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ABSTRACT This paper introduces a novel method for accurately estimating the 2D coordinates of
hand keypoints from single static images, utilizing a sequential convolutional neural network optimized
with Maximum Likelihood Estimation Loss. Unlike traditional heatmap-based techniques, our approach
eliminates the need to generate label heatmaps and sidesteps the direct optimization of model parameters
based on noisy labels. Instead, it concentrates on modeling the distribution of the discrepancies between
predicted results and ground truth, rather than the potential presence of noisy labels, thus enabling the
direct prediction of hand keypoint coordinates. Furthermore, we propose a sequential training and inference
framework that consists of a deep convolutional backbone network and a multi-stage sequential network.
Each stage of this network features similar structures, facilitating the progressive and precise prediction of
hand keypoint coordinates. Our extensive experimental results demonstrate that our approach is both highly
accurate and robust, outperforming mainstream methods under the experimental conditions detailed in this
paper.

INDEX TERMS Hand pose estimation, maximum likelihood estimation, heatmap, deep learning.

I. INTRODUCTION
Hand pose estimation plays a crucial role in computer vision
and finds widespread applications across various domains
such as intelligent cockpits [1], [2], AR/VR [3], [4], [5], game
control [6], and facilitating air gesture human-computer in-
teraction. However, achieving accurate hand pose estimation
based on a single RGB image presents significant challenges.
These challenges stem from the variability in the scale
and shape of hands in 2D images, as well as the inherent
simi-larities in features among different fingers [7], [8].
Moreover, the intricate multi-degree-of-freedom movements
of hands [9] often result in occluded parts, further complicat-
ing the estimation process. In summary, developing a hand
pose estimation method that seamlessly combines accuracy
and robustness remains a formidable challenge in the field of
computer vision.

In the realm of pose estimation, heatmap-based method-
ologies [10], [11] have garnered widespread acclaim for
their ability to deliver high levels of accuracy. Despite
their efficacy, these methods face certain challenges. The
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heatmap loss, a staple in supervised training for heatmap
methods, involves the generation of estimated likelihood
heatmaps by the model. An increase in the resolution of
these heatmaps results in a proportional rise in the number
of parameters and computational complexity. To ascertain
the precise coordinates, the argmax method is employed
in post-processing to identify the point exhibiting the
highest response within the likelihood heatmap. This non-
differentiable discrete operation contravenes the end-to-
end principle and introduces quantization errors into the
estimation outcomes.

Heatmap-based pose estimation techniques have shown
remarkable proficiency in managing situations with ambigu-
ous labels, such as in-stances of occlusion, obstruction,
and blurriness [12]. These methods employ a form of soft
labeling by producing likelihood heatmaps from coordinate
data in labels, facilitating a progressive smoothing regres-
sion process [13]. The likelihood heatmaps, derived from
empirically predetermined distributions, offer an effective
way to model label ambiguity. This enhancement im-proves
the model’s comprehension and pro-cessing abilities in the
presence of ambiguous labels. Nevertheless, it is crucial
to acknowledge that this approach involves learning the
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distributions of labels with noise. The noise in labels
may become particularly evident due to human annotation
errors or technical constraints, ultimately making the model
susceptible to noise and negatively impacting its performance
in real-world fuzzy scenarios.

Furthermore, traditional regression paradigms commonly
employ the or loss [12], [14] to quantify residuals, predicated
on the assumption that the data conform to either a
Laplace or Gaussian distribution. Nevertheless, the task of
precisely modeling the true distribution via a simplistic form
presents substantial challenges in real-world scenarios. This
divergence between the anticipated distribution and the actual
distribution impinges upon the sensitivity of the loss function
to residuals, thus constraining the efficacy of the model.

In this study, we objective is to tackle the limitations
inherent in existing heatmap methods. To achieve this,
we introduce a novel 2D hand pose estimation framework
with superior performance, comprising a sequential heatmap
model and several flow models. The heatmap model consists
of a deep convolutional backbone network and a sequen-
tial network consisting of multiple stages, each features
similar structures. This design facilitates the propagation
of contextual features be-tween adjacent stages through
heatmaps.

