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ABSTRACT Arthroscopic surgery is a primary technique for treating joint-related diseases, widely embraced
in clinical practice for its minimally invasive and precise nature. However, intraoperative bleeding often
generates blood mist, significantly impairing the surgeon’s field of view and necessitating prompt high-flow
drainage for clearance. Therefore, accurate bleeding detection and localization is a prerequisite for bloodmist
removal. This paper introduces a pixel-based feature extraction scheme aimed at detecting bleeding frames
in arthroscopic videos. In contrast to previous bleeding detection methods, this approach utilizes statistical
features based on composite color to analyze arthroscopic images and extract features. Then, a feature
selection strategy is proposed to select the best features from the extracted features.Subsequently, the selected
features are fused and then classified using an improved KNN classifier to differentiate between bleeding
and non-bleeding images. In addition to this, a post-processing scheme is introduced to enhance bleed frame
detection performance by exploiting temporal variations across consecutive frames in arthroscopic videos.
Lastly, a region-based detection algorithm is proposed for identifying bleeding zones within images depicting
bleeding. By conducting extensive experimental analysis on the arthroscopic image and video dataset. The
proposed method achieves accuracies of 95.8%, 97.3%, and 95.3% for bleed frame detection in terms
of accuracy, sensitivity, and specificity respectively. The results demonstrate that the proposed algorithm
effectively detects bleeding frames and bleeding zones in arthroscopic videos.

INDEX TERMS Arthroscopy surgery, bleeding detection, bleeding zones, composite color, statistical
features.

I. INTRODUCTION
Arthroscopy is a medical technique utilized for intra-articular
examination. It involves the insertion of a slender instrument
into the patients’ joint cavity for visualization. Arthro-
scopic surgery minimizes the need for extensive incisions
associated with conventional open procedures, thereby miti-
gating surgical trauma, pain, and recovery duration. Effective
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management of bleeding, especially during surgery, has a
significant impact on patient safety and recovery. Bleeding
can result in impaired visibility and compromise surgical
results, while excessive bleeding may pose significant health
risks to those patients. Hence, precise and prompt detection of
bleeding during arthroscopic procedures, coupled withmetic-
ulous hemostasis, significantly enhances surgical outcomes
and ensures patients safety.

Compared with the wireless capsule endoscopes, the two
kinds of arthroscopes employ endoscopic technology, and
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during the procedure, images or videos are captured by
an internal camera, which allows doctors to observe the
patients’ bodies in the real time. However, relying only on
the naked eye for a long period of time will inevitably lead
to large results errors. As a result, several attempts have
been undertaken in recent years by researchers from various
nations to identify bleeding in wireless capsule endoscopy
images or videos. Various algorithms and techniques have
been developed with the aim of improving the accuracy
and efficiency of testing. Those efforts have not only sig-
nificantly improved the quality of medical diagnosis, but
reduced the workload of doctors and advanced the develop-
ment of smart medical technologies. Charfi and Ansari [1]
and Pannu et al. [2] utilized the HSV color space along with
a supervised learning ensemble for the detection of bleeding
in endoscopic images respectively. Garcia-Martinez et al. [3]
proposed a computer vision algorithm for bleeding detec-
tion following the classification of pixels in each image
frame into bleeding and background pixels. Ghosh et al. [4],
[5], [6] respectively proposed a pixel-based overall feature
extraction method, a block-statistic color histogram-based
automatic video bleeding detection method as well as a deep
learning-based semantic segmentation method for detecting
bleeding zone in endoscopic images. In contrast, Kundu
and Fattah [7] and Pogorelov et al. [8] proposed a local
feature extraction method from pixels of interest in endo-
scopic images based on feature probability density function
fitting and an automated bleed detection technique based
on color and texture features respectively. For the classi-
fication purposes, this article in [9] proposed a machine
learning technique on the basis of supporting vector machines
in which all pixels in an image are classified as either
bleeding or non-bleeding pixels based on its color features.
Liaqat et al. [10] proposed a feature selection strategy based
on HSV color transform to extract geometric features from
CE images and classify bleeding images. Hajabdollahi et al.
[11] chose suitable color channels as inputs for the neural
network, employing both multilayer perceptron (MLP) and
convolutional neural network (CNN) for images classifica-
tion respectively. Caroppo et al. [12] introduced a novel
computer-aided diagnostic system designed for the automatic
classification of endoscopically acquired images into images
with lesions and lesion-free images. Rustam et al. [13] and
Usman et al. [14] developed a deep neural network and a
video frame classification model using SVM for classifying
bleeding frames in CE videos respectively. In addition to
that, in some studies in recent years, different researchers
have again taken different approaches on bleeding detection.
Rathnamala and Jenicka [15] proposed an automated sys-
tem based on Gaussian Mixture Model Hyperpixel for the
detection and segmentation of candidate zones for bleeding.
Caroppo et al. [16] proposed an approach utilizing three
pre-trained deep Convolutional Neural Networks for fea-
tures extraction. Subsequently, a supervisedmachine learning
algorithm is applied to classify the extracted features into
bleeding and non-bleeding images for bleeding detection.

