic images. Wang et al. [52] used an
autoencoder-based model to synthesize high-resolution
images. Park et al. [54] proposed spatially adaptive-
normalization (SPADE), in which semantic label maps are
injected into each SPADE layer. Zhu et al. [55] developed
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FIGURE 2. Overview of the proposed method. On the encoder side, the original image and down-scaled label map are transformed into a
bitstream. To reduce the data size of the label map, we introduce a label map compressor M. On the decoder side, the bit stream is
decoded into quantized latent code and label map, and then the decoder reconstructs an image. During training, the discriminator
distinguishes the original image from reconstructions. ‘‘Q’’, ‘‘AE’’, and ‘‘’AD’ denote quantization, arithmetic encoder, and arithmetic
decoder, respectively.

a method referred to as SEAN-normalization layers, similar
to SPADE, which utilizes style and semantic information to
generate high-fidelity images. Schönfeld et al. [56] adopted
a U-Net [57]-like discriminator for adversarial training. The
discriminator was trained to predict semantic classes. This
allows the generator to be trained by only an adversarial
loss, which improves the quality of generated images.
Semantic label maps are also utilized for super-resolution
tasks. Wang et al. [58] developed an SFT layer designed
to renormalize a feature map using semantic information.
They also proposed a method using only eight classes
and segmentation probability maps instead of a one-hot
segmentation map. Using segmentation probability maps as
prior, the model learns class-specific features and textures.

III. PROPOSED METHOD
In this section, we present the pipeline of our semantically-
guided image compression method. First, we provide an
overview and outline the procedure of the proposed method
in Sec. III-A. Next, we elaborate on the details of each
component of the model in Sec. III-B through Sec. III-F.
Finally, we describe the training strategy in Sec. III-G.

A. MODEL OVERVIEW
As shown in Fig. 2, our method consists of five components:
an encoderE , an entropy estimatorC , a label map compressor
M , a decoder G, and a discriminator D. The encoding and
decoding processes are as follows: On the encoder side, the
encoder extracts a latent code y from the original image
x, which is then quantized into a discrete code ŷ. Using
a pre-trained semantic segmentation model, a label map of
the original image is obtained and down-scaled into s. We
use DeepLab v3 [59] for segmentation, and its weights are
fixed. The discrete code ŷ and down-scaled label map s are
transformed into a bitstream through entropy coding, with
the entropy estimator C and the label map compressor M
used to estimate their probability distributions p(ŷ) and p(s),
respectively. The bitstream is then transmitted to the decoder
side. On the decoder side, the same entropy estimator C

and label map compressor M are used to entropy-decode the
bitstream, recovering ŷ and s. The decoder G reconstructs
the image x̂ from ŷ and s. The discriminator D is employed
during GAN-based training to improve the perceptual quality
of the reconstructed images; however, it is not used during
inference.

B. ENCODER
The encoder transforms the original image x ∈ RH×W×3

into a latent code y ∈ RH/16×W/16×Cy , where H ,W are the
height and width of the image, and Cy denotes the number
of channels of the latent code. We employ the encoder used
in [6], which consists of six residual blocks, two attention
modules, and two convolutional layers. These blocks and
layers extract the deep feature from the input image. The
latent code y is then quantized, obtaining a discrete code
ŷ. Since the gradient of the quantization function (i.e.,
ROUND(·)) is zero almost everywhere, actual quantization
cannot be applied during training. Thus, we adopt additive
uniform noise during training and use the actual quantization
during inference, as used in prior arts [3], [4]:

ŷ =

{
y+ 1y (training)
ROUND(y) (inference)

(1)

1y ∼ U (−0.5, 0.5) , (2)

where1y represents uniform noise and U(−0.5, 0.5) denotes
a uniform distribution over the interval [−0.5, 0.5].

C. ENTROPY ESTIMATOR
The entropy estimator predicts the probability distribution
p(ŷ) of the quantized code ŷ. This probability distribution
is used to approximate the bitrate during training and for
entropy coding during inference. We adopt an entropy
estimator used in [6], which models each element of ŷ using
a Gaussian Mixture Model (GMM) with K mixtures. Specif-
ically, the entropy estimator predicts the weight w ∈ Rn×K ,
mean µ ∈ Rn×K , and standard deviation σ ∈ Rn×K , where
n =

H
16 ×

W
16 × Cy denotes the number of elements in ŷ.
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FIGURE 3. (a) Overview of the autoregressive label map encoding and decoding. The label map is processed in a pixel-by-pixel manner from top
left to bottom right. ⋆ indicates the current position, whose entropy is estimated based on the pixels enclosed by the red outline. (b) A mask used
to filter a 5 × 5 Masked Convolution layer. The mask forces the convolution kernels to extract features only from previously encoded or decoded
pixels. (c) The architecture of our semantic label map compressor. Given a down-scaled label map s, it predicts categorical distribution p(s) in an
autoregressive manner. Finally, it is transformed into a bit stream using an arithmetic encoder based on p(s).