As the stages progress, the model parameters gradually
acquire the ability to learn complex implicit associations
between the key parts of the hands in the provided image.
This allows the model to capture intricate relationships
and dependencies among these hand parts. To address
the potential quantization errors that may arise during the
process, we propose an alternative approach to compute the
coordinates from the heatmap. Instead of using the argmax
operation, we employ integral regression. This helps to
miti-gate the impact of quantization errors and pro-vides
more accurate and precise estimation of the hand pose.
Furthermore, in order to improve the model’s understanding
of the underlying data distribution and alleviate the influence
of label noise, we incorporate a flow model to character-
ize the deviation between the ground truth and the provided
labels. In terms of optimization, we formulate a loss function
based on the maximum log-likelihood estimation (MLE)
principle. This loss function serves as a guiding force
during the training phase, enabling the model to converge
towards better hand pose estimation, as depicted in Figure 1.
Experimental results demonstrate that our method achieves
notable precision and robustness in estimating hand pose.
In summary, the main contributions of this paper can be
outlined as follows:

1. Introduction of a sequential heatmap model, which
is designed to incorporate global feature fusion and
context feature propagation mecha-nisms. The accuracy
of prediction improves as the stage progresses.

2. Estimation and modeling of probability density distribu-
tion of deviations between ground truth and predicted
outcomes. Additionally, a new re-gression paradigm based

onMLE is utilized tomitigate the impact of label noise and
enhance parameter training.

3. Design of a comprehensive loss function to achieve end-
to-end training of the model while maintaining training
efficiency and supplement-ing the backpropagation gra-
dients.

We have conducted extensive experiments on two chal-
lenging hand pose datasets, namely Frei-hand [15] and
RHD [16], to evaluate the effec-tiveness of our approach.
The experimental re-sults demonstrate that our proposed
MLE-Loss Driven Robust Hand Pose Estimation method out-
performs mainstream methods on both da-tasets. Our method
exhibits robustness and accu-racy even under complex and
variable conditions.

II. RELATED WORKS
In the nascent phases of hand pose estimation research,
scholars predominantly concentrated on modeling the spatial
interrelations among different hand joints [17], or on the
classification of hand shapes and joints [18], [19] to deduce
ges-tures and their motion dynamics. Nonetheless, these
methods frequently demonstrated a degree of fragility, and
were heavily reliant on strong prior assumptions. Such depen-
dencies frequently culminated in their underperformance or
outright failure to yield satisfactory results when applied
beyond the confines of controlled experimental settings.

In contrast, deep learning methods based on convolutional
architectures [20], [21] directly capture implicit spatial
relationships between different parts through the training
inference process, often leading to commendable results.
Further-more, some researchers have enhanced the ro-
bustness of their techniques by integrating the topological
relationship of motion chains or co-ordinates as constraints
within their models. For example, Chen et al. [22] leveraged
the topological structure of hand joints as a constraint
to re-fine the regression of hand joint positions in hand
pose estimation from single depth images. In a similar
vein, Zhou et al. [23] estimated hand model parameters
via a convolutional neural network (CNN) and deduced the
hand pose through the application of forward kinematics.
In an effort to enrich the model input, Choi et al. [24]
incorporated geometric characteristics as additional modal-
ities and applied multi-task learning to enhance hand pose
estimation. Likewise, Zheng et al. [25] employed vectors in
lieu of joint coordinates within a finger-to-hand regression
framework to achieve more consistent estimation outcomes.
Addressing the pervasive issue of joint occlusion, certain
studies have explored the use of multi-view RGB models;
for instance, Simon et al. [26] reconstructed occluded
information and augmented detection capabilities through
multi-view reprojection and triangulation techniques. Ge et
al. [27] executed 3D gesture pose estima-tion by applying
CNN models to multiple RGB views. While these innovative
methods have advanced the handling of occlusion issues, they
have concurrently introduced additional deployment costs.
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FIGURE 1. Process of estimating hand pose using MLE-Loss.

A. HEATMAP-BASED METHODS
In the realm of pose estimation, heatmap-based methods are
universally recognized as the leading strategies in current
practice. Wei et al. [28] developed a progressive convo-
lutional neural net-work framework that excels in precise
pose esti-mation. An et al. [29] introduced an expedited
top-down hand pose estimation architecture that calculates
joint heatmaps for the hand. Tompson et al. [30] developed
an innovative architecture that incorporates an efficient
position refinement model, which is trained using heatmaps
to estimate the joint offset positions within diminutive image
regions. Nonetheless, a common challenge encountered in
the aforementioned methodologies is the utilization of the
non-differentiable argmax operation for coordinate recovery,
which hinders the capacity for end-to-end model train-ing
and introduces quantization errors that are inherently tied to
the heatmap resolution. To ad-dress this limitation, Sun et al.
[31] and Luvizon et al. [32] proposed the utilization of
smooth, differentiable soft-argmax functions for coordinate
regression from the heatmap. These ap-proaches enable end-
to-end training of themodel, although the regression accuracy
remains contingent on heatmap resolution.

