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ABSTRACT In this paper, a novel robust iterative learning control strategy for linear discrete systems in a
finite frequency domain is proposed. The strategy first converts the iterative learning control process into a
discrete linear repeating systemmodel by means of the equivalence transformation technique, and employs a
convex bounded uncertainty domain to define the uncertainty range of the system. Subsequently, the control
law design problem in discrete linear repetitive systems is solved by utilizing the generalized KYP lemma,
which is transformed into the problem of solving linear matrix inequalities (LMIs). The designed control law
is able to satisfy the robustness requirement in the direction of the iteration axis and ensure the monotonic
convergence of the dynamic error between each experiment, so as to realize the expected control objective
step by step. Finally, the advantages and practicality of the method are experimentally verified, and its
potential limitations and constraints are analyzed and summarized.

INDEX TERMS Uncertainties, robust convergence, Kalman-Yakubovich-Popov, linear discrete system.

I. INTRODUCTION
Iterative learning control (hereinafter referred to as ‘‘ILC’’)
is a control method for repetitive motions whose goal is to
improve the tracking performance of a system by learning
the behavior and applying repetitive strategies. The method
works by continuously correcting the deviation between the
actual and desired outputs of the system, rather than relying
on an ideal control signal. Through many iterations, the
output of the system will gradually approach the desired
trajectory [1], [2], [3]. ILC technology offers a number
of significant advantages, including its simplified controller
design, low dependence on a priori knowledge, excellent
adaptability, and simplified implementation in [4], [5], [6],
and [7]. It has been applied to deal with many practical
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problems including industrial batch process [8], medical
equipment [9], intelligent transportation system [10], flight
control system [11]. In addition, ILC has been successfully
applied in the field of vehicle trajectory tracking. ILC
can adaptively adjust the control inputs based on previous
tracking experience to cope with the influence of different
road conditions, load changes or other environmental factors.
Secondly, ILC can gradually accumulate experience and
optimize the control strategy after performing trajectory
tracking tasks for many times, so as to improve the
tracking accuracy and robustness of the system. It can
also learn and adjust online in a dynamic environment to
cope with real-time changes in trajectory and environmental
conditions, thus realizing more robust trajectory tracking
performance [12].

According to the literature [13], ILC is defined in essence
as a two-dimensional systemmodel that unfolds its properties
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along the time axis and the number of batches. In each
iteration of the experiment, ILC system operates and learns
processes along the timeline. At the end of experiment,
the system is reset to its initial state, ready for the next
experiment. By adopting a unified two-dimensional systems
theoretical framework, the dynamic behavior of ILC system
in the time dimension and its operational characteristics can
be analyzed in depth, as well as the impact of change in
the number of experiments on the performance of system.
This analytical approach helps to fully understand the nature
of learning process and effectively improve the transient
response capability and tracking accuracy of system [14].
Furthermore, there are widespread uncertainties in practical
industrial systems, such as measurement errors, external
disturbances, sensor errors, etc, these uncertainties can lead to
unstable dynamic performance of the system [15]. Therefore,
studying the ILC problem of uncertain systems has important
practical significance.

It is worth mentioning that two-dimensional system theory
plays a key role in analyzing the dynamic performance
and learning behavior of ILC. For discrete linear system
with polyhedral uncertainties and actuator failures, a robust
control law based on parameter dependent Lyapunov function
is designed in [16]. Reference [17] transformed multi-stage
batch processes into equivalent 2D switching fault-tolerant
rosser models and designed a hybrid fault-tolerant law
to ensure exponential operational stability. Based on the
theoretical analysis of 2D roesser model, in the work
of [18], it was explored the conditions for algorithm
convergence in ILC and further proposed a new control
strategy. The strategy effectively solves the point-to-point
tracking problem by themethod of trajectory update. Through
an in-depth analysis of the state transfer matrix characteristics
of the time-varying 2D model and the system response,
a comprehensive predictive ILC algorithm is designed,
aiming to improve the tracking accuracy and stability of the
system.

