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ABSTRACT Peripheral Sensory Neuropathy (PSN) affects a large proportion of individuals suffering
from type 2 diabetes. To avoid ulceration and other damage to the patient’s feet, regular PSN testing, and
assessment must be undertaken. Currently, the Semmes-Weinstein Monofilament Examination (SWME) is
one of the most widely accepted techniques for PSN assessment. This process is time-consuming, requires
special training, and is prone to errors. The number of type 2 diabetes sufferers globally is growing
at alarming rates with healthcare workers under enormous pressure to continue to provide one-to-one
regular care. In order to reduce the burden on existing services whilst providing the necessary care to
patients, automated approaches for PSN detection provide many advantages. Importantly, with respect to
an automated SWME method, there will be areas on the plantar surface where the SWM probe should not
be applied i.e., areas with lesions or suspect regions. The research presented in this manuscript conducted
a comprehensive analysis of different feature sets and classifiers for the task of lesion classification.
Three distinct feature sets Local Binary Pattern (LBP), Mel Frequency Cepstral Coefficients (MFCC), and
Scale-Invariant Feature Transform (SIFT)were evaluated across various classifiers, including Support Vector
Machine (SVM),Multi-layer Perceptron (MLP), RandomForest (RF), Naïve Bayes (NB), andXGBoost. The
results revealed nuanced performances across the combinations of feature sets and classifiers. While each
feature set demonstrated strengths, the NB classifier applied to the LBP feature set emerged as the most
notable performer with an accuracy score of 100%. This combination achieved perfect accuracy, precision,
recall, and F1-score metrics, showcasing its robustness in accurately classifying lesion instances. The 5-fold
cross-validation results underscored the stability of NB on the LBP feature set, with a negligible standard
deviation, affirming its consistent performance across different data subsets. Additionally, the computational
time complexity of 0.91 seconds highlighted its efficiency, making NB on the LBP feature set a practical
and reliable choice for real-world applications. Statistical analysis using the one-way ANOVA test revealed
significant differences in classifier performance across feature sets, with MFCC resulting in significantly
lower accuracy compared to LBP and SIFT, which showed similar performance. The Tukey HSD post-hoc
test confirmed these findings, highlighting the crucial role of feature set selection in classifier effectiveness.

INDEX TERMS Plantar sensory neuropathy, diabetes, Semmes–Weinsteinmonofilament, image processing,
plantar surface, lesion, LBP, MFCC, genetic algorithm, SVM, MLP.
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I. INTRODUCTION
Diabetes Mellitus is a persistent medical condition that
presently affects over 11.3% of the developed world, and its
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prevalence is on the rise in developing nations like China
and India [1]. Diabetic peripheral neuropathy affects nearly
50% of adults with diabetes and can lead to foot ulcers
and amputations, requiring aggressive screening and man-
agement [2]. In Europe, the number of registered individuals
with diabetes is approximately 59.8 million, with a majority
of over 80% presenting Type 2 diabetes [1]. Approximately
50% of the aforementioned population is comprised of
individuals aged 60 years and above [1]. According to
sources, the effective handling of diabetes and its associated
complications necessitated nearly 10% of the complete
budget allocated to the National Health Service (NHS) in
the United Kingdom (UK) [3]. As per the 2017 report
published by the International Diabetes Federation (IDF), the
global population of adults afflicted with diabetes amounts to
463million individuals [1]. According to a reliable source [1],
it is projected that the number of individuals impacted by
this phenomenon will reach 700 million by the year 2045,
representing a 48% surge. According to recent data, the
total amount of health expenditure in England during the
2018-19 fiscal year amounted to £129 billion, while Scotland
and Wales reported health expenditures of approximately
£13 billion and £7 billion, respectively [4]. The expenses
related to medication or general practitioner and community
care are not incorporated. The study did not take into account
indirect consequences, such as sick leave and the requirement
for unpaid family care [4].
The charity provided additional approximations regarding

the expenses linked to managing diabetes. The estimated
cost of diabetes in the UK, as reported by Diabetes UK,
is £10 billion annually. However, it should be noted that this
figure has not been revised in recent years. According to
Diabetes.co.uk, a prominent information and support group,
an estimated sum of £14 billion was calculated for England
and Wales in 2012. That comprises an assumption of £1
billion for yearly pharmaceutical expenses and a projection
for expenses related to social care. As of now, there has been
no computation conducted regarding the escalation rate of the
yearly National Health Service expenditures [4]. Peripheral
sensory neuropathy (PSN) is a prevalent complication of
diabetes mellitus. It has been observed that approximately
60% of individuals diagnosed with Type 2 diabetes will
develop this condition within a decade of initial diagno-
sis. The ailment typically impacts the distal appendages
of the anatomy, frequently commencing with paraesthesia
of the digits and subsequently plantar surface of the lower
limbs. The somatosensory expression of peripheral sensory
neuropathy (PSN) is widely recognized as a significant
contributor to the pathogenesis of foot ulcers. If not subjected
to vigilant monitoring and appropriate medical intervention,
lower limb amputation is frequently recommended [5].
Individuals afflicted with this condition experience a decline
in their physical mobility, leading to a significant impact on
their overall well-being and quality of life. The maintenance
of healthy feet is a crucial aspect for individuals with type 2
diabetes, as it facilitates an active and healthy lifestyle and

mitigates the risk of falls, particularly among the elderly
population.

This research, recognizing the imperative to address
diabetes-related complications, particularly those affecting
the feet, delves into the realm of automated diagnostics
using machine learning and image processing. The moti-
vation arises from the potential to revolutionize podiatric
diagnostics, presenting an innovative approach to decode
the subtleties hidden beneath the soles of individuals with
diabetes. As we navigate through this interdisciplinary
landscape, a captivating narrative unfolds – an algorithmic
symphony deciphering the ballet of pixels, distinguishing
between normalcy and abnormalities. It’s not merely a
technical pursuit; it’s a transformative quest where pixels
metamorphose into diagnosticians, marking a leap towards
a healthcare future intricately connected with the very
foundations we walk upon. This research makes several
significant contributions to the field which are:

• One of the key contributions of this research lies in
the ethical sourcing of lesion images from the internet.
The collaboration with a podiatrist clinician ensured that
all selected plantar lesion images were validated by a
medical professional, adding credibility and reliability
to the dataset. This meticulous process ensures that the
research aligns with ethical standards and guarantees the
accuracy and authenticity of the lesion images used in
the study.