B. REGRESSION-BASED METHODS
Regression-based approaches are designed to directly deduce
the mapping relationship from images to keypoint coor-
dinates or alternative parameters, with the ultimate aim
of pinpointing each joint’s position. These approaches are
favored for their succinct representation and typically result
in reduced computational demands. For instance, Gomez-
Donoso et al. [33] engineered a convolutional neural network
for the regression of joint positions from single RGB images.

Toshev and Szegedy [34] innovated a regression-based
estimator using Deep Neural Networks (DNNs) for achieving
high-precision in pose estimation tasks. Zhang et al. [35]
introduced Mediapipe Hands, which employs a two-stage
regression process for the detection of hands and sub-
sequent identification of 21 keypoint coordinates. The use
of regression methods is particularly prevalent in 3D pose
estimation research, where their lightweight computational
footprint is a significant advantage over methods typically
employed for 2D pose estimation. Chen et al. [36] enhanced
their model with a semantic segmentation sub-network,
which assigns semantic labels to input point clouds before
regressing the hand pose, thereby integrating high-level
understanding with precise localization. Ge et al. [37]
exploited a 3D deep network architecture to regress hand joint
coordinates directly. Zimmerman andBrox [16] took a unique
approach by estimating 2D coordinates through a regression
network and converting them into 3D coordinates using the
PosePrior network.

Overall, regression-basedmethods provide dis-tinct advan-
tages in terms of computational efficiency. However, these
methods often fall short of the accuracy achieved by heatmap-
based methods. Regression methods are typically more
suitable for computationally intensive tasks such as 3D pose
estimation [38] or for deployment on resource-constrained
edge devices. Conversely, heatmap-based methods excel in
performance but may lack end-to-end training capability and
face challenges in achieving a balance between computa-
tional accuracy and resources constraints.

In our work, we employ a heatmap-based approach for
our model due to its superior accuracy. Our approach incor-
porates a distinctive strategy, wherein our model employs
differentiable integration functions to regress coordinates,
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while simultaneously preserving the heatmap as an in-
termediate output. This innovative technique al-lows us to
effectively supervise the training of our model by utilizing
the coordinate information from the labels, thereby obviating
the requirement to generate supplementary label heatmaps.

III. METHOD
In this paper, we introduce an accurate and robust 2D
hand pose estimation framework. Our framework consists
of a sequential heatmap model augmented by several flow
model components. The heatmap model comprises two
primary components: a deep convolutional backbone network
responsible for global feature extraction, and a sequential
network consisting of multiple stages, each features similar
structures. The global features extracted by the backbone
network are shared as the same input across all stages.
In the first stage, only global features are utilized as input,
and in subsequent stages, the heatmaps of the current stage
are generated by combining the global features and the
heatmaps generate in the previous stage. Each stage includes
shallow head networks to estimate keypoint coordinates µ̂

and their variance σ̂ from contextual information, evaluating
the deviation ϵ between the ideal coordinates µ and the
predicted coordinates µ̂. Besides, at each stage, we use the
flow model to fit the probability density function P(ϵ|I ) of
the deviation ϵ conditioned on the input image I and calculate
the loss value for the current stage through MLE. Contextual
feature information is transmitted between adjacent stages
through likelihood heat-maps resulting in progressively
refined probability estimates of key parts distribution. The
overall loss function Lmle is derived by aggregating the loss
Lt of each stage, facilitating end-to-end joint training of
all stages within the heatmap model and flow models. This
approach enables supervision of the overall model parameters
and supplementing backward gradients.

In the subsequent sections, we will begin by introducing
the design of the sequential heatmap model. Following that,
we will explore the design of the MLE loss and elucidate its
principles in enhancing hand pose estimation. Finally, wewill
discuss some crucial implementation details.