These parameters are predicted using a hyperprior [4]
and a context model [5]. For the detailed process of this
parameter prediction, please refer to [6]. Given the estimated
parameters w, µ, σ, the probability p(ŷ) can be calculated as
follows:

p(ŷ |w, µ, σ) =

n∏
i=1

p(ŷi |wi, µi, σi) (3)

p(ŷi |wi, µi, σi)=

(
K∑
k=1

wi,kN
(
µi,k , σ

2
i,k

)
∗U
(

−
1
2
,
1
2

))
(ŷi).

(4)

The approximated bitrate R (i.e., the number of bits per pixel)
is the sum of the bitrate of ŷ and the bitrate of the additional
discrete latent variable ẑ, which is used in the hyperprior [4].
We use a learned factorized prior distribution [4] to model
p(ẑ). As a result, R can be represented as follows:

R(ŷ, ẑ) = −
1
HW

(log2 p(ŷ |w, µ, σ)) + log2 p(ẑ)). (5)

We use R as a loss function to reduce the bitrate. During
inference, the probability distributions p(ŷ) and p(ẑ) are used
for entropy coding to translate ŷ and ẑ into bitstream.

D. SEMANTIC LABEL MAP COMPRESSOR
To transmit the semantic label map s to the decoder side,
we employ a lossless compression using our semantic
label map compressor M . We introduce three strategies to
effectively reduce the data size.

First, we downscale the semantic label map to H
16 ×

W
16 .

Although it causes information loss, we will demonstrate that
this downscaling does not affect compression performance in
our experiment in Sec. IV-G.

Second, we reduce the number of classes in the label
maps. This strategy is inspired by a semantically-guided
image super-resolution method [58], where eight classes are
chosen: sky, plant, water, animal, building, mountain, grass,
and others. The others represent pixels not fitting within the
first seven classes. In addition to the eight classes, we have
also added ‘‘person’’ and ‘‘road’’ categories. Furthermore,
we have merged ‘‘plant’’ and ‘‘grass’’ into a single ‘‘plant’’
category for simplification. As a result, we obtain nine

classes: sky, plant,water, animal, building,mountain, person,
road, and others (representing pixels not fitting within the
first eight classes). This strategy has two advantages. Firstly,
it reduces the data size of the label maps. Secondly, it makes
training simpler by removing rare and fine-grained classes.

Third, we introduce an autoregressive label map compres-
sor M to effectively reduce spatial redundancy, as shown in
Fig. 3. Fig. 3(a) provides an overview of the autoregressive
encoding and decoding processes. The label map is entropy-
encoded and -decoded from top left to bottom right in a
pixel-by-pixel manner. For entropy coding, the entropy of
each pixel is predicted based on previously encoded or
decoded pixels. To achieve this, we employ the masked
convolution layer [5], [60]. In the masked convolution, the
kernels are masked using a matrix, as shown in Fig. 3(b),
which forces the convolution layer to refer only to already
encoded or decoded pixels. The overall architecture of our
label map compressor is depicted in Fig. 3 (c). Given a
down-scaled Cs-channel one-hot semantic label map s, the
5 × 5 masked convolution first extracts features. Then, three
1×1 convolution layers predict the categorical distribution of
the semantic class for each pixel as p(s) ∈ R

H
16×

W
16×Cs . During

inference, this p(s) is used to compress and decompress the
label map losslessly with entropy coding. During training,
the label map compressor is optimized to minimize the cross-
entropy loss Rseg:

Rseg = −
1
HW

H/16∑
i=1

W/16∑
j=1

Cs∑
c=1

si,j,c log2(p(s)i,j,c), (6)

which corresponds to the approximated bitrate of the label
map.

It is worth noting that autoregressive models are typically
slow due to their pixel-by-pixel processing. However, our
downscaling strategy mitigates this problem by reducing the
number of forward processes fromH×W to H

16×
W
16 , resulting

in a 99.6% reduction in computational cost.
With our three strategies, the proposed approach can

compress the semantic label maps to ∼ 0.001 bpp on
average in the COCO-Stuff validation dataset, which is
approximately 160 times smaller than that of without our
strategies. We discuss the effect of each strategy in Sec. IV-F.
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FIGURE 4. (a) Architecture of our decoder. Given a quantized code ŷ and
label map s, the decoder reconstructs the image x̂. (b) The structure of the
SPADE ResBlock. (c) SPADE layer. The semantic feature is integrated into
the input feature through this layer.