• The study systematically evaluated three distinct feature
sets—Local Binary Pattern (LBP), Mel Frequency
Cepstral Coefficients (MFCC), and Scale-Invariant
Feature Transform (SIFT)—in the context of lesion
classification. This analysis provides insights into the
effectiveness of different feature representations for
capturing relevant information.

• The research comprehensively compared the perfor-
mance of five classifiers—Support Vector Machine
(SVM), Multi-layer Perceptron (MLP), Random Forest
(RF), Naïve Bayes (NB), and XGBoost—across mul-
tiple feature sets. This comparative analysis enhances
the understanding of how different classifiers interact
with specific feature sets and their suitability for lesion
classification.

• The research considered not only classification perfor-
mance but also computational time complexity, address-
ing the practical viability of the proposed models in
real-world applications. This dual-focus approach con-
tributes to the development of efficient and deployable
systems for lesion classification, where both accuracy
and computational efficiency are crucial considerations.

This paper is further divided into several subsections:
Section II contains the literature review on the problem
statement, Section III presents the methodology for the
proposed approach. Section IV provides information on data
models, and Section V describes the experimental setup.
The results and discussion on experiments are presented in
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Section VI, and finally, Section VII presents the conclusion
about the study.

II. LITERATURE REVIEW
According to research findings, the presence of neuropathy,
which is indicative of an elevated risk of ulceration, is sug-
gested by the inability to perceive a 10g force (equivalent
to 98mN) applied to key weight-bearing points. At present,
the Semmes-Weinstein Monofilament (SWM), an extruded
homopolymer, is utilized by a skilled clinician to administer
pressure at selected points on the patient’s foot for testing
purposes. The monofilament has been engineered to exhibit
a deflection of 10mm upon the application of a force of
10g (98mN). At this juncture, the patient is expected to
acknowledge their ability or inability to perceive the presence
of the probe in the relevant area. The procedure is iterated
for a predetermined set of locations on each foot that have
been mutually established. The SWME manual technique,
despite its widespread usage, is regarded as being arduous,
demanding in terms of labor, challenging to maintain
consistency, and susceptible to experimenter bias [6]. The
authors have previously documented their development of an
automated device designed to replicate the SWME method.
This information can be found in their published work [7].
According to reference [8], the system has the potential to
eliminate the requirement of a skilled professional’s physical
presence, thereby enabling individuals to conduct frequent
self-assessments.

In order for an automated SWME testing technique to
gain widespread adoption, it is imperative to implement
measures that enable the system to automatically identify and
aggregate regions of interest, such as lesions, blisters, and
open wounds, where automated probing is contraindicated.
This paper centers on the extraction of embedded software
and the utilization of machine learning techniques to prevent
the occurrence of automated probe applications on pressure
points that may coincide with a lesion. The detection of
plantar surface lesions through automated means poses a
significant challenge due to the inherent inconsistencies in
the appearance of such lesions. The process of extracting an
object from an image involves utilizing the visual features
of the image to differentiate the object based on various
characteristics such as color, shape, facial features, and
spatial arrangement. The morphology of wounds can exhibit
significant diversity, characterized by indistinct contrast
between the lesion and the adjacent skin, irregular or blurred
margins, varied pigmentation within the lesion, and the
presence of artifacts such as skin lines, hairs, black borders,
and blood vessels [9], [10]. The presence of slough and
coagulated blood in and around the lesion, along with the
potential impact of certain dressing materials, contribute
additional intricacies to the wound’s presentation, potentially
altering its overall coloration [9].

Numerous algorithms have been created and implemented
to address the task of computerized recognition. However,
none have been specifically designed to combat the widely

utilized SWME. The algorithm recognition techniques pre-
sented are limited to lesion-specific orientation and may not
be applicable in facilitating the identification and recognition
of diverse plantar lesion types or detecting their different
stages. The categorization of these techniques is typically
based on three main approaches, namely thresholding,
edge-based detection, and region-based methods, as docu-
mented in reference [10]. The efficacy of thresholding is
positively correlated with the quality of contrast between
the skin and lesion but is negatively impacted when the
two entities overlap, as per sources [10], [11]. Edge-
based detection exhibits suboptimal performance in scenarios
where boundaries are not clearly defined, while region-based
detection encounters challenges when the lesion or skin
region exhibits texture or contains multiple colors, resulting
in excessive segmentation [11]. Several algorithms that
have been introduced rely on color space segmentation
and histogram equalization, utilizing specialized equipment
like Nevoscope, and are designed to address particular
lesions, such as melanoma [12]. In a study conducted
by [12], the Nevoscope transillumination light microscopy
technique was utilized to capture the vascular architecture
of skin lesions and its performance was compared to that
of the epiluminescence light microscopy imaging method
in order to assess its efficacy for skin-lesion characteriza-
tion. The present observation highlights that the malignant
lesions derived from transillumination exhibit an elevated
proportion of transillumination image to epiluminescence
image of the corresponding lesion, which can be attributed
to augmented blood circulation. The dataset utilized in
reference [12] encompasses a collective sum of 40 images,
which encompasses 13 benign lesions, 18 dysplastic lesions,
and 9 malignant melanomas. There is a lack of information
pertaining to the precision of the methodology. The proposed
algorithm for identifying the foot region at risk of developing
ulcers is based on the observation that the temperature of
the foot ulcer region is lower than that of the healthy foot
region due to impaired blood flow. This algorithm is referred
to as the ‘‘snakes’’ algorithm. Thermography is utilized to
leverage the variance in temperature. The utilization of a
fuzzy c-means algorithm has been employed to discern the
most thermally active areas of the plantar surface. The study
referenced in [13] utilized a dataset consisting of 59 images
and achieved a classification accuracy of 91%. Moreover,
the significant computational expenses and the necessity
for real-time operations render it unsuitable for deployment
on processing boards with limited resources, such as the
Raspberry Pi (RPi). Researchers in [14] have used edge-
based segmentation, here again, detection is confined to a
specific lesion, in the case of [14] malignant melanoma of
dermoscopy images.