A. SEQUENTIAL HEATMAP MODEL DESIGN
In the field of hand pose estimation, leveraging deep convo-
lutional neural networks has emerged as an efficient strategy
due to their expansive receptive fields. These networks
enable the capture of intricate implicit relationships among
various joints depicted in images. Furthermore, em-ploying
a sequential architectural promotes the flow and sharing
of information among different stages of the model. This
facilitates the enhanced utilization of features acquired in
earlier stages [39] during subsequent phases, thereby improv-
ing overall performance. However, as the depth of model
increases, certain side effects occur, including an increase in
the number of parameters and an elevated risk of gradient
vanishing during training. To address these challenges,
the implementation of the global feature concatenation

mechanism proves to be an effective strategy. This mecha-
nismmerges the heatmap output from the previous stage with
the global feature. By doing so, richer contextual information
is introduced to the current stage of the network. Additionally,
this approach establishes a direct gradient feedback path,
thereby aiding in alleviating the issue of gradient vanishing in
deep network. Through the adoption of this design, both the
ac-curacy and the robustness of the model can be effectively
enhanced.

1) BACKBONE NETWORK DESIGN
The backbone network utilized in our model is a customized
modification based on ResNet-50 [40]. While retaining most
of the original structure of ResNet-50, we removed its
classification head, prioritizing the extraction of high-level
features essential for estimating keypoints on the hands.
Consequently, the output feature map of this backbone
network undergoes 1/32 downsampling, with 2048 channels.
These high-level features are regarded as global features, and
their weights are shared across all stages of the model.

2) SEQUENTIAL NETWORK DESIGN
In order to estimate the coordinates and their uncertainties of
key hand parts, we devise a shallow head architecture with
dual output heads at each stage of the sequential network.
These two output heads are responsible for generating a
heatmap describing the probability distribution of hand
keypoint coordinates, and estimating its variance.

When processing the input feature maps, we initially
reduce the number of channels of the featuremap to 256 using
a 1 × 1 convolutional layer. This helps decrease compu-
tational complexity while preserving sufficient information.
Subsequently, to seamlessly integrate with the heatmaps
generate in the previous stage, we employ an average pooling
layer to uniformly adjust the resolution of the heatmap to
8 × 8, and another 1 × 1 convolutional layer is applied to
adjust its channels to 256. This preprocessing step ensures
that both the shared feature maps and the heatmaps have a
balanced influence at the current stage, as they maintain a
consistent number of channels. The sharing mechanism of
global features ensures that the model can access the same
high-level visual information in each stage, which is crucial
for effective feature fusion and information propagation
within each stage.

After the preprocessing of inputs, the concatenated feature
maps are entered into two specialized head, the heatmap head
and the variance head. The heatmap head utilizes a pure
convolutional network architecture and incorporates three
layers of deconvolutional operations. Each layer applies a
4 × 4 convolutional kernel with a stride of 2 to upsample
the feature map until it reaches the target resolution of
64×64. At the same time, the number of channels is adjusted
to K , resulting in K heatmaps (where K = 21). These
heatmaps represent the different types of hand keypoints that
to be detected. On the other hand, the input features were
compressed into one-dimensional data after being processed
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by an adaptive average pooling layer. These data were
subsequently input into the variance head, which consists of
two fully connected layers, to predict 2K values of variance
corresponding to the variance in the x and y directions for
each keypoint. During actual operation, all convolutional and
fully connected layers, except for the last layer, are followed
by a batch normalization layer and ReLU activation function,
aiming to prevent issues like vanishing gradients and to
accelerate the convergence speed of the model.

The predicted coordinates µ̂k of the hand joints for the
k-th type of hand are calculated through integral regression of
the heatmap Hk . This method involves weighted summation
of the pixel values in the heatmap to obtain the position
estimation of each hand joint, as shown below:

µ̂k =

H∑
py=1

W∑
px=1

p • H̃k (p) (1)

where H and W represent the height and width of the
heatmap, p represents an arbitrary position (px , py) in the
domain ω of the heatmap Hk . H̃k is the normalized heatmap
within the domain ω, and H̃k (p) =

eHk (p)∫
q∈ω e

Hk (q)
, where all

elements are non-negative and sum up to 1, and q represents
an arbitrary position within ω but independent of p. The
integration method facilitates a smooth and differentiable
process for mapping the heatmap to coordinates. Conse-
quently, this characteristicmakes it possible to train themodel
directly via backpropagation, and avoids the consideration of
quantization errors.