⊙
and

⊕
indicate element-wise

product and sum, respectively.

E. DECODER
Given the transmitted quantized latent code ŷ and the down-
scaled semantic label map s, the decoder reconstructs an
image x̂. The architecture of the decoder is illustrated in
Fig. 4 (a). Our decoder’s foundational architecture is based
on [6], which incorporates simplified attention modules [6],
upsampling layers, and residual blocks, all configured with
192 channels. However, we replace the regular residual
blocks with SPADE residual blocks (Fig. 4 (b)) [54] to inject
semantic information.

Each SPADE residual block consists of two convolu-
tion layers and two SPADE layers (Fig. 4 (c)) [54]. The
SPADE layer transforms the input intermediate feature
map h ∈ RHh

×W h
×Ch into the modulated feature map

hout ∈ RHh
×W h

×Ch using the input semantic label map s,
where Hh,W h,Ch are the height, width, and the number of
the channels, respectively. Initially, channel-wise normaliza-
tion (Instance Normalization [61]) is applied to h. Then, two
3×3 convolutional layers gγ and gβ extract two feature maps
γ ∈ RHh

×W h
×Ch and β ∈ RHh

×W h
×Ch from s, respectively.

Finally, a pixel-wise affine transformation is applied to the
normalized h using γ and β, resulting in hout. Formally, each
pixel in hout is formulated as follows:

houti,j,c = βi,j,c

(
hi,j,c − µc

σc

)
+ γi,j,c (7)

µc =
1

HhW h

∑
i,j

hi,j,c (8)

σc =

√√√√ 1
HhW h

∑
i,j

(
(hi,j,c)2 − (µc)2

)
(9)

γ = gγ (s) (10)

β = gβ (s), (11)

where i, j, c denote the spatial and channel indices of the
feature map, and µc, σc represent the mean and standard
deviation of h at c-th channel, respectively. In this way,
the SPADE layer reflects semantic information in the
intermediate feature map in the decoder.

In contrast to SPADE [54] and other semantic-guided
image compression methods [10], [11], we use a 1

16
downscaled semantic label map. To seamlessly integrate this
downscaled semantic information into the decoding process,
we incorporate three additional up-sampling blocks within
our decoder architecture, as depicted in Fig. 4(a). These up-
sampling blocks scale the semantic features to match the
spatial resolution of the intermediate feature map h.
By applying the SPADE layer multiple times, the decoder

enriches the intermediate features according to the input label
map s at different scales, leading to semantically correct
textures. Finally, the reconstruction x̂ is obtained as an output
of the decoder.

F. DISCRIMINATOR
We adopt GAN [7] to improve the perceptual quality of
reconstructions. In GAN-based training, a discriminator D
learns to distinguish real images x from reconstructions
x̂, while the compression model learns to output images
that are indistinguishable from D. In our method, D takes
a corresponding semantic label map s as well as the real
or fake image as inputs, as shown in Fig. 2. Feeding a
semantic label map into the discriminator enables D to
evaluate the alignment between the input image and the
semantic label map, encouraging the compression model
to reconstruct an image with semantically appropriate
texture.

Moreover, we adopt a multi-scale patch discriminator,
which has three sub-discriminators D1,D2,D3 as in other
GAN-based methods [52], [54]. The sub-discriminators have
the same simple CNN-based architecture [52] but take
different scales of images as input. Specifically, while
D1 takes an image and its label map with a full resolution,
D2 and D3 take 1

2 and 1
4 down-scaled images and label

maps, respectively. Note that, since the discriminator is
used only in the training, we use full-resolution label maps
instead of the down-scaled ones employed in the decoder.
This approach enables a more nuanced discrimination
process, facilitating the generation of semantically coherent
reconstructions.