The study by [15] introduces a robust deep learning model
for Diabetic Foot Ulcer (DFU) detection, leveraging a metic-
ulously curated dataset of 1775 images. Employing Faster
R-CNN with InceptionV2 and two-tier transfer learning in a
five-fold cross-validation, the model achieves an impressive
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mean average precision of 91.8%. Notably, it demonstrates
real-time applicability with a swift 48 milli seconds inference
speed per image and a compact 57.2 MB model size.
The study [16] presents a cost-effective ‘‘Foot Selfie’’
system designed for smartphone use, empowering patients to
independently capture and transmit images of their plantar
feet to a remote server. In a pilot study involving limb-salvage
clinic patients, 15 participants (10 male) successfully used
the system with minimal 5-minute training. They uploaded
images on a median of 76% of eligible days over six months.
The system effectively captured high-quality images of the
entire plantar surface, enabling remote clinical decisions.
Monitoring 12 active wounds and 39 pre-ulcerative lesions
revealed significant improvements, including the healing of
seven wounds and the reversal of 20 pre-ulcerative lesions.
DFUC2020 presented a dataset of 2,000 training and 2,000
testing images, serving as a benchmark for evaluating various
deep learning algorithms. This paper by [17] compares
winning teams’ proposals, including Faster R-CNN (and
its variants), YOLOv3, YOLOv5, EfficientDet, and a new
Cascade Attention Network. Each algorithm’s architecture,
training parameters, and additional stages (pre-processing,
data augmentation, and post-processing) are detailed. All
methods incorporated data augmentation to augment the
training image pool and post-processing to eliminate false
positives. Notably, Deformable Convolution, a Faster R-CNN
variant, outperformed others with a mean average precision
(mAP) of 0.6940 and an F1-Score of 0.7434.

The study [18] aims to develop an efficient algorithm
utilizing infrared thermal images for the early detection of
diabetic foot issues through asymmetry analysis. The method
involves segmenting left and right foot regions using a region-
growing technique. Normal plantar thermograms exhibit
symmetric temperature distributions, while diabetic foot
cases show asymmetry between ipsilateral and contralateral
foot regions. Texture and temperature features are extracted
from 11 regions of interest, and asymmetry analysis is
conducted on these features. Support Vector Machine (SVM)
is employed for classifying regions into normal and ulcer
categories. The proposed algorithm achieves impressive
results with a maximum accuracy of 95.61%, sensitivity of
96.5%, and specificity of 92.41%. The article [19] presents
the application of advanced deep learning techniques to aid in
DFU treatment, specifically focusing on ulcer detection from
patient foot photos. The study proposes enhancements to
the original Faster R-CNN, incorporating data augmentation
techniques and adjusting parameter settings. The training
dataset comprises 2000 annotated DFU images, validated
through the Monte Carlo cross-validation method. The
proposed model yields notable results, achieving a mean
average precision of 91.4% and an impressive F1 score
of 94.8%. Additionally, the average detection speed of
332ms surpasses the performance of conventional detector
implementations.

The present study concerns the automated acquisition of
images and the maintenance of a uniform background on a

perforated sheet utilized as a platform for the placement of
a patient’s foot. It is noteworthy that the perforations on the
sheet bear resemblance to lesions. Furthermore, the present
study suggests that the images acquired in this manuscript
exhibit suboptimal sharpness, which can be attributed to
the presence of a perforation sheet measuring 1 cm in
thickness that was interposed between the foot and scanner.
The operational control of the scanner is governed by a
Raspberry Pi (RPi) which is subject to limitations with
respect to its processing capacity, memory allocation, and
power consumption. The present manuscript is limited in its
focus on the normal and abnormal skin of two distinct classes.
The skin that is considered abnormal exhibits a diverse array
of irregularities. This encompasses lacerations, contusions,
and any observable irregularities that may resemble a
pathological tissue alteration. Moreover, the proposed system
incorporates automatic image acquisition and extraction of
dimensional patches from specific areas. The manuscript’s
system additionally examined the identification of the normal
skin ratio in conjunction with the lesion.

III. METHODOLOGY
A combination of machine learning and textural recognition
techniques can be used to efficiently discriminate normal and
abnormal skin based on appearance using image processing,
importantly creating an automated non-invasive approach.
The scenario presented here greatly differentiates from those
used in other published work as the intended decision
algorithm controlling the automated probe must be intelligent
enough to avoid abnormal plantar skin patterns i.e. Plantar
lesions or discolorations on the plantar surface under test.
The main objective is to discriminate the location of normal
and abnormal skin on the plantar surface. The focus of
this manuscript is to develop a model for discriminating
normal and abnormal skin on the plantar surface using various
machine learning techniques. The following models with
their respective features have been exploited:

1) Support Vector Machine (SVM) with statistical fea-
tures of RGB, HSV color space, and Local Binary
Patterns (LBP) histogram.

2) Multilayer Perceptron (MLP) optimized using Genetic
Algorithm.

3) SVM with Scale-Invariant Feature Transform (SIFT)
features.

4) MLP with Mel Frequency Cepstral Coefficients
(MFCC).

The comparison of the evaluation of the aforementioned
models is given in the result section. The technical setup
shown in Figures 1a and 1b, has been described in previous
publications [8] and is an in-house system used to validate the
developed lesion recognition and detection method proposed
in this paper. A simple, ION COPYCAT handheld document
scanner is modified to integrate with the system that produces
RGB images. The main concern of this paper is to automate
the accepted SWME and ensure that the probe doesn’t
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FIGURE 1. (a) Schematic of in-house automated SWME replicator set-up [7]. (b) Imaging and probe system for pattern
recognition validation.

apply to a lesion. The scope is based on human visual
lesion perception detection and then avoiding probing the
area. The setup is also used to examine various force
applications for automated probes aimed at replicating the
SWME. To inform the reader and explain the placement
of the pattern recognition methods described in this work,
some of the pivotal steps carried out within the device are
explained here. The user rests their foot on the perforated
sheet as shown in Figure 1b. A photographic image of
the plantar surface is then taken. When a photographic
image of a plantar surface is obtained, the embedded image
processing algorithm extracts five pressure points to be tested
by an embedded mechanically driven probe (10mg/98mN of
force) [8].
In practice, the trained podiatrist visually avoids probing

where lesions overlap with the chosen pressure points and
selects adjacent healthy plantar surface points as well as
noting the lesions. The embedded algorithms and mechanical
probe must apply the same rules as the practitioner but
in an automated, unsupervised manner. If the extracted
plantar surface pressure points and a lesion overlap, that
area must be avoided; its location marked with photographic
evidence for health practitioner information, and an adjacent
non-overlapped suitable pressure test point must be selected.
In this paper, an automated method is described that extracts
the image of the pressure point area and categorizes it
into either healthy skin that can be probed, or a lesion to
be avoided while subsequently deciding on the next best
pressure test point nearest the lesion to be selected for the
probe.