B. LEARN WITH MLE LOSS
1) BASIC HEATMAP LOSS
The most prevalent heatmap losses usually involve calcu-
lating the first-order or second-order distances between the
estimated heatmap H and the target heatmap Hg, followed by
the calculation of the ℓ1 or ℓ2 loss. Taking the ℓ2 loss as an
example, it can be represented by the following equation:

f =

K∑
k=1

∑
p∈ω

∥H k (p) − H k
g (p)∥

2
2 (2)

where ω denotes the domain of the heatmap, and p represents
any position in the heatmap. This equation quantifies the
overall disparity between the estimated heatmap H k and
the target heatmap H k

g by evaluating the ℓ2 distance across
all pixel positions between each keypoint class. The target
heatmapHg is conventionally constructed through a Gaussian
kernel function applied to the label coordinates. This strategy
employs soft labeling techniques, fostering a gradual, smooth
regression process aimed at mitigating the influence of the
noise of labels. However, fundamentally, this method still
induces the model parameters to conform the distribution of
labels with noise.

In addition, various forms of regression paradigms stem
from maximum likelihood estimation of the expected distri-
bution of the estimated state. The ℓ2 loss assumes that the

target distribution follows a standard Gaussian distribution,
which is a strong assumption in its design. However, in real
scenarios, simple probability density functions often fail to
fully capture the distribution of real data. The purpose of
the loss function is to quantify the difference between the
predictions generated by the model and the actual data.
Obviously, when we can more accurately estimate the true
probability distribution P(µ) of key coordinates µ, the loss
function becomesmore sensitive to deviations betweenmodel
predictions and reality. As a result, it provides more accurate
parametric feedback during training.

2) MLE LOSS DESIGN
Building on the previous discussion, we aim to build an
expected distribution model that is more in line with the
actual data distribution than a simple Laplace or Gaussian
distribution. This endeavor seeks to formulate a more effec-
tive loss function conducive to the model’s understanding
of the real data distribution. Simultaneously, under the
assumption that the perfect labeling is impossible, our goal
is for the model to be able to estimate the distribution
of label µ̂g around the ground truth µ. In other words,
we aim to estimate the distribution of deviations rather than
the distribution of µ̂g itself. By doing so, we mitigate the
influence of the noise of labels and address the issue of
weight dispersion during training, as the distribution of µg
varies with different inputs I . Conversely, the distribution
of deviations between the labels and the ground truth tends
to exhibit greater stability, rendering it more amenable to
neural network fitting. We define the estimated deviation as
ϵ, which quantifies the disparity between the label and the
ground truth. The impact of deviation ϵ on the coordinates is
expressed as follows:

ϵ =
µ − µ̂

σ̂
(3)

where µ represents the ideal coordinates to be estimated, µ̂

represents the initial coordinates estimated by the heatmap
model, and σ̂ represents the variance corresponding to the
initial coordinates. When formulating the loss function,
we follow the methodology proposed by Li et al. [41]. The
central concept revolves around estimating the distribution of
deviations ϵ utilizing a flowmodel. This entails learning intri-
cate and unknown true distributions by employing smooth
reversible mappings of simple predefined distributions.
Within the implicit space, we posit that the random variable z
adheres a straightforward initial distribution: P(z) = N (0, 1).
The flow model defines a smooth reversible mapping: fφ :

R2
→ R2, where φ represents the learnable parameters in

the flow model. Through the mapping fφ , we can transform
the random variable z, characterized by a known distribution
in the implicit space, to the random variable ϵ to be estimated
in the real space: ϵ = fφ(z), and we have z = f −1

φ (ϵ). With
a well-trained and understood reversible mapping fφ , we can
ascertain the probability density distribution of ϵ, denoted as
P(ϵ|I ). Given the input image I , we construct the loss function
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L by maximizing the probability of the predicted coordinate
µ being at the true label µg:

L = −logPθ,φ(µ|I )|µ=µg

= −logPφ(ϵg|I ) − log(det
dϵg

dµg
)

= −logPφ(ϵg|I ) + logσ̂ (4)

where ϵg = (µg − µ̂)/σ̂ , represents the normalized deviation
between the true labelµg and the predicted coordinate µ̂with
respect to the estimated variance σ̂ . The learning process aims
to minimize the value of the loss function to optimize the
parameters θ of the heatmap model and the parameters φ

of the flow model. The specific form of the loss function is
adaptive and depends on Pφ(ϵ|I ), which is determined by the
parameters φ of the flow model.
During training, both θ and φ are optimized simultane-

ously, with φ gradually converging to stability throughout the
training process. For different input images I , the heatmap
model estimates different values of µ̂ and σ̂ , leading to a
distribution of µ that belongs to a density function family
with varying means and variances.