However, the above ILC algorithm mainly relies on
Lyapunov stability theory and may encounter difficulties in
practical applications [19]. Especially when reference signals
and operational specifications are involved, performance
metrics and design specifications in the frequency domain
are particularly critical. In addition, the above methods
are more suitable for the study of nonlinear systems [20],
whereas this paper focuses on the exploration of linear
systems. Therefore, it becomes crucial to develop an adaptive
ILC framework that can achieve the desired performance
metrics in the specified frequency range. To meet specific
specification requirements, this paper establishes a link
between the frequency domain energy metrics and the
conditions in the LMI format using the generalized KYP
method. The generalized KYP method is chosen because it
is not only widely applicable but also easy to solve, which
makes the stability analysis and controller design for linear
dynamic systems more convenient, efficient and reliable. The
equivalence of this approach ensures that the redesigned ILC

scheme can achieve the desired control performance in a
predetermined frequency range. In addition, by introducing
the theory of repetitive process stability, this study further
deepens the understanding of ILC law in discrete linear
dynamics models. The generalized KYP lemma has direct
capability to address diverse performance specifications
within finite frequency range in [21]. Reference [22] employs
generalized KYP lemma to transform the analysis of system
stability and control law design for discrete linear systems
with polyhedral uncertainties and state delays. Following this
lemma, the task can be reformulated in a finite frequency
domain and the problem can be solved with the help of
LMI. By introducing a state feedback mechanism, the system
is able to remain stable and ensure robust stability even in
the presence of intra-norm uncertainty. This mechanism not
only enhances the robustness of system but also ensures
the convergence of error in the monotonic test frequency
direction in [23].
In the existing studies [24], [25], although the time lag and

time variation in the system are considered, the exploration of
the system uncertainty is neglected. Therefore, in this paper,
we further explore robust ILC strategies for discrete linear
systems with polyhedral uncertainty in a finite frequency
domain based on previous studies. The research in this paper
makes the following important contributions:

1) The article presents a comprehensive robust ILC
strategy that is specifically designed for polyhedral
uncertainty in discrete linear systems and modeled in
the frequency domain.

2) For discrete linear repetitive operation modes in
a specific frequency range, this paper constructs
a new robust controller design scheme using the
support of generalized KYP priming. The scheme not
only satisfies the performance specification, but also
ensures the stability of the system and monotonic
convergence between experiments. In addition, this
design methodology can be extended and applied
to other control systems with similar characteristics,
providing an effective design framework for these
systems.

3) Through experimental verification, this paper confirms
the feasibility of the proposed robust ILC strategy and
controller design scheme, and provides solid support
for its application in real systems.

In this article, symbols 0 and I denote the zero matrix and
identity matrix, respectively, with suitable dimensions. For
matrix Y , Y > 0 (Y < 0), represents a positive definite
(negative definite) matrix. sym(Y ) represents symmetric
matrix Y + Y T . Y⊥ is orthogonal complement of matrix Y .
Also, diag {Y1,Y2, . . . ,Yn} stands for diagonal matrix. The
notation ∗ stands for transposition of elements in symmetric
positions. Finally, ρ(·) represents spectral radius of matrix
argument.

To proceed, following lemmas are widely used below.
Lemma 1 [26]: Let 0 ∈ Rp×p satisfy that 0 = 0T , 3 and

6 are matrices with columns p, there exists an invertible
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matrixW such that following matrix inequalities hold

0 + sym
{
3TW6

}
< 0 (1)

only the following formula holds

3⊥
T
03⊥ < 0, 6⊥

T
06⊥ < 0 (2)

Lemma 2 [27]: For a discrete linear time-invariant system
represented by a transfer function matrix G (z) and a
frequency response matrix G

(
ejθ

)
= C

(
ejθ I − A

)−1B + D,
the following conditions are equivalent.