A. PATTERNS AND FEATURES GENERATION
Texture contains important information about the structural
arrangement of surfaces and their relationship to the sur-
rounding environment. As in our case the normal skin
patch contains the perforation of the sheet in centre. This
is a particular format as can be seen in 2b, this textural
pattern disturbs when there exists a wound. Each foot
scanned produces a plantar surface image. Each image is
subsequently broken down and categorized into one of four

patch segments. Their description is provided below along
with their appearance shown in Figure 2.

• Blank Patch: This is the patch of the input image
that resides outside of the plantar surface as shown in
Figure 2-left.

• Foot Edge Patch: This is the patch that lies at the
edge of the plantar surface in the image as shown in
Figure 2-right.

• Foot Pressure Area Patch: This is important patch as
pressure point lies here. This is the patch of the input
image that lies inside a detected pressure area zone of
the plantar surface, shown in Figure 2b-left. Since the
discrimination process is a post pressure point selection
process, so the Classification of normal and abnormal
skin will always consider this patch.

• Foot Non-Pressure Area Patch: This is the patch that lies
on the plantar surface non-pressure area e.g. middle arch
and shown in the Figure 2b-right.

The choice of four patch categories above covers the entire
foot area, i.e. these patches cover all eventualities ensuring
optimized lesion detection and probe application to healthy
skin. As the system extracts pressure point and those points
lie on pressure areas of plantar surface, so only those patches
will be examined that belong to pressure areas, an example is
shown in Figure 2b-left. If a pressure point is found to have
a lesion, the areas where the next ‘‘best’’ hole lies will be in
one of these categories, so they must all be included for each
test.

In this study, texture features are used to train machine
learning approach and the following features are used to
extract the textures of the images:

1) LOCAL BINARY PATTERN
LBP is one of the most popular simple straight, robust
and powerful mathematical approaches to extract features
based on texture [20]. LBP can achieve effective description
ability with appearance invariance and adaptability of patch
matching basedmethods. LBP only thresholds the differential
values between neighbourhood pixels. It is computationally
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FIGURE 2. Patch patterns through perforated sheet. (a-left) Blank hole
(no foot) (a-right) foot edge (b-left) Plantar pressure area (d-right) Plantar
non-pressure area.

efficient and invariant to monotonic grey-scale changes [21].
LBP is used with combination of SVM to classify into
normal and abnormal plantar surface patch. LBP extracts a
pattern by thresholding neighbouring pixels in a 3×3 block
around the central pixel. It then obtains an LBP code for the
central pixel [22], [23], [24]. As HSV has good capability of
representing the colours of human perception and simplicity
of computation. HSV space hue channel is used in LBP (P, R)
histogram. A histogram is produced showing the distribution
of the pattern and this histogram is subsequently used one of
the features in SVM model. The scale and rotation invariant
LBP (P, R) histogram of the dataset was calculated. P is the
total number of neighbours of the central pixel in the circle,
R is the radius of the circle. Two different LBP scales (8, 1)
and (16, 2) were used to ensure greatest accuracy for different
size lesions. The resulting pattern information is transformed
into an LBP code histogram. The statistical data (mean ±

SD) of the constituent colour (channel) intensities of HSV
and RGB colour spaces of data set were first obtained.

2) SCALE-INVARIANT FEATURE TRANSFORM (SIFT)
Scale Invariant Feature Transform (SIFT) is one of the most
widely used feature detection methods. It is an algorithm to
perform feature extraction using key point in an image (local
features). It is invariance to illumination, scale, and rotation.

3) IMAGE TO SOUND CONVERSION
The computational complexity of 1D array (audio) is
significantly lower than 2D array (images). The 2D images
were converted into 1D acoustic data. As an example,
an 8 × 8, 5 grey-tone images are shown in Figure 3. The
mapping translates, for each pixel, vertical position into
frequency, horizontal position into time, and brightness into
sinusoidal signal amplitude in the audible frequency range
(500Hz-5000Hz). For a given column, every pixel in this

FIGURE 3. Image to sound conversion.

column is used to excite an associated sinusoidal oscillator
in the audible frequency range. In this manuscript, The RGB
image patch of size 181×181×3 is converted and resized
into 2048×2048, 64 grey-tone image patch. Frequency range
500Hz-5000Hz on Mel scale is used.

4) MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC)
Mel frequency cepstral coefficients (MFCC) often suggested
for identifying monosyllabic words in continuously spoken
sentences. MFCC computation is a replication of the human
hearing system intending to artificially implement the ear’s
working principle with the assumption that the human ear
is a reliable speaker recognizer [25]. The Mel frequency
scale has linear frequency spacing below 1000 Hz and
logarithmic spacing above 1000 Hz.MFCC is based on signal
disintegration with the help of a filter bank. The MFCC gives
a discrete cosine transform (DCT) of a real logarithm of the
short-term energy displayed on the Mel frequency scale [26].
The formula used to calculate the mels for any frequency is:

mel(f ) = 2595 ∗ log10(1 +
f

700
) (1)

where 2595 is a scaling factor used to convert Hertz to Mel
scale in a way that aligns with human auditory perception,
mel(f) is the frequency (mels) and f is the frequency (Hz).
MFCC feature extraction consists of 6-steps.

1) Audio signal breaks up into a frame size of 2048 with
hop size 512 with hamming window.

2) Discrete Fourier Transform calculation: As frequencies
in a signal change over time, so instead of taking
Discrete Fourier transform (DFT) of entire signal, DFT
is carried out at frame level. Extracting the Short
time Fourier Transform (STFT) of the frame with
512 number of FFT points i.e. NFTT = 512.

3) Periodogram: Computing the power spectrum to esti-
mate the spectral density of a signal.

4) Filter Banks: The Mel spaced Filter Bank is formally a
set of 20×40 triangular filters. To calculate filter bank
energies, each filter bank is multiplied with the power
spectrum, then add up the coefficients. This ends up
with 40 numbers indicating energy in each filter bank.