G. TRAINING AND LOSS FUNCTIONS.
In this section, we explain how to train our image com-
pression model and label map compressor. Since the label
maps are compressed in a lossless manner, this label map
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TABLE 1. Comparison of the baseline methods and our method, highlighting the key features and architectural differences between each. *Since the
original implementation of polygon-based label map compression is unavailable, an autoregressive model was used in our experiments.

compression does not affect the optimization process of
the image compression model. Consequently, the label map
compressor is not employed during the image compression
model’s training phase. Instead, we train the label map
compressor independently to minimize Rseg in (6).
For the training of the image compression model, we adopt

a two-stage training strategy as in [8] and [62]. In the first
stage, we train the encoder E , the entropy estimator C , and
the decoder G without GAN loss. Specifically, the model
is optimized to minimize the following rate-distortion loss
function:

min
E,C,G

L1st = E[R(ŷ, ẑ) + λ(1)
mseMSE(x, x̂)], (12)

where λ
(1)
mse is a hyperparameter, MSE denotes a Mean

Squared Error, and R is the approximate bitrate defined in (5).
The second stage is GAN-based training, where the

compression model and the discriminator D are trained
adversarially. For the training of the compression model,
we fix the weight of E and C and finetune only the decoder
G as in [8] and [62]. We use VGG perceptual loss Lvgg [63],
MSE loss, and adversarial loss LGadv. Since the encoder side
of the compression model is fixed, the rate term R is omitted
in this stage. This omission makes the optimization simpler,
leading to stable training. For the adversarial lossLGadv, we use
Least-square GAN (LSGAN) [64]. These loss functions for
the compression model are defined as follows:

min
G
L2nd = E[Lvgg(x, x̂) + λ(2)

mseMSE(x, x̂)

+ λadvLGadv(x̂, s)] (13)

LGadv(x̂, s) = (D(x̂, s) − 1)2, (14)

where λ
(2)
mse and λadv are hyperparameters. The discriminator

D is trained to minimize an adversarial loss LDadv:

min
D
LDadv(x, x̂, s) =

1
2

E[(D(x̂, s) − 0)2 + (D(x, s) − 1)2].

(15)

In this way, D learns to predict 1 for the original images and
0 for the reconstructed images.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) DATASET
We trained and evaluated our model using COCO [14] and
Cityscapes [15] datasets. TheCOCOdataset, contains various
images, including indoor and outdoor scenes, and comprises
183 classes. From these, we selected nine classes: animal,
building, mountain, person, plant, road, sky, water, and
others, as described in Sec. III-D. The Cityscapes dataset is
an urban scene dataset containing object categories like roads,
cars, and pedestrians. We used all 34 classes in this dataset.
During training, we randomly extracted 256 × 256 patches
from both the original images and their ground truth label
maps. For evaluation, label maps predicted by a pre-trained
DeepLabV3 model were used unless specified otherwise.

2) IMPLEMENTATION DETAILS
Following [6], we set the number of Gaussian mixtures
K = 3. We set the number of channels of the latent
code Cy = 192. For the first-stage training, we used dif-
ferent λ

(1)
mse values to obtain three models with varying

bitrates. Specifically, we used λ
(1)
mse = {0.4, 0.75, 1.5} and

λ
(1)
mse = {0.75, 1.5, 5.0} for COCO and Cityscapes datasets,

respectively. For the second-stage, we set λ
(2)
mse = 0.5 and

λadv = 0.05 for both datasets. Consistent settings for the
optimizer, learning rate, training steps, and batch size were
maintained across both stages. Specifically, the model was
trained for 500,000 steps using the Adam optimizer, with a
batch size of 8. The initial learning rate was 1×10−4, reduced
to 1 × 10−5 for the final 100,000 iterations.

3) BASELINE METHODS
We conducted a performance comparison of our method
against several baseline methods, summarized in Table 1. The
detailed descriptions are as follows:

• BPG [1] is a non-learning-based codec.
• Cheng-CVPR [6] is a state-of-the-art PSNR-oriented
compression method that does not incorporate GAN.

• FCC [8] is a GAN-based compression method designed
for extremely low-bit-rate compression. The funda-
mental architecture, including the encoder and entropy
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FIGURE 5. Original image and zoomed patches of the reconstructions of our method and existing methods on the COCO dataset. For each reconstruction,
the number represents the bitrate (bits per pixel) after compression. For Ours and JPD-SE-p2,3, we also report the bitrates of the label maps.

model, is the same as that of our model. The key dis-
tinctions lie in our use of semantic information through
SPADE ResBlocks and our label map compression
strategies, which are central to our approach.