3) TRAINING WITH MLE LOSS
Our pipeline consists of a heatmap convolutional network
and multiple flow models. The heatmap model is responsible
for extracting high-level features from input images and
estimating the deviation between the predicted results and
ground truth at different stages. At stage-t , the deviation ϵt
is evaluated based on the estimated key coordinates µ̂t and
its variance σ̂t from the current stage. The probability density
function Pt (ϵ|I ) of the deviation is fitted through the flow
model of the current stage, and the current loss function Lt
is constructed by maximizing the probability of the predicted
coordinates µt being at µg in the current stage:

Lt = −logPθ,φ(µt |I )|µt=µg

= −logPφ(ϵtg|I ) + logσ̂t (5)

where ϵtg = (µg − µ̂t )/σ̂t . At each stage-t(t > 1), the
shallow head network takes global features along with the
heatmap output from the preceding stage as inputs (with only
global features used in stage-1). It then computes estimates
for the coordinates µ̂t and its variance σ̂t . The flow model
estimates the distribution of labels around the ground truth ϵt
based on a predetermined distribution P(z) in the latent space,
enabling the determination of the specific probability density
function of ϵt and facilitating the calculation of the regression
paradigm through MLE.

Deeper stages in our model progressively refine predic-
tions towards the ideal coordinates µ, albeit with increasing
training complexity. While the global feature concatenation
helps alleviate gradient vanishing, training challenges may
still arise. To address this, we aggregate stage losses into an

overall loss function:

Lmle =

T∑
t=1

Lt (6)

Eq. (6) guiding parameter optimization across the heatmap
network and flow models, while gradient supplementation at
each stage ensures stable and efficient learning. We choose
T = 5 to balance model depth and size. Additionally, this
overall loss function supervises the outputs of each stage to
ensure their meaningfulness. The specific calculation process
is illustrated in Figure 3. The effectiveness of the proposed
loss function will be further demonstrated in Section IV-B of
this paper, along with showcasing its optimization benefits in
practical applications.

C. IMPLEMENTATION DETAILS
1) TRAINING AND INFERENCE
The overall loss function Lmle relies on the parameters
of both the heatmap model θ and the flow models φt .
Through an end-to-end training strategy, both θ and φt
are optimized simultaneously. In the ideal scenario upon
completing training, the deviation ϵt gradually decreases.
Consequently, during inference, only the heatmap model
needs to be invoked without running the flowmodels, and the
estimated initial coordinates µ̂t from the heatmap model can
be considered as ideal outputs. The pseudocode for training
and inference is shown in Algorithm 1.

2) FLOW MODEL
In terms of flowmodel, we adopt the design of RealNVP [42],
which does not directly construct complex mapping func-
tions, but constructs a flexible and easy-to-handle bijection
function by superimposing a series of simple bijections,
avoiding loss of control in computational complexity, as:

x = fφ(z) = fk ◦ fk−1 . . . ◦ f1(z) (7)

where ◦ represents the composition of functions. In each
step of the transformation fk , a portion of the input vector
z remains unchanged, while the remaining part is translated
or scaled as needed. The entire transformation process is
repeated k times, where k is set to 6 in our study.

IV. EXPERIMENT
In this section, we conduct extensive experiments to
demonstrate the effectiveness of our proposed approach.
We evaluate the performance of our method using two widely
used hand pose datasets: FreiHand and RHD.

The Freihand dataset offers a challenging dataset for hand
pose and shape estimation from RGB images, comprising
13,240 training samples and 3,960 testing samples. The
training set encompasses 32,560 unique real images gen-
erated through four distinct post-processing methodologies.
We acquire the 2D coordinates of 21 hand keypoints in the
image coordinate system by depth normalization, utilizing the
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FIGURE 2. Illustration of the heatmap model. The input image size is constrained to 256 × 256, with a ResNet50 backbone fine-tuned for
feature extraction. The extracted global features serve as the shared input across all stages. In stage-1, the global features are used to
compute the deviation between the predicted coordinates and the ground truth, followed by the calculation of the corresponding MLE
loss. In stage-2 and subsequent stages, the input comprises the global features and the heatmap estimated in the previous stage. This
process is repeated iteratively throughout the pipeline.