5) Log filter bank energies: Taking log of spectrogram
values to get the log filter bank energies.
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6) Discrete cosine transform (DCT): Filter bank coeffi-
cient obtained are highly correlated and need to be
correlate. DCT is applied.

MFCC with 30 coefficient features were extracted from
the acoustic data of plantar patch images to be used in
MLP and CNN for classification of normal and abnormal
plantar skin patch. The whole feature extraction process has
been implemented in Python with the support of the librosa
library [27].

5) ARTIFICIAL NEURAL NETWORKS OPTIMIZATION USING
GENETIC ALGORITHM
GAs was first proposed by McCall [28] as a tool to
find best solutions to problems that were otherwise com-
putationally intractable. GAs is a heuristic optimisation
technique that mimics the Darwinian principle of evolution
through (genetic) selection and uses a highly abstract version
of evolutionary processes to evolve solutions to given
problems [29]. GA is used to solve optimization problems
by replicating the Darwinian evolutionary behaviour of
species. Starting from initial random population of solutions,
it evolves by set of activities that includes selection, mutation
and crossover operators, inspired in natural evolution. Fol-
lowing aforementioned activities in an order, the population
goes through an iterative process transforms to different
states, each state is called generation. As a result of this
process, the population is expected to reach a generation
in which it contains a good solution to the problem [30].
Starting with a randomly generated chromosomes popula-
tion, a GA performs a process of fitness-based selection
and recombination to produce a successor population,
the next generation [31]. During recombination, parent
chromosomes are selected, and their genetic material is
recombined to produce child chromosomes. These are
then passed into the successor population. Over successive
generations, the population ‘‘evolves’’ toward an optimal
solution [31].
The image patch shown in Figure 2 is fed to the model,

HSV histogram based on hue is calculated for each patch. The
histogram is stored in 2D matrix of size 5880 × 360, where
5880 are number of image patches and 360 is the bin number.
GANN structure parameters are listed below:

• Initial population of neural networks = 8
• Number of neurons in input layers = 5880
• Number hidden layers = 2
• Number of neurons in first hidden layers = 150
• Number of neurons in second hidden layers = 50
• Hidden layer activation function=Rectified Linear Unit
(ReLU)

• Number of neurons in output layers = 2
• Output activation function = softmax

The comparison of the feature extractions techniques used
in the manuscript are presented in Table 1.

TABLE 1. Comparison of feature extraction techniques.

IV. DATA MODEL
The lesion images used in this study were sourced from
the internet, ensuring that no identifiable features such as
faces were included, thereby protecting the privacy and
anonymity of the subjects. Consequently, ethical approval
was not required for their use. Ninety-two plantar lesion
images were divided into twenty-three sets, with each set
containing four lesions. These sets were then superimposed
on foot images of seventy participants, which included both
left and right feet, in random order and at random locations on
the plantar surface. To accommodate all 92 lesions, twenty-
three copies of each foot image were used. The distribution of
these lesions is illustrated in Figure 4.The lesion images were
categorized by severity into three groups: mild, moderate, and
severe. Mild lesions constituted 40% of the images, totaling
37 images. Moderate lesions made up 35% of the images,
amounting to 32 images. Severe lesions accounted for 25%
of the images, with 23 images in this category.

Each image underwent a rigorous validation process by
a certified podiatrist to ensure the accuracy and relevance
of the depicted lesions. The criteria for selecting these
images included clarity, resolution, and distinct visibility of
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FIGURE 4. Distribution of the dataset in lesion and normal class.

FIGURE 5. Scanned plantar surface image example through perforated
sheet.

the lesions to facilitate precise analysis and diagnosis. The
podiatrist assessed each image for clinical validity, ensuring
that the lesions met specific diagnostic criteria and could be
reliably used in this study.

• Number of feet = 70
• Number of lesioned patches = 70* 23*4 = 6440
• Number of normal pressure area patches = 6440

V. EXPERIMENT
The data set is divided into two sets training and testing.
The models are trained on the training set. Once the models
have been trained with the respective features, these models
are then applied on the test set to classify into lesion or
non-lesion areas based on the training. The surrounding area
of the extracted pressure point is examined by the lesion
detection code in the manner given below. The full-foot input
image an example shown in Figure 5 is divided into equally
sized windows such that each window contains a hole on the
perforated footrest roughly at its centre.

The holes within the perforated sheet are laid out in
11 columns and 16 rows i.e. in total there are 176 holes.
Consequently, the input image is divided into 176 windows.
When the algorithm extracts a pressure point, the correspond-
ing window (now called a patch) is sent to the classifier to
determine the said patch as either a lesion or a non-lesion
patch. If the patch is classified as a non-lesion or in other

FIGURE 6. Best hole selection for lesion avoidance in pressure area.

words ‘normal skin’, by the classifier, the extracted pressure
point is added into the pressure point stream that will be
finally sent to the probe application microcontroller. If the
patch classifies as a lesion, the corresponding hole nearest
that lesion is encircled in red as shown in Figure 6. Figure 6
shows a number of lesions of various colours imposed across
a foot surface. In this case the next best neighbouring hole
away from the lesion is selected. This classification process
is repeated until a healthy pressure skin area is found in the
respective pressure region.

Let the extracted test point be P(x, y) shown as a black
tiny dot in Figure 6 (only dot in Fig). The surrounding
‘‘best’’ and closest holes to the extracted pressure point are
determined and shown in Figure 6 with white circles (12,
3, 6, 9pm positions). If the best hole overlaps a lesion,
encircled in red (3pm and 9pm position), the next best and
closest hole must be chosen, thus the process is repeated
to realize whether it overlaps with the lesion or not. The
2-dimensional location of the corresponding best hole is
stored in the stream of points to be sent to the microcontroller.
The best non-lesion hole is shown as a large white circle.
To summarize, the lesion detection process is divided into
three main steps: Step 1. Here the incoming scanned patch is
examined by the classifier. If the patch is considered normal
the coordinates of the relevant hole will be stored for delivery
the microcontroller for subsequent pressure execution once
steps 1 and 2 for the whole foot is finished. In step 2, if the
classifier discriminates the area enclosed in the patch as a
lesion, the corresponding sheet hole in the input image is
encircled with red and the next best patch closest to the
extracted pressure point patch is selected. Steps 1 and 2 are
repeated until a normal pressure area patch is found.