• JPD-SE-p2 and -p3 [11] is the state-of-the-art
semantically-guided image compression method. It
employs semantically-guided post-processing to
improve the quality of decoded images. Since it
requires an external compression model, we used
Cheng-CVPR for this role. Consistent with the original

implementation, we use full-resolution label maps.
As the original polygon-based label map compression
algorithm is not publically available, we used an
autoregressive model to compress label maps losslessly.
The training of JPD-SE consists of three phases, with
the initial two phases leveraging GAN-based training
and the final phase minimizing only distortion loss to
mitigate artifacts. The final JPD-SE model is denoted as
JPD-SE-p3. However, the third phase tended to remove
desirable details at extremely low bitrates, leading us
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FIGURE 6. Original image and zoomed patches of the reconstructions of our method and existing methods on the Cityscapes dataset. The numbers
represent the bitrate. For Ours and JPD-SE-p2,3, we also report the bitrates of the label maps.

FIGURE 7. Results of the user study on (a) COCO and (b) Cityscapes
dataset, comparing our method with existing methods. Values in the bars
represent the user preference percentage for our method along with the
95% confidence interval.

to include results from the JPD-SE-p2 model, which
retains more detail.

For each method, including the baselines and ours, we trained
three distinct models targeting different bitrates.

4) EVALUATION METRICS
We evaluated compression methods using Learned Per-
ceptual Image Patch Similarity (LPIPS) [65], Fréchet
Inception Distance (FID) [66], Peak Signal-to-Noise Ratio
(PSNR), Multi-Scale Structural Similarity Index Measure
(MS-SSIM), and mean Intersection over Union (mIoU).
PSNR and MS-SSIM are distortion metrics that have been
shown to be inconsistent with human perceptual quality [67],
[68]. Consequently, our primary focus lies on the perceptual
metrics, LPIPS and FID, which better align with human
visual perception. Additionally, we employ mIoU to assess
the consistency between the output images and their semantic
classes. Specifically, we perform semantic segmentation on
the reconstructed images from each compressionmodel using
a pre-trained DeepLab v3 [59] and calculate the mIoU score
between the predicted label maps and the ground truth
label maps. A higher mIoU score indicates that the output
images contain proper textures that enable the pre-trained
segmentation model to accurately identify the semantic
classes. On the COCO dataset, we calculated mIoU for both
selected nine and all 183 classes, whereas we calculated
mIoU across all 34 classes on Cityscapes. Importantly, the
DeepLab V3 model was trained using only original images;
reconstructions were not included in the training data.

B. QUALITATIVE RESULTS
1) COCO
Fig. 5 shows the original image, semantic label map, along
with the reconstructions and corresponding bitrates for Ours
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FIGURE 8. Quantitative results on (a) COCO and (b) Cityscapes dataset. Our study primarily focuses on perceptual metrics, LPIPS and FID. PSNR and
MS-SSIM serve as distortion metrics, which are less indicative of human perception.

FIGURE 9. Segmentation results on reconstructions of each model. ‘‘-GT’’ represents that the ground truth label maps were used instead of predicted
label maps in the decoding process. ‘‘Original’’ represents mIoU scores of segmentation on the original (real) images.

and the baseline methods. We also report the bitrates of label
maps for semantically guided methods, i.e., Ours, JPD-SE-
p2, and JPD-SE-p3.
As shown in Fig. 5, the reconstructions of BPG, Cheng-

CVPR, and JPD-SE-p3 appear blurred. BPG also suffers
from noticeable block noise. These results demonstrate that
the non-GAN-based approaches fail to reconstruct detailed
textures. The reconstructions of FCC and JPD-SE-p2 are
not blurry; however, their textures often appear unnatural
due to artifacts. For example, the FCC’s reconstructions

in the second row of the first and second samples (the
surfer and cat images) have artifacts. Despite JPD-SE-p2’s
use of semantic information, it struggles with accurately
reconstructing complex textures, such as the splashing water
and cat fur in the first and second samples, respectively.
Furthermore, the high bitrates of the label maps in JPD-
SE-p2 result in higher total bitrates than those of Ours.
By contrast, the reconstructions produced by our method
have appropriate textures corresponding to their semantic
classes without blurriness and noise. Although the original

100066 VOLUME 12, 2024



S. Iwai et al.: Semantically-Guided Image Compression

FIGURE 10. Reconstructions of the proposed method using different label maps for decoding. The red boxes indicate that the original class is used in
decoding, while the blue boxes are reconstructed with different classes.

images are not reconstructed perfectly in this extremely low
bitrate setting, the proposed approach can synthesize realistic
textures lost through compression, leading to more visually
pleasing reconstructions than baselines.

2) CITYSCAPES
Fig. 6 shows the results of the Cityscapes dataset. As with the
results of the COCO dataset, BPG, Cheng-CVPR, and JPD-
SE-p3 suffer from blur. The reconstructions of FCC are not

blurry but do contain noise and artifacts. For example, the tree
in the first image and the road in the second image contain
noticeable artifacts. Meanwhile, despite using full-resolution
label maps, JPD-SE-p2 still fails to accurately maintain the
distinct boundaries, such as between the sign and the tree
in the first image. On the contrary, our method reconstructs
natural textures and content for both samples.