FIGURE 3. Calculation of the overall loss function. In each stage, the probability distribution of the estimated deviation ϵ̂t is calculated
through the flow model t , and the MLE loss for that stage is obtained by maximizing the probability of the ideal coordinates being located
at the label. The overall loss function Lmle is then computed as the sum of losses across all stages.

3D coordinates in the camera coordinate system along with
the intrinsic matrix provided by the dataset.

The RHD dataset consists of over 40,000 training samples
and 2,728 testing samples, focusing on hand pose estimation.
Each sample includes the 2D coordinates of 21 keypoints
for both the left and right hands. To integrate it into our
training framework, we crop each sample into partial images
of the left and right hands based on the bounding boxes of
the hands, and assign the corresponding hand keypoint labels
to the cropped images. Samples with fewer than 10 visible
keypoints are excluded. Following these preprocessing steps
and augmentations, we get 60,375 training samples and 3,807
testing samples.

In this section, we first outline our experimental setup,
introducing the training procedure and evaluation metrics.

Subsequently, we conduct self-comparisons to validate the
efficacy of individual components within our model. Finally,
we compare our approach to mainstream methods, providing
both quantitative and qualitative results to comprehensively
demonstrate the performance of our approach.

A. EXPERIMENTAL SETTING
1) TRAINING PROCESS
All experiments are conducted on a workstation equipped
with four NVIDIA RTX 3090 GPUs, each with 24GB of
memory. We conduct training for over 120 epochs on both
the Freihand and RHD datasets. The resolution of all images
is set to 256×256. We initialize the learning rate to 1e-3
and decrease it to 1e-4 after 90 epochs, continuing training
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Algorithm 1 Pseudocode for Training and Inference
Set: Num of stages N
Initialize: Heatmap model parameters θ , Flow model parameters 8N //8N = [φ1, φ2, . . . , φN ]
1: for I , µg in data-loader do
2: if mode == training then
3: Lmle = 0// Initialize MLE loss
4: for t in range N do
5: µ̂t , σ̂t = fθ (I )[t]// Evaluate coordinates and its variance using heatmap model
6: φt = 8N [t]
7: ϵt =

(
µg − µ̂t

)
/σ̂t// Evaluate deviation to Eq. (3)

8: Lt = fφ1 (ϵt) // Evaluate MLE Loss in stage-t to Eq.(5)
9: Lmle+ = Lt// Evaluate the overall loss to Eq. (6)
10: end for
11: [θ, 8N ].update
12: else ▷ mode == inference
13: µ̂N = fθ (I )[N ]// Evaluate estimated coordinates from heatmap model
14: return µ̂N // Directly return estimated coordinates from heatmap model to speed up inference
15: end if
16: end for

until the model reaches convergence. We utilize the Adam
optimizer with a batch size of 128. The implementation of
the network is based on the PyTorch framework.

2) TRAINING PROCESS
We employ Normalized Mean Error (NME) and Probability
of Correct Keypoints (PCK) as evaluation metrics, as shown
below:

PCKσ =

D∑
s=1

(
K∑
i=1

(δ( ||xsi−x̂si||
K×max(w,h) <= σ )))

D
(8)

NME =

D∑
s=1

(
K∑
i=1

( ||xsi−x̂si||
K×max(w,h) ))

D
(9)

where the term xsi represents the ground truth coordinates of
landmark i, and x̂si corresponds to the predicted coordinate
by the model. Here, i signifies the index of hand landmarks,
encompassing a total of 21 types of hand joints (K =

21), and s indicates the index of the sample within the
dataset. D represents the total number of samples contained
in the dataset. In Eq. (8), δ is defined as the indicator
function, which is set to 1 in our experiments, and σ

represents the normalized distance threshold. The variables
w and h stand for the width and height of the hand
bounding box.

B. SELF COMPARISONS
We first evaluate the effectiveness of the different stages
in our method on the RHD dataset. As shown in Figure 4,
we conduct a comparative analysis of the performance
exhibited by each stage of our approach, utilizing the PCK
metric as a benchmark. Our observations show that there is a
significant improvement in performance during the first three

FIGURE 4. Comparison of PCK scores across various stages of our
approach on the RHD dataset. The accuracy increases with each
additional stage, achieving optimal perfor-mance at stage-5.

stages, followed by a phase of diminishing returns, with no
substantial improvement after the fifth stage.