VI. RESULTS AND DISCUSSIONS
This section presents a comprehensive analysis and discus-
sion of the experimental results obtained during the course
of this research. The objective is to provide a meticulous
examination of the findings, elucidating their significance
within the specific context of this study. Furthermore,
it involves an extensive discussion exploring the implications
and importance of these results, thereby contributing to a
deeper understanding of the broader academic and practical
consequences arising from the research endeavour.

A. EXPERIMENTAL SETUP
The HP EliteBook x360 1040 G6 served as the primary
computing platform for the experimental analyses. Powered
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FIGURE 7. Distribution of data to train and test sets.

by an Intel(R) CORE (TM) i5-8365U processor running at a
base speed of 1.60GHz and capable of reaching a peak speed
of 1.90GHz, this system demonstrated impressive computa-
tional capabilities. With 16.0 GB of RAM supplementing the
CPU, the overall performance was significantly enhanced,
particularly in terms of multitasking and data management.
Operating on a 64-bit architecture with Windows 11 Pro, the
system showcased the seamless integration of cutting-edge
hardware and software components. This technical setup
underscored the utilization of advanced capabilities through-
out the experimentation phase, ensuring a stable and adapt-
able computing environment.

B. DATA SPLITTING
The dataset comprises of a total of 12,880 images, evenly
divided between the lesion and normal categories, with
6,440 images in each category. To facilitate the training
and evaluation of classifiers, the dataset was partitioned
into training and testing sets at an 80-20 ratio as shown in
Figure 7. Consequently, 80% of the images were allocated
to the training set, employed for the classifier training
process, while the remaining 20% formed the test set
for subsequent evaluation. During the training phase, the
classifiers leveraged the diverse features extracted from the
images within the training set to learn patterns and features
associated with both lesion and normal categories. This
process aimed to enhance the classifiers’ ability to accurately
categorize new, unseen images. The test set, distinct from the
training set, served as a critical component for evaluating the
classifiers’ performance.

C. HYPERPARAMETERS TUNING
For the classification task in this research, a suite of diverse
algorithms, namely SVM, MLP, NB, RF, and XGBoost, has
been chosen. The hyperparameters governing the behaviour
of these algorithms are systematically selected through
a Grid Search approach, as detailed in Table 2. This
method involves exhaustively testing a predefined set of
hyperparameter values to identify the combination that
optimizes the performance of each algorithm. The rationale
behind employing multiple algorithms lies in the goal of

TABLE 2. Hyperparameters used in this study.

TABLE 3. Classification results of the classifiers on LBP features.

comprehensively exploring their respective strengths and
weaknesses in handling the classification task at hand. Each
algorithm brings unique characteristics and capabilities to
the table, and their comparative analysis allows for a more
nuanced understanding of their efficacy in different scenarios.

D. RESULTS OF CLASSIFIERS ON LBP FEATURES SET
Following the effective training of classifiers on the desig-
nated training set, the evaluation phase involves employing
the test set featuring LBP descriptors. The outcome of this
evaluation is presented in Table 3. Table 3 not only showcases
the performance metrics derived from the test set but also
includes results obtained from the cross-validation process,
which further validates the robustness and consistency of the
classifiers. The utilization of 5 folds in the cross-validation
ensures a comprehensive assessment, as the dataset is parti-
tioned into five subsets, and the training and testing cycles
are iteratively performed. Table 3 also provides valuable
information regarding the computational time complexity
(CT) of each model. This insight into the time efficiency of
the classifiers enhances the understanding of their practical
viability for real-world applications, particularly in scenarios
where computational resources are a crucial consideration.

From the results presented in Table 3 it is evident that
SVM and MLP both achieved exceptional accuracy scores
of 0.994 and 0.999, respectively, showcasing robust perfor-
mance. Moreover, the precision, recall, and F1-score metrics
for these classifiers are consistently high, indicating their
ability to accurately classify instances across both lesion and
normal categories. The 5-fold cross-validation results further
support the stability of SVM and MLP, with small standard
deviations (0.0036 and 0.0052, respectively) highlighting
their consistent performance across different subsets. While
Random Forest demonstrates a slightly lower accuracy
of 0.958, it maintains competitive precision, recall, and
F1-score metrics. The 5-fold cross-validation accuracy with
a small standard deviation of 0.0029 underscores its stability.
NB and XGBoost both achieve perfect accuracy, showcasing
their proficiency in accurately classifying instances. The
5-fold cross-validation results with minimal standard devia-
tions (0.0006 for NB and 0.0022 for XGBoost) further val-
idate their consistency. Considering the overall performance
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TABLE 4. Results of the classifiers on the MFCC feature set.

and computational time complexity, the NB model stands out
as the best-performing classifier in this context. It attains per-
fect accuracy while exhibiting minimal computational time
complexity (0.91 seconds). This combination of accuracy
and efficiency positions NB as a promising model for real-
world applications, where both classification precision and
computational speed are crucial considerations. The small
standard deviation in the 5-fold cross-validation results add
to the confidence in the model’s reliability.

E. RESULTS OF CLASSIFIERS ON MFCC FEATURES SET
After successfully training the classifiers on the designated
training set, the evaluation phase involves the use of the
test set containing MFCC features. The results of this
evaluation are presented comprehensively in Table 4. This
table not only highlights the performance metrics obtained
from the test set but also incorporates results from a 5-fold
cross-validation process, further affirming the robustness and
consistency of the classifiers. The employment of 5 folds in
cross-validation ensures a thorough assessment by iteratively
partitioning the dataset into five subsets, facilitating rigorous
training and testing cycles. Table 4 additionally furnishes
essential insights into the computational time complexity
of each model. Understanding the time efficiency of the
classifiers becomes pivotal for gauging their practical viabil-
ity in real-world applications, especially in scenarios where
computational resources are a critical consideration. This
multifaceted presentation contributes to a comprehensive
evaluation, making Table 4 an invaluable reference for
researchers and practitioners seeking to assess both the
classification performance and efficiency of these models.