i) Frequency domain inequality[
G

(
ejθ

)
I

]T
5

[
G

(
ejθ

)
I

]
< 0, ∀θ ∈ � (3)

where 5 is a given real symmetric matrix, � denotes
frequency range specified as in Table 1.

ii) There exist Hermitian matrices P andQ satisfyingQ >

0 such that[
A B
I 0

]T
(8⊗ P+9 ⊗ Q)

[
A B
I 0

]
+2 < 0

(4)

where

8 =

[
−1 0
∗ 1

]
, 9 =

[
τ v
∗ ς

]
. (5)

Table 1 shows the values of τ , υ, and ς under different
conditions of θ ∈ �.

TABLE 1. System frequency range.

II. PROBLEMS DESCRIPTION
Consider discrete linear repetitive processes within finite time
intervals, whose state space model is represented as{

xk (n+ 1) = Axk (n)+ Buk (n)
yk (n) = Cxk (n) , 0 ≤ n ≤ α − 1

(6)

where k ≥ 0 stands for the number of iterations, and α <∞

is period length. In addition, xk (n) ∈ Rn, uk (n) ∈ Rm and
yk (n) ∈ Rl represent state vector, control input and output of
system at the k-th n time, respectively. It is generally believed
that at the beginning of each experiment, xk (0) = x0 is
defined, and the entry in the initial experimental output vector
y0 (p) is a known function of entire experimental length
with respect to P. Furthermore, if the matrices in system (6)
are uncertain, it is assumed that they depend on the given
expression for real parameter vector ξ in the polyhedron set as

A =
M∑
i=1

ξiAi,B =
M∑
i=1

ξiBi,C =
M∑
i=1

ξiCi (7)

where Ai, Bi and Ci define vertices of polyhedron, and M
represents the number. The value of term i in Eq.(7) should
be in the range of 1 to M to correspond to the description of
each vertex and uncertainty range of polyhedron. The convex
bounded uncertainty domain is defined as �0 in which the
uncertain model matrix is included

�0 = {(A,B,C)|(A,B,C) =
M∑
i=1

ξi(Ai,Bi,Ci)} (8)

where ξi ≥ 0,
∑M

i=1 ξi = 1.
Introduce reference trajectory yd (n) while defining track-

ing error of experiment k

ek (n) = yd (n)− yk (n). (9)

ILC control rate of system (6) is determined by the
combination of previous experimental input and correction
terms within ILC strategy for current experimental input{

uk+1(n) = uk (n)+1uk+1(n)
u0(n) = 0, n ∈ [0, α − 1]

(10)

where u0 (n) denotes initial input vector of experiment,
1uk (n) is called a correction calculated using previous
experimental information. And analyze it by introducing the
intermediate vector ηk+1 (n+ 1)

ηk+1 (n+ 1) = xk+1 (n)− xk (n) . (11)

In addition, with the progress of experiment, the con-
vergence speed of output trajectory of control system is
improved through learning experience. Integration of experi-
mental tracking errors can serve as an extended experience
to improve control performance. Error compensator learns
from PD-type ILC controller to generate a feedforward
PD-type ILC. As research in literature [25], [28], state feed-
back controllers are applications for enhancing system robust
stability, using PD-type learning terms for experimental error
convergence, and introducing tracking error compensators
to improve tracking performance during the experimental
process. Its dynamic model is

x̂k (n+ 1) = Aex̂k (n)+ Beek (n+ 1) (12)

where x̂k (n) ∈ Rn represents state vector of compensator,
{Ae,Be} represents compensator structurematrix, with appro-
priate dimensions and values. According to it, compensator
structure in Eq. (12) can be determined. Reference [25]
discusses design process of error compensator and provides
guidance for design method of compensator parameters.
PID-type selection error compensator is used in this paper,
where