These results on two datasets demonstrate that the
proposed method effectively utilized semantic information
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in both domain-agnostic (COCO) and domain-specific
(Cityscapes) settings, leading to high-quality reconstructions
even at low bitrates.

C. USER STUDY
To compare the subjective quality of our method and
existing methods, we conducted a user study involving
20 participants. We showed users the original image and
two compressed images, a reconstruction of the proposed
method and one of the baseline methods. Then, the users
were asked to choose which reconstruction was preferable.
We used 20 pairs of randomly selected reconstructions from
each of the COCO and Cityscapes datasets.

Fig. 7 reports the results, where the numbers in the
bars represent the user preference rates of our method and
their 95% confidence interval. As shown in the figure,
our method outperformed other methods. In particular, our
method was preferred to BPG, Cheng-CVPR, and JPD-
SE-p3 due to their blurred reconstructions. Moreover, our
method outperformed FCC on both datasets. It validates
the effectiveness of explicit semantic guidance in enhancing
perceptual quality by generating textures that align more
closely with their semantic contexts. Finally, compared to
JPD-SE-p2, our method was preferred even though JPD-SE-
p2 has larger data sizes (0.069 bpp vs. 0.098 bpp on COCO
and 0.027 vs. 0.042 bpp on Cityscapes). By saving data size
on label maps with our strategies, the model can allocate
more bitrate to latent information, enhancing the detail and
fidelity of the reconstructed images. Consequently, our model
achieves superior reconstruction quality compared to JPD-
SE-p2, resulting in a high preference rate.

D. QUANTITATIVE RESULTS
Fig. 8 (a) and (b) show the quantitative results on the COCO
and Cityscapes datasets, respectively. For the semantically
guided methods, Ours, JPD-SE-p2, and -p3, the average
bitrate includes that of label maps.

RATE-DISTORTION-PERCEPTION PERFORMANCE
Fig. 8 (a) shows the quantitative results in different bitrates on
the COCO dataset. Ours outperforms other methods on the
perceptual metrics LPIPS and FID, which indicates that our
method reconstructed more realistic images than baselines.
Though Cheng-CVPR achieved the highest PSNR and MS-
SSIM, these metrics are known to be inconsistent with human
perceptual quality [67], [68]. Meanwhile, the performances
of JPD-SE-p2, -p3 are limited due to the large data size
required by using full-resolution label maps. This indicates
the effectiveness of our label map compression strategy,
which significantly reduced the data size of the label maps,
leading to higher compression performance.

Fig. 8 (b) illustrates the results on Cityscapes dataset.
Except for the lowest bitrate, our method outperformed
other methods in terms of FID and was competitive in
LPIPS and MS-SSIM against FCC. Since FID measures the
realism of images rather than reconstruction accuracy, these

TABLE 2. Results on lossless label map compression with different
configurations on COCO dataset. Bold in the ‘‘Configuration’’ columns
indicates that our strategy is used.

TABLE 3. Quantitative comparison between the proposed method and
Full label map model, a baseline using full-resolution label map,
on COCO dataset. The ‘‘input label map’’ column indicates whether
predicted or ground-truth label maps are used as input.

results indicate that the proposedmethod synthesized realistic
textures. Similar to COCO, the full-resolution label maps led
to the limited performance of JPD-SE-p2, -p3.

EVALUATION WITH PRE-TRAINED SEGMENTATION MODEL
Fig.9 (a) and (b) show the segmentation scores, mIoU,
using the pre-trained semantic segmentation model on
the reconstructions of each method on the COCO and
Cityscapes datasets, respectively. Higher scores indicate that
the reconstructed textures more accurately correspond to the
actual semantic classes. The notation ‘‘-GT’’ in Fig. 9 (e.g.,
Ours-GT) signifies the use of ground truth label maps instead
of predicted ones for decoding. This allows us to directly
assess the correspondence between the input label map and
the output texture, independent of prediction accuracy of the
input label map.