It is evident from the Table 4 that the SVM,while achieving
an accuracy of 0.668, exhibits balanced precision and
recall scores. MLP slightly improves on accuracy, reaching
0.702, with consistent precision and recall. RF displays
better performance with an accuracy of 0.732, maintaining
competitive precision, recall, and F1-score metrics. NB sur-
passes the others with an accuracy of 0.803, along with
excellent precision, recall, and F1-score values. XGBoost
also performs well with an accuracy of 0.812, demonstrating
high precision, recall, and F1-score. The 5-fold cross-
validation results, reflected in themean accuracy and standard
deviation, provide insights into the classifiers’ consistency
across different subsets. NB exhibits the highest mean
accuracy (0.808) and a relatively low standard deviation
(0.008), indicating robust and stable performance. XGBoost
also demonstrates consistent results with a mean accuracy of
0.807 and a small standard deviation of 0.005. Considering
both classification performance and computational time

TABLE 5. Classification results on the SIFT features.

complexity, NB emerges as the most promising model
for this task. With a solid accuracy of 0.803 and an
efficient computational time of 0.77 seconds, NB strikes
a balance between accuracy and practical feasibility. The
minimal standard deviation in cross-validation further sup-
ports the reliability of NB in achieving consistent results.
NB stands out as the preferred model for this MFCC- feature
set.

F. RESULTS OF CLASSIFIERS ON SIFT FEATURES SET
Table 5 provides a comprehensive overview of the classifier
performances using the SIFT feature set. In addition to the
results achieved on the SIFT features, the table incorporates
cross-validation scores, offering a broader perspective on
the classifiers’ robustness and generalization capabilities.
The inclusion of computational complexity metrics further
enhances the understanding of the practical implications of
each model.

It is evident from Table 5 that SVM and MLP both
demonstrate remarkable accuracy, with SVM achieving
0.981275 and MLP slightly higher at 0.981832. These
classifiers also maintain impressive precision, recall, and
F1-scoremetrics, showcasing their effectiveness in accurately
categorizing images represented by SIFT features. The 5-fold
cross-validation results indicate consistent performance, with
minimal standard deviations (0.003) affirming the stability
of SVM and MLP across different subsets. RF stands
out with the highest accuracy of 0.985845, accompanied
by competitive precision, recall, and F1-score values. The
5-fold cross-validation results reinforce the reliability of RF,
as indicated by a small standard deviation of 0.002. XGBoost
closely follows with an accuracy of 0.985733, demonstrating
high precision, recall, and F1-score metrics. The 5-fold cross-
validation standard deviation of 0.002 further supports the
consistency of XGBoost.

NB, while achieving a slightly lower accuracy of
0.973807, maintains commendable precision, recall, and
F1-score values. The 5-fold cross-validation results with
a standard deviation of 0.003 suggest stable performance
across different data subsets. Considering both performance
and computational time complexity, RF emerges as the
most promising model for this SIFT feature set. With
a top-tier accuracy and a moderate computational time
complexity of 308.2703 seconds, RF strikes a favourable
balance between classification precision and efficiency. The
minimal standard deviation in the 5-fold cross-validation
results further strengthens the case for RF’s reliability and
consistency. In the context of SIFT features, RF stands out
as the preferred model, offering robust performance and
practical suitability for real-world applications.
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FIGURE 8. Machine learning models performance comparison in terms of
(a) accuracy (b) CT.

G. COMPARISON OF RESULTS
Upon a thorough examination of the classification results in
various set of characteristics, the NB model applied to the set
of characteristics of the LBP emerges as the best performer
for the classification of lesion in this study as compared
to Figure 8. The LBP feature set, which captures textural
information, proved to be suitable for NB, demonstrating an
exceptional accuracy of 100% and demonstrating precision,
recall, and F1 score metrics consistently above 99%. The
model exhibited stability in 5-fold cross-validation, with
a negligible standard deviation of 0.0006, affirming its
robust and consistent performance across different data
subsets. Moreover, NB showcased remarkable computational
efficiency with a minimal time complexity of 0.91 seconds,
making it a practical choice for real-world applications
where both precision and computational speed are crucial
considerations. Although other models excelled in specific
feature sets, comprehensive assessment designates NB in the
LBP feature set as the optimal choice to achieve accurate and
efficient lesion classification in this research effort.

H. STATISTICAL ANALYSIS OF CLASSIFIER PERFORMANCE
ACROSS DIFFERENT FEATURE SETS
To validate the performance of classifiers across different
feature sets, a one-way ANOVA test was conducted to
compare the accuracy scores obtained from the 5-fold

TABLE 6. Classifier accuracy across different feature sets.

TABLE 7. ANOVA test results for classifier accuracy across different
feature sets.

TABLE 8. Tukey HSD Post-Hoc test results.

cross-validation process as shown in Table 6. This analysis
aims to determine whether there are significant differences in
the performance of the classifiers when trained on different
feature sets (LBP, MFCC, and SIFT). The null hypothesis
(H0) states that there is no significant difference in accuracy
scores across the different feature sets, while the alternative
hypothesis (H1) states that there is a significant difference.

The one-way ANOVA test was conducted on the accuracy
scores of the classifiers across the three feature sets and
results are presented in Table 7.

From Table 7 it is evident that, the p-value is less than 0.05,
indicating significant differences in classifier performance
across the different feature sets. This suggests that the choice
of feature set significantly impacts the accuracy of the
classifiers.

To identify which feature sets contribute to the significant
differences, a post-hoc analysis using the Tukey Honestly
Significant Difference (HSD) test was performed and results
are presented in Table 8.
Table 8 indicates that the mean difference between the LBP

and MFCC feature sets, as well as between the MFCC and
SIFT feature sets, is significant (p-value < 0.05). However,
the difference between the LBP and SIFT feature sets is
not significant. The results of the one-way ANOVA test and
the Tukey HSD post-hoc analysis reveal significant differ-
ences in classifier performance across different feature sets.
Specifically, the MFCC feature set results in significantly
lower accuracy compared to both the LBP and SIFT feature
sets. In contrast, the LBP and SIFT feature sets yield similar
classifier performance, showing no significant difference in
accuracy between them. These findings highlight the crucial
role of feature set selection in determining the effectiveness
of classifiers. The LBP and SIFT feature sets demonstrate
greater effectiveness for the classifiers studied, whereas the
MFCC feature set leads to lower accuracy. This information
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TABLE 9. Comparative analysis of accuracy with previous studies.

is particularly valuable for researchers and practitioners when
selecting feature sets for classification tasks, emphasizing the
importance of feature selection in achieving optimal classifier
performance.