Ae =

 0 0 0
0 I 0
−I 0 0

 , Be =

 I
I
I

 ,

x̂k (n) =

 ek (n)∑n
i=1 ek (i)

ek (n)− ek (n− 1)

 . (13)

VOLUME 12, 2024 99519



Q. Xia et al.: Robust Feedforward Control of Discrete Uncertain Systems

III. ILC DESIGN IN REPETITIVE PROCESS FORM
The design of ILC process in this paper utilize the theory
of repeated process stability. To enhance the tracking ability
of system and fully leverage ILC law. Update law of
formula (10) is in the following form

1uk+1(n) = K1ηk+1(n+ 1)+ K2x̂k+1(n)+ K3ek (n)

+ K4(ek (n+ 1)− ek (n)) (14)

where K1 represents the state feedback controller parameter,
K2 denotes the gain matrix of the error compensation
controller, K3 and K4 are the roburst ILC learning gains of
previous trial tracking error ek (n). When K2 = 0, it is the
control law of PD-type ILC.

By applying the Eq. (6) to Eq.(12), this paper derives the
resultant system model

ηk+1 (n+ 1) = Aηk+1 (n)+ B1uk+1 (n)
x̂k (n+ 2) = Aex̂k (n+ 1)− BeCAηn+1 (n)

−Been−1 (n+ 1)− BeCB1un+1 (n)
ek (n+ 1) = ek−1 (n+ 1)− CAηn+1 (n)− CB1uk+1 (n)

(15)

To simplify the calculation, setting L = K3 − K4.
Meanwhile, the augmented state vector is defined as

Xk (n) = [ηk+1(n)T x̂k (n+ 1)T ek−1(n+ 1)T ]T (16)

and application of (14) to (15), turning it into{
Xk (n+ 1) = A1Xk (n)+ B1ek−1 (n+ 1)
ek (n+ 1) = C1Xk (n)+ D1ek−1 (n)

(17)

where

A1 = Â1 + B̂1K̂ , B1 = B̂2 + B̂1K4,

C1 = Ĉ1(Â1 + B̂1K̂ ), D1 = I − CBK4

Â1 =

 A 0 0
−BeCA Ae 0

0 0 0

 , B̂1 =

 B
−BeCB

0

 ,

B̂2 =

 0
Be
I

 , K̂ =
[
K1 K2 L

]
,

Ĉ1 =
[
−C 0 0

]
.

In addition, the model (17) is called the tracking error
transfer function matrix, which associates previous test error
with current test error

1uk+1(n) = K1ηk+1(n+ 1)+ K2x̂k+1(n)+ K3ek (n)

+ K4(ek (n+ 1)− ek (n)). (18)

Finally, the robust stability and controller design issues of
the ILC system described in model (17) are studied in the
frequency domain.

IV. STABILITY CONDITIONS WITHIN A FINITE
FREQUENCY RANGE
The following lemma describes the conditions that need to be
met for the stability of the ILC dynamic model described in
model (17) along the number of experiments.
Lemma 3 [29]: Assuming that coefficients {A1,B1} are

controllable and coefficients {C1,A1} are observable, the sta-
bility of linear repetitive process described by equation (17)
is determined by the validity of following inequalities:

i) ρ(D1) < 1;
ii) ρ(A1) < 1;
iii) The transfer function G (z) = C1(zI − A1)−1B1 + D1

has all eigenvalue magnitudes strictly less than 1 on the
unit circle |z| = 1.