Rani et al. [17] introduced a novel automated method for
bleeding detection in endoscopic images by integrating three
pre-trained CNNs: InceptionV3, ResNet152V2 and Incep-
tionResNetV2. Alam et al. [18] proposed a convolutional
neural network-based architecture that effectively leverages
region information and attention mechanisms for the classi-
fication of anomalies in endoscopic video data. Lu et al. [19]
presented a method for extracting and fusing multi-scale deep
features for detection and localization. Another paper in [20]
introduced a machine learning technique for detecting bleeds
and zones in endoscopy videos and ultimately localizing the
bleeding zones on the basis of appropriate fusionmethods and
thresholds.

In the previous studies, most of them have basically only
conducted various studies such as bleeding detection on
videos or images taken by capsule endoscopes, while there
are basically zero studies on bleeding detection under arthro-
scopic surgery, in order to solve the problem.This paper
presents a method to identify and precisely localize bleed-
ing zones using video footage during arthroscopic surgery.
Video identification enables real-time monitoring of bleeding
during surgery, allowing precise localization of the bleeding
zone using an algorithm. This approach enables surgeons to
gain a comprehensive understanding of bleeding dynamics
throughout their surgical procedures, facilitating informed
adjustments to surgical strategies and preparation of requisite
instruments and medications. The main contribution of this
paper is:

1) This paper proposes an automatic detection method for
bleeding frames and bleeding zones in arthroscopic videos,
which provides some assistance in accurately identifying
bleeding during arthroscopic surgery.

2) This paper presents an improved KNN algorithm, which
offers better accuracy for bleeding detection in arthroscopic
images compared to traditional KNN algorithms.

3) This paper introduces a post-processing algorithm
which significantly improves the classification performance
of arthroscopic images.

Overall, this study provides some insights into the identifi-
cation of bleeding during arthroscopic surgery and provides
a valuable reference for surgeons to accurately eliminate the
interference of bleeding in surgery. This largely reduces the
interference of bleeding to the surgeon during surgery, which
in turn shortens the operation time, reduces the difficulty of
the operation, and improves the safety and precision of the
operation.

II. METHODS
Figure 1 displays the suggested method’s flowchart. Firstly,
frame-by-frame extraction occurs from a provided arthro-
scopic video stream. Secondly, the extracted frames undergo
preprocessing, followed by feature extraction upon trans-
forming the RGB color space into the R/G color plane.
Subsequently, the extracted features are fused after feature
selection, and next, a KNN classifier is used to distinguish
between bleeding images and non-bleeding images. Lastly,
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FIGURE 1. Diagram showing the suggested methods work flow chart.

FIGURE 2. Example of preprocessing steps: (a) Original frame with
arthroscopic bleeding; (b), (e) After eliminating the rectangular black part;
(c), (f) The final preprocessed image following the removal of the black
regions in the corners; (d)Arthroscopic non-bleeding Original Frame.

in order to improve the performance of detection of bleed
frames, a post-processing operation is performed on the video
clip to detect the real bleed zones in the bleed frames on
the basis of the post-processing operation. The suggested
methods steps will all be explained in the sections that follow.
This research was approved by the Institutional review board
(IRB) of Ningbo Second Hospital, and a video dataset was
collected from arthroscopic surgeries performed at Ningbo
Second Hospital, all arthroscopic video data were selected by
surgeons, and a detailed description of the video dataset can
be found in Pare III.