As shown in Fig. 9, itOurs achieved the highest mIoU
on both datasets, validating that the proposed method
successfully added textures corresponding to the label maps.
Moreover, even though our method used the selected nine
classes segmentation maps, it achieved higher mIoU on
COCO (all classes) than JPD-SE-p2. This suggests that our
method synthesized appropriate textures across a broad range
of classes, including those categorized as others. Further-
more, using ground-truth label maps as input improved mIoU
in both datasets. Since the mIoU score is calculated between
the predicted label maps of the reconstructions and ground-
truth ones, the improvement indicates that the proposed
method accurately reflects the input semantic information in
reconstructions.
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TABLE 4. Results of ablation study on COCO dataset. Among the baseline
models and Ours, the best results are highlighted in bold.

TABLE 5. Comparison of the number of parameters and average runtime
between our method and existing methods. The runtimes for the
encoding, decoding, and total processes on GPU and CPU for
256 × 256 patches on COCO dataset are displayed. *In JPD-SE [11], the
runtime for encoding and decoding the label map is excluded because
the implementation of its label map compression is unavailable.

E. ANALYZING THE EFFECTS OF SEMANTIC INFORMATION
To assess the impact of semantic information on texture syn-
thesis in output images, we conducted controlled experiments
on the COCO dataset by manipulating the input semantic
label map. Specifically, we used label maps where all pixels
were assigned to a single class and systematically varied
this class to generate different reconstructions. We changed
the semantic class and obtained eight distinct reconstructions
(i.e., all classes except the ‘‘others’’ class) for each sample.

The results are shown in Fig. 10. For example, while
the actual label of the image in the first row is animal,
the reconstructions with other class labels, such as building,
mountain, and person, are also displayed. In Fig. 10,
we observed clear distinctions in texture characteristics
corresponding to each input class. For example, in the top
row, given the input animal class, a fine hair-like texture
is generated. Conversely, when using the input class sky
instead of animal, the output becomes blurry like a cloud.
Moreover, in the eighth row, while wave-like patterns emerge
with the label water, this pattern does not appear when other
labels are used as the input. These results demonstrate that
our model learned the characteristics of each semantic class
and synthesized appropriate textures according to the input
label map. Additionally, these results show why our method
achieved high mIoU scores in Sec. IV-D, which measures the
alignment of the textures and actual semantic classes.

F. EVALUATION ON LABEL MAP COMPRESSION
To evaluate the effect of each of our label map compression
strategies, we performed lossless compression on label maps
with different numbers of classes (our reduced set of nine
classes and all the 183 classes), varying resolutions of the
label maps ( 1

16 down-scaled or full-resolution), and different
coding methods (our autoregressive compressor or PNG),

obtaining 23 = 8 results. Table 2 compares the average
bitrates on the COCO dataset across all settings. These results
illustrate that all of our strategies, downscaling the label map,
reducing the number of classes, and using the autoregressive
compressor, contribute to reducing the data size of the label
maps. Notably, by applying all three of our strategies (as
shown in the ‘‘Ours’’ column in the table), the average bitrate
is reduced to 0.0013 bpp, which is just 0.6% of the average
bitrate when none of our strategies are used. Furthermore,
given that the lowest average bitrate of our method on the
COCO dataset is 0.040 bpp, as shown in Fig. 8(a), the label
map occupies only 3.25% of the total data size on average.
This demonstrates that our label map compression strategy
effectively reduces the data size overhead introduced by
semantic information.

G. EFFECTS OF DOWNSCALED LABEL MAP
To investigate the influence of downscaled label maps on
compression performance, we compared our model with a
baseline model that is trained with full-resolution label maps.
This baseline, named ‘‘Full label map model’’, has nearly
the same architecture as ours, but it does not include an
up-sampling block for the label map shown in Fig. 4. The
Full label map model is trained so that the data size without
the label map is approximately the same as ours. Thus, the
Full label map model has a higher total bitrate than our
approach because the data sizes of the full-size label maps
are larger than those of downscaled ones. Table 3 shows the
segmentation performance on the reconstructions produced
by our method and the Full label map model, using DeepLab
V3 as the segmentation model. ‘‘Predicted’’ and ‘‘GT’’ in
the table represent that we used the predicted label maps
and ground truth label maps as inputs, respectively. The
results show that despite using a down-scaled label map,
the proposed method’s segmentation scores were nearly the
same as those of the Full label map model. This might be
attributed to two primary factors. First, the latent code ŷ
contains the information of the boundary between objects.
Hence, even if the boundary information of the label map
is lost through down-sampling, the decoder can reconstruct
the image correctly. Second, our extra up-sampling blocks
learn to expand the label map appropriately, compensating
for detailed information of the down-scaled label maps.

H. ABLATION STUDY
To evaluate the effectiveness of our image compression
method, we conducted ablation studies. We compared our
proposed model with the following three baselines:

• w/o GAN: in this configuration, the compression model
is trained without the second stage of the training.