Each condition in lemma has a specific physical mean-
ing. Condition (i) guarantees the asymptotic stability of
experiment, and condition (ii) ensures convergence over
the repetition period time. It can be intuitively expected
that this condition represents the robust stability of the
current experimental state dynamics. For condition (iii), it is
necessary to calculate the modulus of all eigenvalues on the
unit circle, which makes calculation difficult. In addition, the
limited frequency range of the proposed control system work
performance has important practical significance, especially
in ILC systems where the main frequency distribution of
the reference signal is within the limited range. Therefore,
monotone convergent ILC algorithm is designed by means
of generalized KYP lemma in a specific frequency range.
The basic inequality obtained by applying condition (iii) of
lemma 1 is

ρ(G(ejθ )) < 1,∀θ ∈ � (19)

and � denotes the finite frequency ranges defined in Table1.
Alternatively, a Hermitian matrix H (ejθ ) > 0 can be used to
represent the final result, such that[

G(ejθ )
I

]T [
H (ejθ ) 0

0 −H (ejθ )

] [
G(ejθ )
I

]
< 0. (20)

Solving Eq. (20) poses a challenge due to the interde-
pendency of H

(
ejθ

)
and θ . Therefore, a multiplier such as

H
(
ejθ

)
= H or H

(
ejθ

)
= I can be applied, giving up

its conservatism to simplify the calculation. Next, set the
matrix 5 in Eq. (3) as

5 =

[
H 0
0 −H

]
,H > 0. (21)

The new number along the test error based on LMI
monotone convergence condition and the ILC design limited
frequency-domain performance can be determined by the
following result.
Lemma 4 [18]: If positive definite matrices S,P,Q,R, and

matricesW1, W2 are existent, following inequality holds

AT1 SA1−S < 0 (22)

then, within the limited frequency range defined in Table 1,
system (17) under ILC is stable and actual output of the
control system asymptotically tracks the desired trajectory.
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 −P+ τQ
∗

∗

υQ−W1
P+ ςQ+ sym(AT1W1)+ CT

1 RC1
∗

→

←

0
W T

1 B1 + C
T
1 RD1

−R+ DT1 RD1

 < 0

(23)

In this paper, we focus on the uncertainty of the output
matrix C in Theorem 1 in finite frequency domain range,
remove the constraints on C , and discuss and prove it
exhaustively. In dealing with uncertainty, the ILC designed
in this paper not only considers the uncertainty of system
dynamics, but also includes the uncertainty of the observation
equations. This is different from the traditional PD-type ILC,
which usually does not involve the variability of the output
matrixC , as it mainly focuses on the iterative learning process
in the controller design. In addition, Eq. (24) is introduced to
relate the matrix variables to the affine parameters of matrix
separation of the discrete linear system. This move implies
that when dealing with the case described by the polyhedral
Eq. (8), one is not only concerned with the linear nature of
the system, but must also take into account the uncertainties
inherent in the model.

P̂(ξ ) =
N∑
i

ξiP̂i, P̂i > 0, i = 1, . . . ,N .

Q̂(ξ ) =
N∑
i

ξiQ̂i, Q̂i > 0, i = 1, . . . ,N .

R̂(ξ ) =
N∑
i

ξiR̂i, R̂i > 0, i = 1, . . . ,N .

Ŝ(ξ ) =
N∑
i

ξiŜi, Ŝi > 0, i = 1, . . . ,N . (24)

Theorem 1: ILC learning law (10) and its correction
term (14) are applied to a discrete linear system represented
by (6). (7) and (8) define system uncertainty. If matrices
Ŝi > 0, P̂i > 0, R̂i > 0, Ŵ1, Ŵ2, Y1 and Y2 exist, make
the following inequality hold for 1 ≤ i ≤ j ≤ N

Zii < 0 (25)

Zij + Zji < 0 (26)

Mii < 0 (27)