A. PREPROCESSING
In each frame of arthroscopic videos, the central region
retains the most crucial information, thus becoming the focus
of this paper. The black area appearing around the central
region in each image does not carry any information related
to bleeding or non-bleeding. Therefore, the method proposed
in this paper, the removal of the black surrounding area the
central region of the image is first considered. Subsequently,
the further processing is conducted to obtain the final prepro-
cessed images after removing the black areas at the corners.
Figure 2 displays the successive outputs showing the removal
of the undesirable outside black zones.

B. TRANSFORMATION FROM RGB TO A COMPOSITE
PLANE
The RGB color space is the most often utilised of all the
color spaces since it is generally accepted that certain shades

FIGURE 3. The following color plane histograms are created from the
bleeding and non-bleeding zones: (a) Red in the bleeding zone; (c) Green
in the bleeding zone; (e) Blue in the bleeding zone; (b) Red in the
non-bleeding zone; (d) Green in the non-bleeding zone; and (f) Blue in
the non-bleeding zone.

of red correspond to the color of blood [21]. Nevertheless,
as bleeding zones in arthroscopic images manifest in varying
shades of red, direct consideration of RGB intensity values
for bleeding zone identification would yield unsatisfactory
results. In contrast to capsule endoscopy, illumination in
arthroscopic procedures is typically accomplished using a
light source and fiber optic system rather than relying on
a battery. This approach leads to illumination changes that
remain consistently over time. Consequently, there is no need
to account for changes in illumination causing intensity devi-
ations in the R, G, and B planes throughout the study. And
thus, the continuous light conditions avoided the effect on the
intensity deviation between the bleeding and non-bleeding
zones. This reduces the unfavourable conditions for the study
in this paper. In addition, consistent lighting conditions also
help to improve image quality, which makes the detection
of bleed zones more reliable. Due to the consistency of the
lighting conditions, this provides a more ideal environment
for the study in this paper, and by ensuring the consistency of
the light source, we will be able to exclude external variables
caused by changes in lighting, which makes our detection
results more stable and reliable.

The different pixel intensity distributions between the
bleeding and non-bleeding zones are examined. Figure 3
displays histograms illustrating intensity levels in the R,
G and B planes of arthroscopic video images corresponding

VOLUME 12, 2024 102347



Z. Liu et al.: Research on Automatic Bleeding Detection in Arthroscopic Videos

FIGURE 4. Histogram derived from zones of bleeding and non-bleeding in
various ratio planes: The bleeding zone is defined as follows: (a) The blue
to red ratio (B/R); (c) The red to green ratio (R/G); (e) The green to blue
ratio (G/B); (b) The blue to red ratio (B/R) In the non-bleeding zone;
(d) The red to green ratio (G/B) In the non-bleeding zone; (f) The green to
blue ratio (G/B) In the non-bleeding zone.

with the respective zones. This figure clearly indicates that
histograms obtainedwith a single plane results in a significant
overlap between bleeding and non-bleeding categories in
arthroscopic video images, posing a considerable challenge
to the classification task. This overlap suggests that relying
solely on any of the three RGB color planes to distinguish
between bleeding and non-bleeding zones is not persuasive
enough, as it does not capture that ample information to
accurately distinguish those two types of zones.

To further characterize the trend of pixel values, three
composite planes B/R, R/G andG/B are evaluated.With these
assessments, we hope to find more effective ways to differ-
entiate bleeding and non-bleeding zones. Figure 4 distinctly
illustrates the absence of overlaps in red-to-green intensities
of bleeding and non-bleeding pixels, which suggests that it
is feasible to use red-green intensity ratios to distinguish
these two types of zones. While the significant overlaps
are observed in the blue-to-red and green-to-blue composite
planes. Consequently, this paper employs a composite plane
comprising pixel intensity ratios from the red-to-green plane
for the features extraction. The R/G composite plane is cal-
culated as:

P(x, y) =
R(x, y)
G(x, y)

(1)

TABLE 1. Accuracy obtained for different combinations of features.

where P(x, y) denotes the intensity value of the composite
plane at position (x, y) in the image, R(x, y) denotes the
intensity value of the red channel at position (x, y) in the
image, and G(x, y) denotes the intensity value of the green
channel at position (x, y) in the image.