Consequently, to achieve an optimal balance between
model complexity and performance efficacy, we limit
the architecture to encompass five stages. This consistent
improvement in model performance underscores the signif-
icance of integrating shared features and heatmaps from
preceding stages. Such integration facilitates the incorpora-
tion of a broader contextual spectrum into the current stage
network, thereby furnishing reliable prior information that
helps produce more precise results.

Moreover, we delve into the effects of MLE-Loss on
the efficacy of our approach. While retaining the core
architecture of the heatmap model, we replace the loss
function of our method with the widely utilized heatmap
ℓ2 loss [43], [44], [45] and Integral Regression Loss [31],
conducting retraining on the Freihand dataset accordingly.
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FIGURE 5. Comparison of different loss functions on the Freihand dataset. The left panel (a) illustrates the influence of different loss
functions on the NME metric for estimating 11 hand joints (R: root, T: tip). The overall mean NME is presented in paren-theses. The right
panel (b) demonstrates the effect of different loss functions on the percentage of good frames in terms of PCK metric.

FIGURE 6. Comparison of different loss functions on the Freihand dataset. The left panel (a) illustrates the influence of different loss
functions on the NME metric for estimating 11 hand joints (R: root, T: tip). The overall mean NME is presented in paren-theses. The
right panel (b) demonstrates the effect of different loss functions on the percentage of good frames in terms of PCK metric.

As depicted in Figure 5, MLE Loss demonstrates superior
performance in estimating 11 hand joints according to the
NME metric. When comparing using the PCK0.2 metric,
MLE Loss outperforms the Integral Regression Loss by
0.37% and the heatmap ℓ2 loss by 2.7%.

C. COMPARISONS WITH MAINSTREAM METHODS
We conduct a comprehensive comparison of our pro-
posed pipeline against three widely recognized methods,
namely RLE [41], Internal Pose [31], and CPM [28].
To ensure fairness, we meticulously train each method
using their recommended configurations on both the Frei-
hand and RHD datasets, resulting in satisfactory training
outcomes.

On the Freihand dataset, the performance of our method
and mainstream methods in terms of NME and PCK at
different thresholds is depicted in Figure 6. The performance
on the RHD dataset is shown in Figure 7. Our method
outperforms the aforementioned mainstreammethods in both
PCK and NME metrics on both the Freihand and RHD
datasets.

Some qualitative results on the Freihand and RHD
datasets are shown in Figure 8. Representative scenarios
from the datasets are selected as examples, encompass-
ing different viewpoints, various gestures, backgrounds
with complex features that may be confused with
the hand region, and challenging scenarios with occlusions
either from external objects or self-occlusion of hand
joints. The observed performance of our method in
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FIGURE 7. Comparison of different loss functions on the Freihand dataset. The left panel (a) illustrates the influence of different loss
functions on the NME metric for estimating 11 hand joints (R: root, T: tip). The overall mean NME is presented in paren-theses. The
right panel (b) demonstrates the effect of different loss functions on the percentage of good frames in terms of PCK metric.

FIGURE 8. Qualitative results of our method on the Freihand and RHD datasets respectively. It is evident from the results that our
approach maintains robustness and accuracy even in challenging scenarios.

handling these challenging scenarios is ideal, demonstrat-
ing good accuracy and robustness under such
conditions.

V. CONCLUSION
In this study, we propose a novel sequential convolutional
neural network model driven by MLE-Loss. The main
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objective of this model is to characterize the distribution
of deviations between the estimated results and the ground
truth, aiming to improve the accuracy of predicting the ideal
labels at the labeled data points. This is achieved through the
calculation of MLE Loss, which facilitates the prediction of
ideal coordinates while effectively mitigating the influence
of noise. To evaluate the effectiveness of our approach,
we conduct comprehensive evaluations by performing self-
comparisons and comparisons with mainstream methods on
two challenging public datasets, namely Freihand and RHD.
Our experimental findings demonstrate that our proposed
MLE-Loss Driven Robust Hand Pose Estimation achieves
robust hand pose estimation with high precision.

Furthermore, we acknowledge that our network architec-
ture is overall overly complex, leaving room for further
simplification and improvement. In future research, we will
focus on enhancing the conciseness of the network structure
and continue to explore the untapped potential of the MLE-
Loss. This will enable us to further enhance the accuracy
and efficiency of our approach for high-precision and robust
gesture recognition.
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