Mij +Mji < 0 (28)

where

Zii =
[
−Ŝi Â1iiŴ1 + B̂1iiY1
∗ Ŝi − Ŵ1 − Ŵ T

1

]
,

Zij =
[
−Ŝi Â1ijŴ1 + B̂1ijY1
∗ Ŝi − Ŵ1 − Ŵ T

1

]
,

Mii =


−P̂i + τ Q̂i υQ̂i − Ŵ1

∗ P̂i + ςQ̂i + sym(Â1iiŴ1 + B̂1iiY1)
∗ ∗

∗ ∗

0 0

B̂2 + B1iiY2 (Ĉ1iÂ1iiŴ1 + Ĉ1iB̂1iiY1)
T

−R̂i (Ŵ2 − CiBiY2)
T

∗ R̂i − Ŵ2 − Ŵ T
2

 ,

Mij =


−P̂j + τ Q̂j υQ̂j − Ŵ1

∗ P̂j + ςQ̂j + sym(Â1ijŴ1 + B̂1ijY1)
∗ ∗

∗ ∗

0 0

B̂2 + B1ijY2 (Ĉ1iÂ1ijŴ1 + Ĉ1iB̂1ijY1)
T

−R̂j (Ŵ2 − CiBjY2)
T

∗ R̂i − Ŵ2 − Ŵ T
2

 ,

Â1ii =

 Ai 0 0
−BeCiAi Ae 0

0 0 0

 , B̂1ii =

 Bi
−BeCiAi

0

 ,

Â1ij =

 Aj 0 0
−BeCiAj Ae 0

0 0 0

 , B̂1ii =

 Bj
−BeCiAj

0

 .

Then, within the limited frequency range defined
in Table 1, system (17) under ILC is stable and actual output
of the control system asymptotically tracks desired trajectory.

Proof 1: It is shown by Lemma 4 that W1, W2 are
non-singular matrices and are invertible, while it can be
obtained that Si > 0, set Ŵ1 = W−11 , Ŵ2 = W−12 ,
Ŝi = Ŵ1SiŴ T

1 and Eq. (22) can be rewritten as[
Si −W1 −W T

1 W1Âi
∗ −Si

]
< 0. (29)

Multiplying Eq. (29) by diag{ Ŵ T
1 Ŵ T

1 } and its transpose
before and after, respectively, we get[

Ŝi − Ŵ1 − Ŵ T
1

(
Â1iiŴ1 + B̂1iiY1

)
∗ −Ŝi

]
< 0. (30)

Eq. (30) is equivalent to Zii < 0 in the theorem, so (25) is
proved. The same reasoning proves that Zij < 0.

Next, left and right multiplying the inequality (27) by

diag
{
Ŵ−11 , Ŵ−11 , Ŵ−12 , Ŵ−12

}
and its transpose, respec-

tively, and introducing the following change of variables

W1 = Ŵ−11 ,W2 = Ŵ−12 , Si = Ŵ−T1 ŜiŴ
−1
1

Pi = Ŵ−T1 P̂iŴ
−1
1 , Qi = Ŵ−T1 Q̂iŴ

−1
1 ,

Ri = Ŵ−T2 R̂iŴ
−1
2 ,

gives
−Pi + τQi υQi −W
∗ Pi + ςQi + sym (A1iiW1 + B1iiY1)
∗ ∗

∗ ∗

→

←

0 0
B2 + B1iiY2 (C1iA1iiW1 + C1iB1iiY1)T

−Ri (W2 − CiBiY2)
∗ Ri −W2 −W T

2

 < 0.

(31)
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The above inequality can be equivalently rewritten as

02 + sym
{
3T

2M62

}
< 0. (32)

where

02 =


−Pi + τQi υQi −W1
∗ Pi + ςQi + sym (A1iiW1 + B1iiY1)
∗ ∗

∗ ∗

→

←

0 0
B2 + B1iiY2 0
−Ri 0
∗ −Ri


32 =

[
0 (C1iA1iiW1 + C1iB1iiY1)T (W2 − CiBiY2) −W2

]
M = I , 62 =

[
0 0 0 I

]
and W2 is a slack matrix variable. Also, the matrices 3⊥2
and 6⊥2 , whose columns form a basis for the null spaces
of 32 and 62, are respectively given by

3⊥2 =


I 0 0
0 W2 0
0 0 W2
0 (C1iA1iiW1 + C1iB1iiY1)T (W2 − CiBiY2)



6⊥2 =


I 0 0
0 I 0
0 0 I
0 0 0


Employing lemma 2 yields(

3⊥2

)T
023

⊥

2 < 0 (33)(
6⊥2

)T
026

⊥

2 < 0 (34)

Lemma 1 is satisfied, so Eq. (27) holds. Similarly,Mij < 0
holds.