C. EXTRACTING STATISTICAL FEATURES FROM R/G
DOMAIN
Under the stable lighting conditions unaffected by tempo-
ral changes, this paper does not directly consider the RGB
color space, it employs the R/G composite plane instead.
With this conversion, we can process the color information
in an image more efficiently. By obtaining the statistical
features from the image and testing them continuously, the
optimal features combination is found, resulting in a more
accurate way to distinguish images with and without bleed-
ing. In the process, this paper detailedly analyses the impact
of multiple feature combinations on classification accuracy.
Table 1 shows the accuracy obtained with the combinations
of features selected in this paper, which can be seen from
Table 1 that the best accuracy can be achieved by utiliz-
ing two low-order and two high-order statistical features for
feature extraction, therefore, the mean, variance, skewness
and kurtosis are selected for feature extraction in this paper.
Mean and variance as low-order statistical features provide
basic distributional information; skewness and kurtosis as
higher-order statistical features capture the asymmetry and
spikiness of the distribution, thus, those features are very
helpful in distinguishing bleeding and non-bleeding images.

1) MEAN
For a given collection of values, the mean is their arithmetic
average. The mean is defined as the sum of all elements
divided by the total number of elements. In the images, the
mean is defined as the sum of the pixel intensities divided
by the total number of pixels, and it describes the overall
brightness or color distribution of the images. If AB was the
size of the Arthroscopic image and I (x, y) was the definition
of R to G pixel intensity, then the mean would be computed
as follows:

I =
1
AB

∑A

x=1

∑B

y=1
I (x, y) (2)

2) VARIANCE
Variance constitutes a statistical indicator employed to assess
the extent of data dispersion within a dataset. The variance
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measures the degree of dispersion of the pixel values, that is
the degree of variation in the pixel values. The formula for
computing the variance of image intensity is as follows:

σ 2
=

1
AB

∑A

x=1

∑B

y=1
[I (x, y) − I ]2 (3)

where I is the mean defined in equation (2) and I (x, y) is the
R to G pixel intensity ratio.

3) SKEWNESS
Skewness is utilized to characterize the asymmetry of data
distribution, determining whether the data exhibits a left or
right skew. In the context of the images features extrac-
tion, Skewness measures the symmetry of the distribution of
images pixel values. Skewness is not usually applied directly
at the pixel level but is more commonly employed to describe
the distribution characteristics of pixel values within a spe-
cific region. The definition of skewness is:

γ =
1
AB

∑A

x=1

∑B

y=1
[
I (x, y) − I

σ
]3 (4)

where σ is defined as:

σ =

√
1
AB

∑A

x=1

∑B

y=1
(I (x, y) − I )2 (5)

where I is the mean defined in (2) and I (x, y) is the R to G
pixel intensity ratio. σ is the standard deviation of the image.

4) KURTOSIS
Kurtosis is utilized to describe the extent of tail weightiness in
a probability distribution or dataset, reflecting the peak char-
acteristics of the data distribution. In the context of images
features extraction, kurtosis is not usually applied directly at
the pixel level but is employed to characterize the distribution
features of pixel values within a specific region. Kurtosis
measures the peak state of the distribution of image pixel
values, with high kurtosis indicating a steeper distribution
and low kurtosis indicating a gentler distribution. The formal
definition of kurtosis is as follows:

β =
1
AB

∑A

x=1

∑B

y=1
[
I (x, y) − I

σ
]4 − 3 (6)

Nevertheless, in kurtosis calculations, µ4 is generally
employed to ascertain whether the data distribution exhibits
greater sharpness or flatness. Hence, kurtosis computations
typically utilize the value of µ4 for representation. This is
defined as:

µ4 =
1
AB

∑A

x=1

∑B

y=1
[I (x, y) − I ]4 (7)

Therefore, according to the fourth central moment, kurtosis
is defined as:

β =
µ4

σ 4 (8)

where I is the mean defined in (2) and I (x, y) is the R to G
pixel intensity ratio. µ4 is the fourth central moment. σ is the
standard deviation of the image.