• w/o VGG loss: in this configuration, we set the weight
of the VGG perceptual loss λvgg to 0 in Eq. (14).

• Blank label map: in this configuration, we feed the
blank semantic label map (i.e., all pixels are labeled as
‘‘others’’) into the SPADE layers during both training
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FIGURE 11. Qualitative comparison between our model and baseline
models in the ablation study.

and inference. In other words, while the model has
the same architecture as ours, it does not receive
semantic information. This setup aims to confirm that
our method’s performance gains are not merely due to
the extra parameters introduced by the SPADE layer.

The quantitative and qualitative results of the above
configurations are summarized in Table 4 and Fig. 11,
respectively. Table 4 shows that our method achieves the best
performance except on PSNR, which does not correlate to the
perceptual quality. While the w/o GAN achieves high PSNR,
it lags behind other configurations in perceptual metrics like
FID and LPIPS, highlighting its compromised perceptual
quality. Indeed, Fig. 11 shows that the reconstructions of w/o
GAN appear blurred.w/o VGG suffers from artifacts as shown
in the second row in Fig. 11, resulting in inferior LPIPS and
FID in Table 4. These results confirm the necessity of the
VGG loss in our model. Compared to the Blank label map,
Ours achieved better FID and LPIPS as well as higher mIoU.
It indicates that the semantic information helped the model to
reconstruct not only semantically accurate textures (measured
by mIoU) but also high-quality images (measured by FID and
LPIPS). In Fig. 11, the reconstructions of Blank label map
are not blurred; however, those of Ours have more detailed
textures reflecting the semantic category.

I. COMPUTATIONAL COMPLEXITY ANALYSIS
We evaluated the computational complexity of our method
compared to existingmethods. Table 5 presents the number of
parameters and runtimes on both CPU and GPU. For runtime
evaluation, we randomly selected 100 images from theCOCO
validation dataset and applied center-crop to obtain 256 ×

256 pixel patches. We then calculated the average runtime.
The experiments were conducted on amachine equipped with
an NVIDIA GeForce RTX 3080 GPU with CUDA version
11.6, an AMDRyzen 7 3700X 8-Core Processor, and running
Ubuntu 18.04.6 LTS. Due to the unavailability of the label
map compression strategy implementation in JPD-SE [11],
we could not measure its actual runtime. Consequently, the
table excludes the runtime of the label map compression

process for JPD-SE. The runtimes for our method include
both the encoding and decoding of label maps.

Regarding the number of parameters, Table 5 shows that
our model has more parameters than FCC [8] due to the
additional SPADE layers [54]. However, as demonstrated
in Sec. IV-H, the performance improvement does not merely
derive from the increased parameters. This was confirmed
by comparing our method with the ‘‘Blank label map’’
baseline. Meanwhile, JPD-SE [11] has about five times as
many parameters as our method due to its large decoder,
indicating that our method incorporates semantic information
with fewer parameters.

In terms of GPU runtime, our model was the slowest
among the three due to the autoregressive label map
compressor. Nevertheless, the difference between our method
and JPD-SE [11] is only about 20 ms. This is because using
a down-scaled label map significantly reduced the number of
processes fromH×W toH/16×W/16, resulting in a 99.6%
cost reduction. Moreover, on the CPU, JPD-SE [11] was
significantly slower than our method by a margin of 485 ms.
This is because its Pix2PixHD-based [52] post-processing in
the decoder demands heavy computation, resulting in slow
decoding without GPU acceleration.

V. CONCLUSION
In this study, we have proposed an image compression
method that explicitly uses semantic information through
semantic label maps. By leveraging semantic information,
the proposed method can reconstruct images with proper
textures even at low bitrates. Additionally, we introduced
three simple yet effective compression strategies. We verified
that each strategy contributed to reducing the data size,
leading to an average bitrate of the label maps of 0.001 bpp on
COCO dataset. Despite the small data size, our experimental
results demonstrate that semantic information effectively
enhances reconstruction quality, improving overall com-
pression performance. Moreover, compared to existing
GAN-based image compression methods, including the state-
of-the-art semantically guided method, our method achieves
superior performance in both quantitative evaluations and
user studies. Furthermore, we conducted experiments to
analyze the effect of semantic information by switching
the input semantic labels. The results show that our model
adaptively synthesized proper textures corresponding to the
input label map.

Our current limitation is the manual selection of nine
classes, which, while effective, may not be optimal. Future
work will explore algorithms for class selection to refine and
enhance our compression method.
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