I. COMPARISON WITH EXISTING STUDIES
The current study demonstrates exceptional accuracy in
diabetic foot ulcer detection, achieving a perfect 100%. This
marks a significant improvement over previous methodolo-
gies. For instance, [13] achieved a 91% accuracy using ther-
mography and the ‘‘snakes’’ algorithm, while [15] reported a
mean average precision of 91.8% with their Faster R-CNN
and InceptionV2 model. Saminathan et al. [18] reached
95.61% accuracy through infrared thermal imaging and
SVM analysis. The DFUC2020 [17] benchmark highlighted
various deep learning algorithms, with the top performer
being a Deformable Convolution variant of Faster R-CNN,
achieving a mean average precision of 69.4%. In comparison,
[19] enhanced Faster R-CNN for DFU detection, achieving
an accuracy of 91.4%.

The presented study’s use of the LBP feature set and NB
model for classification outperformed all previous studies as
shown in Table 9, demonstrating a perfect 100% accuracy,
which underscores its superiority in lesion detection. This
exceptional performance is indicative of the model’s robust-
ness and reliability in real-world applications.

J. DISCUSSION
The results from this study provide a comprehensive
evaluation of the classifiers’ performance across different
feature sets, highlighting the strengths and limitations of
each approach. For the LBP feature set, the Naïve NB
classifier emerged as the most effective model, achieving
perfect accuracy of 100% along with precision, recall, and
F1-score metrics consistently above 99%. This exceptional
performance indicates that NB can effectively leverage the
textural information captured by the LBP features, leading
to highly accurate lesion classification. Additionally, the
stability of the NB model was evident from the 5-fold cross-
validation, which showed a negligible standard deviation of
0.0006, confirming its robust and consistent performance
across different data subsets. The results on theMFCC feature
set revealed a different landscape. While the NB classifier
again showed strong performance with an accuracy of 0.803,
it was the XGBoost classifier that slightly outperformed it
with an accuracy of 0.812. Both classifiers demonstrated
high precision, recall, and F1-score values, indicating their

effectiveness in handling MFCC features. However, the
NB model’s efficiency and stability, as evidenced by its
computational time of 0.77 seconds and a standard deviation
of 0.008 in cross-validation, still made it a competitive choice.

For the SIFT feature set, the RF classifier performs best,
achieving the highest accuracy of 0.985845. This perfor-
mance was closely followed by XGBoost and MLP, which
also exhibited high accuracy and consistent cross-validation
results. Despite NB achieved a slightly lower accuracy of
0.973807, it maintained commendable precision, recall, and
F1-score values. The RF model’s favorable balance between
classification precision and moderate computational time
complexity of 308.2703 seconds, coupled with a minimal
standard deviation in cross-validation, made it the most
promising model for the SIFT feature set. The computational
efficiency of theNB classifier, particularly on the LBP feature
set, was noteworthy. The simplicity of the NB algorithm,
which leverages the Bayes theoremwith strong independence
assumptions between features, results in lower computa-
tional overhead. This efficiency is further enhanced by the
LBP feature set, which provides straightforward statistical
relationships that the NB model can rapidly process. As a
result, the NB classifier exhibited minimal computational
time complexity of 0.91 seconds, making it highly suitable for
real-world applications where both precision and speed are
crucial. Despite these promising results, the study has several
limitations that should be acknowledged. The dataset used
was evenly divided between lesion and normal categories,
which cannot fully represent the variability found in real-
world scenarios. Future research will aim to include more
diverse datasets with a wider range of lesion types and
imaging conditions to enhance the generalizability of the
findings. Additionally, while three distinct feature sets were
analyzed, there can be other feature extraction techniques or
combinations that could yield better performance. Exploring
deep learning-based representations could be a valuable
direction for future studies. Real-time implementation and
testing of these classifiers in operational environments would
require further optimization to ensure consistent performance
under varying conditions. By addressing these limitations and
exploring these future directions, researchers can refine the
classifiers and enhance their applicability to real-world lesion
classification tasks.

VII. CONCLUSION
An image processing technique designed to help in the
evolution of fully automated SWME methods has been
presented. Algorithms have been developed to avoid the
application of the probe when the lesion and the pressure
point overlap. The input plantar surface image is segmented
into 176 windows, known as patches once declared as
pressure points. Each patch is then sent to a classifier trained
for lesion and non-lesion feature spaces. In the case of lesion
detection, the next best patch is selected, and this process
is repeated until a normal patch pattern representing normal
plantar pressure skin area is found close to the original
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patch. This research conducted a comprehensive analysis of
different feature sets and classifiers for the task of lesion
classification. Three distinct feature sets, LBP, MFCC, and
SIFT, were evaluated on various classifiers, including SVM,
MLP, RF, NB, and XGBoost. The results revealed nuanced
performances across combinations of feature sets and clas-
sifiers. While each feature set demonstrated strengths, the
NB classifier applied to the LBP feature set emerged as the
most notable performer. This combination achieved perfect
accuracy, precision, recall, and F1 score metrics, showcasing
its robustness in accurately classifying lesion instances. The
5-fold cross-validation results underscored the stability of NB
on the LBP feature set, with a negligible standard deviation,
affirming its consistent performance across different data
subsets. Additionally, the computational time complexity of
0.91 seconds highlighted its efficiency, making NB on the
LBP feature set a practical and reliable choice for real-world
applications. Statistical analysis using the one-way ANOVA
test further validated these findings, revealing significant
differences in classifier performance across different feature
sets. The results indicated that the MFCC feature set resulted
in significantly lower accuracy compared to both the LBP
and SIFT feature sets. In contrast, the LBP and SIFT feature
sets yielded similar classifier performance, showing no
significant difference in accuracy between them. The Tukey
HSD post-hoc test confirmed these results, emphasizing that
the choice of feature set plays a crucial role in determining
the effectiveness of classifiers. The LBP and SIFT feature
sets demonstrated greater effectiveness for the classifiers
studied, whereas the MFCC feature set led to lower accuracy.
These findings highlight the importance of feature selection
in achieving optimal classifier performance. The combination
of the NB classifier with the LBP feature set stands out as the
most effective approach for lesion classification in this study,
providing both high accuracy and computational efficiency.
This information is valuable for researchers and practitioners
when selecting feature sets and classifiers for similar tasks,
guiding them towards making informed decisions to enhance
classification performance.
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