TABLE 2. Feature selection strategy.

FIGURE 5. Schematic diagram of the proposed method.

D. FEATURE SELECTION
After extracting the four statistical measures of mean,
variance, skewness and kurtosis from the images, this
paper adopts a simple and fast method, namely the Filter
Method(FM), to select the extracted features [22]. First, the
thresholds of mean value, variance, skewness and kurtosis
are respectively set as θmean, θvar , θskew, θkurt respectively.
These thresholds were selected based on preliminary experi-
mental results and experience.Then, the calculated statistical
measures are compared with the set thresholds, For some
statistics, if the value exceeded the set threshold, then the
feature would be considered to be important in distinguish-
ing bleeding and non-bleeding images and was retained for
the subsequent classification process. Conversely, if some
statistics did not reach the threshold, the feature would be
considered to contribute less to the classification and could
be ignored. And the feature selection strategy was as follows:

According to the set threshold conditions, after features
selection, some useless features are removed and useful fea-
tures are retained for the next step of feature fusion. Figure 5
illustrates the process of feature selection and feature fusion.

E. FEATURE FUSION
In order to eliminate the dimensional differences between
different features, this paper first uses feature standardization
to make them fuse on the same scale. The normalisation rule
is as follows, after feature selection, the selected features are
combined into a feature vector and then all the feature vectors
are combined into a feature matrix X as follows:

X =


I1 σ 2

1 γ1 β1

I2 σ 2
2 γ2 β2

...
...

...
...

In σ 2
n γn βn

 (9)

Then after calculating the mean and standard deviation of
each feature column, each feature is normalised using the
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following normalisation formula:

x ′′
=
x − I

σ
(10)

The normalisation results in a new feature matrix X ′ as
follows:

X ′
=


I
′

1 σ ′2
1 γ ′

1 β ′

1
I
′

2 σ ′2
2 γ ′

2 β ′

2
...

...
...

...

I
′

n σ ′2
n γ ′

n β ′
n

 (11)

where µ′′ denote the standardised mean, variance, skewness
and kurtosis.

After standardizing the features, this paper selects a feature
concatenation algorithm to integrate the features together.
The feature vector after integration using the feature concate-
nation algorithm can be expressed as follows:

xconcat = [I
′

1×n, σ
′

1×n, γ
′

1×n, β
′

1×n] (12)

The features are fused and then used for classification in
the next step of the KNN algorithm, which is described in
detail in the next section.

F. K-NEAREST NEIGHBOR (KNN) CLASSIFIER
The K-Nearest Neighbors (KNN) classifier is a supervised
learning algorithm tailored to address classification prob-
lems [23]. Its operational principle is straightforward and
intuitive, when encountering an unlabeled data sample, the
classifier computes the distance or similarity between the
sample and every labeled data point in the dataset. Sub-
sequently, it identifies the K nearest labeled samples. The
KNN classifier then ascertains the category of the unlabeled
sample by conducting a majority of votes among these K
nearest neighbors. When K is set to 1, the sample’s category
is directly determined by its closest neighbors. In the KNN
classifier, identifying an appropriate K value is often cru-
cial for achieving optimal classification performance. In this
paper, a KNN improvement algorithm for weighted K nearest
neighbours is proposed and the method flow is shown in
Figure 6. In the method proposed in this paper, the fused
feature vectors are first divided into training and test sets,
and then the distance between it and each training sample is
calculated for each test sample, and here the distance uses the
Euclidean distance [24]. The Euclidean distance is defined as:

d =

√∑n

i=1
(xi − yi)2 (13)

where n is the number of features, xi and yi denote the
i-th eigenvalue of the two data points in the feature space
respectively.

Subsequently, the nearest k neighbours are selected accord-
ing to the distance andweight of each neighbour is calculated,
next, Next, the weight is voted, the weighted sum of each cat-
egory is calculated, and the categorywith the largest weighted
sum is assigned to the test sample. Finally, the prediction

FIGURE 6. Improved KNN algorithm.

and classification results of the test samples are output. This
paper calculates the weight of each neighbor using the inverse
distance weight, which is defined as:

wi =
1
di

(14)

where di is the distance to the i-th neighbour.

G. VIDEO POST-PROCESSING
In the preceding section, the KNN classifier was delineated.
This work uses a post-processing technique to improve the
recognition accuracy after the KNN classifier has classi-
fied images as bleeding or non-bleeding. Upon scrutinizing
arthroscopic bleeding and non-bleeding videos, we observed
that isolated bleeding or non-bleeding frames rarely appear
in the videos. To process the test frame, a specific test frame
is first selected. Then, based on this frame, the two preceding
frames and the two subsequent frames are chosen to form an
investigation area. The total size of this investigative area is
set to include five frames. Following this, trustworthiness-
weighted scores are assigned to each frame, indicating the
level of trust or confidence in that frame. Ultimately, these
trust scores influence the final decision.The trustworthiness
score is defined as:

T = w1 · C + w2 · D (15)

where w1 is a parameter used to weigh the confidence of
the classifier, w2 is a parameter used to weigh the temporal
distance, and w1 + w2 = 1. C is the confidence score of the
classification result provided by the classifier for each frame,
the probability value of the classifier output is taken directly
as C ,and D is calculated based on the temporal distance
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between the test frame and the frames in the investigated
area.The formula is:

D = abs(ntest − nsurvey) (16)

where ntest is the frame number of the test frame and nsurvey
is the frame number of the frame in the survey area.

The proposed post-processing algorithm is described as
follows:

1) For each test frame, trust weighting is performed to
assign a trust score to the frame, which represents the degree
of trust of the classification results of the frame.

2) When forming the investigation area, consider the trust
score and the temporal order of the frames and use the trust
score and the temporal order to weight the contribution of
each frame in the investigated area.

3) When considering the labels of the majority of frames,
frames with higher trust scores are deemed to be more
authoritative. Test frame labels should be modified to reflect
information of those more authoritative frames if the majority
of frames have the opposite labels to the test frame’s but those
frames with higher trust scores are consistent with the test
frame’s label.

III. RESULTS AND ANALYSIS
In order to demonstrate how well the suggested method
works to identify bleeding frames and bleeding zones in
arthroscopy videos, this paper conducts extensive experi-
ments using videos from arthroscopic surgery performed on
eight different patients. Four of the videos are annotated as
containing bleeding, while the remaining four are labeled
as non-bleeding. Expert doctors manually annotated bleed-
ing and non-bleeding images in the videos. The experiment
presented bleeding detection results for 2500 arthroscopic
video frames, comprising 1850 bleeding frames and 650 non-
bleeding frames, all extracted from these eight videos. For
classification purposes, K-Nearest Neighbors (KNN) classi-
fiers before and after improvement were used respectively.
In KNN classifier, statistical features are first fused and then
arthroscopic bleeding and non-bleeding images are classify.
To assess the performance of the proposed approach, 80%
of the images are randomly selected for training and the
remaining 20% of the images are used for testing of the
KNN classifier. furthermore a comparison of the suggested
method’s performance at different K values for the bleeding
frame classification was conducted.

A. BLEEDING FRAME DETECTION CRITERIA
To assess the efficacy of the proposed methodology in arthro-
scopic videos bleeding detection, the criteria for evaluation
include accuracy, sensitivity, and specificity [25].The calcu-
lation formulas are as follows [26]:

Sensitivity =

∑
TB∑

TB +
∑
TNB

(17)

Specificity =

∑
TNB∑

TNB +
∑
FB

(18)

FIGURE 7. Evaluation of bleeding frame recognition accuracy using KNN
classifiers before and after improvement and different number of clusters.

Accuracy =

∑
TB +

∑
TNB∑

TB +
∑
FNB +

∑
TNB +

∑
FB

(19)

whereas TB indicates when a bleeding image is cor-
rectly detected as a bleeding image; TNB indicates when a
non-bleeding image is correctly detected as a non-bleeding
image; FB indicates when a non-bleeding image is mistak-
enly detected as a bleeding image; and FNB indicates when
a bleeding image is mistakenly detected as a non-bleeding
image.

Sensitivity is a measure of the accuracy of bleeding frame
detection. In the context of bleeding frame detection, sensi-
tivity plays the most critical role because it assesses the test’s
ability to detect actual bleeding situations, and it is always
the primary focus of research in bleeding frame detection.
Accuracy reflects the overall correctness of detecting both
true bleeding and non-bleeding frames, while specificity indi-
cates the accuracy of identifying non-bleeding images. For
these two performance metrics, higher values indicate better
performance.

B. BLEEDING FRAME DETECTION
To determine the optimal value of k and evaluate the clas-
sification performance of the improved KNN classifier, this
paper conducts experiments using both the traditional KNN
classifier and the improved KNN classifier. Multiple exper-
iments are conducted with different values of k, ranging
from 10 to 100 with intervals of 10, totaling 10 experiments.
Figure 7 displays the classification accuracy of arthroscopic
video images under different values of k for both the tradi-
tional KNN classifier and the improved KNN classifier.

From Figure 7, it is evident that the detection performance
is optimal when using the improved KNN classifier with
k = 60. Therefore, this paper ultimately selects the improved
KNNclassifier and conducts experiments onmultiple consec-
utive arthroscopic videos with the k value set to 60.Table 3
below presents the obtained sensitivity, specificity, and
accuracy.

In addition to this, In order to test the classification per-
formance under different weights, the weights of and are
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TABLE 3. Classification Result With Improved KNN Classifier.

FIGURE 8. Classification performance of classifier confidence and
temporal distance under different parameters. X-axis is the classifier
confidence parameter.

first determined by a training-based approach, and then
the classification performance of the classifier confidence
and time distance are tested under different weights. The
figure 8 displays the accuracy, sensitivity, and specificity
under different weights. Figure 8 illustrates the effective per-
formance of the proposed post-processing scheme in bleeding
frame detection. The best classification performance is not
achieved when the weight of classifier confidence is set
to 0 or 1. The highest classification accuracy of 95.8% is
attained when the weight is set to 0.6. This outcome sug-
gests that the post-processing scheme proposed in this paper
offers the improved classification of arthroscopic bleeding
and non-bleeding images. To assess the effectiveness of
the post-processing scheme proposed in this paper for the
detection of arthroscopic video bleed frames, the detection
performance is compared in both cases without andwith post-
processing, and the results are presented in Figure 9. The
figure reveals that the post-processing scheme proposed in
this paper enhances accuracy, sensitivity, and specificity for
the detection of bleed frames in arthroscopic videos.

C. BLEEDING ZONE DETECTION
The findings of bleeding zone identification are displayed
in this section’s Figure 10. The image from the beginning
is shown in the first row, and the identified bleed zone is
shown in the second one. The images show that the bleed-
ing zone detection used in our suggested approach works
effectively.

FIGURE 9. Comparison of overall performance with and without
reprocess.

FIGURE 10. Partial bleeding zones detection results.

TABLE 4. Performance comparison of different methods.

D. COMPARISON OF ALGORITHMS
In order to show the performance of the algorithm proposed in
this paper in terms of bleeding detection, it is quantitatively
compared with the algorithm proposed by Ghosh et al. [6],
[21], Okamoto et al. [9], Liaqat et al. [10], Rain et al. [17]
and Vajravelu et al. [20]. The comparison results are shown
in Table 4. The comparison shows that the algorithm proposed
in this paper performs much better in bleeding detection.

IV. DISCUSSION
For the existing arthroscopic surgical process exists in the
bleeding easily cause blood mist seriously affect the doctor’s
field of vision problem. This paper proposes an automatic
bleeding visual detection system for arthroscopic video using
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composite color and statistical features. The system is able to
accurately detect bleeding and identify bleeding zones during
surgery, which provides a prerequisite for the doctor to locate
and clean the bleeding zone in time and accurately during
surgery. This largely reduces the interference of bleeding to
the surgeon during surgery, which in turn shortens the surgery
time, reduces the difficulty of the surgery, and improves the
safety and accuracy of the surgery.

In this paper, the R/G plane is utilized instead of a
single plane within the RGB image, and, as depicted in
Figure 4, the histogram overlap between the bleeding and
non-bleeding zones is nearly zero. Thus, feature extrac-
tion within the R/G plane can yield enhanced separation
between the bleeding and non-bleeding images. Utilizing dif-
ferent statistical features for extraction within this composite
plane maximizes classification accuracy through the applica-
tion of four statistical measures: mean, variance, skewness
and kurtosis. To enhance the classification performance,
this paper employs a post-processing algorithm, effectively
enhancing the classification accuracy of the system. Finally,
to detect bleeding zones, this paper proposes a region-based
detection algorithm for identifying bleeding zones in the
images.

The experimental results demonstrate that employing
the post-processing algorithm for classifying bleeding and
non-bleeding images achieved an accuracy of 95.8%, sur-
passing the performance without post-processing by 2.2%;
the sensitivity reached 97.3%, an improvement of 1.5%;
and the specificity reached 95.3%, a gain of 0.5%. This
suggests that the post-processing algorithm proposed in this
paper can significantly enhance the classification perfor-
mance. Furthermore, the region detection algorithm proposed
in this paper also yields satisfactory results for bleeding zone
detection. However, while presenting the advantages of the
system for bleed detection in arthroscopic images, it is impor-
tant to recognise the limitations of this study. Because the
human joint is an extremely complex and diverse structure,
although the system has demonstrated good performance,
its performance under different arthroscopic surgical sites
remains an area for further research. Therefore, one of the
biggest limitations is whether the system remains versatile
under arthroscopic surgery at different sites. In addition to
this, bleeding during surgery is influenced by a number of
factors, including the patient’s age, gender, physical con-
dition and surgical site. All of these individualised factors
can lead to different situations during surgery, and it is
clear that the system proposed in this paper cannot cover
all situations. Since most of the research data in this paper
were derived from specific joint sites, this may lead to a
lack of diversity in the data. Therefore, in future studies,
in addition to incorporating all possible influencing factors
into the optimisation of the system parameters to estab-
lish a more comprehensive bleeding detection system for
arthroscopic surgery, the ability of the system to detect bleed-
ing under different types of joint images should also be
verified.

V. CONCLUSION
This paper presents a method for detecting bleed frames and
bleed zones in arthroscopic videos. Extensive experimental
studies have demonstrated that the proposed method achieves
high performance in terms of sensitivity, specificity, and
accuracy. Rather than directly utilizing the RGB color space
inherent to the image, the proposed method extracts features
from a given arthroscopic image by employing the red-green
intensity ratio as a composite plane, subsequently using
different statistical features within this composite plane.
To enhance the accuracy of classifying bleeding and non-
bleeding images, the post-processing algorithm proposed in
this paper significantly improves the detection performance
of bleeding frames. Additionally, the automatic detection of
bleeding zones proposed in this paper also achieves satis-
factory results for localizing the bleeding zones. Thus, the
scheme proposed in this paper holds promise in identifying
bleeding frames and detecting bleed zones from arthroscopic
videos.

This paper has contributed insights into bleeding detec-
tion during arthroscopic surgery. Future researches could
explore further avenues to improve the accuracy of bleeding
detection during arthroscopic surgery based on this study’s
findings. Simultaneously, efforts are being made to consider
multiple individualized influences to enhance the system’s
robustness and reliability in diverse complex surgical sce-
narios. In conclusion, this paper provides valuable insights
into identifying bleeding during arthroscopic surgery, serv-
ing as a useful reference for surgeons to make accurate
judgments during surgery, thereby enhancing surgical safety.
Additionally, it indirectly assists surgeons in bleeding control
and treatment decision-making, thereby potentially improv-
ing the success rate of surgical treatments and patients
recovery.
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