We know that for i = 1, · · · ,N holds for all
LMIs (25), (27). These LMIs are then multiplied by the
uncertainty parameter and the sum of LMIs (25)-(26) and
LMIs (27)-(28), respectively, yields

N∑
i=1

ξiZii+
N∑
i=1

N∑
i<j

ξiξj(Zij + Zji) < 0 (35)

N∑
i=1

ξiMii+

N∑
i=1

N∑
i<j

ξiξj(Mij +Mji) < 0 (36)

Clearly, the above inequality can be rewritten as

Z (ξ ) < 0,M (ξ ) < 0. (37)

Among them, the affine parameter correlation matrices of
Eqs. (7) and (24) were used. So the application of lemma 4
means that inequalities (25) to (28) are feasible for all
i = 1, · · · ,N and the proof is complete.
It is assumed the output matrix C is fixed, i.e., Ci = C ,

for all i = 1, · · · ,N , the LMI-base conditions of (25)-(28)

reduces to

Zii < 0 (38)

Mii < 0. (39)

The ILC update law matrix is[
K1 K2 L

]
= Y1Ŵ

−1
1 , K4 = Y2Ŵ

−1
2 , K3 = L + K4.

V. EXPERIMENTAL VALIDATION
The experimental machining platform shown in Fig. 1 is
an integral XY system with crossed roller bearings and is
a two-dimensional displacement device. The crossed roller
bearings are specially designed to carry both radial and axial
forces with an accuracy of 3 microns in each axis, and
have excellent rigidity and repeatability to provide stable
and precise motion. Therefore, the x-axis can be utilized
for precise positioning and movement for high precision
tracking.

To verify performance of ILC design scheme mentioned
in this article, experimental verification is conducted on the
design case provided in this section. Consider the uncertain
linear system as shown in Eq. (7), and its parameter matrix is
given by the following matrices

A(ξ ) = ξ1

[
1 1.383

0.15 1.082

]
+ ξ2

[
1 1.021

0.30 0.920

]
,

B(ξ ) = ξ1

[
0.512
0.207

]
+ ξ2

[
0.476
0.352

]
,

C(ξ ) = ξ1
[
0.46 0.02

]
+ ξ2

[
0.55 0.10

]
(40)

where ξ1, ξ2 are uncertainty parameters varying from
[
0 , 1

]
,

satisfy ξ1 + ξ2 = 1. The effective harmonics of the reference
trajectory yd(t) in Fig. 2 are varied between 0 and 10 Hz,
which belongs to the low frequency range. Therefore,
θl = 0.3142, τ = 0, υ = 1, ς = −2 cos(θl).

Robust feedforward ILC gain matrix is as follows

K1 =
[
−3.4544 0.8633

]
,

K2 =
[
−0.2467 4.4198 −0.2425

]
,

K3 = 3.9086, K4 = 3.9964. (41)

The system is modeled and experimented based on the
above values. The output trajectory of the model at different
number of iterations is shown in Fig. 2. It can be clearly seen
from the figure that there is a large discrepancy between the
system output and the desired trajectory at the first iteration.
However, through continuous learning and adjustment,
the system gradually approaches the desired trajectory in
each subsequent iteration, and finally realizes the accurate
tracking of the desired trajectory. These experimental results
fully demonstrate the effectiveness and accuracy of the
algorithm.

To investigate the advantages of robust feed-forward
ILC, its performance is compared with PD-type ILC. The
controller form of PD-type ILC is

1uk+1(n) = K1ηk+1(n+ 1)+ K3ek (n)

+ K4(ek (n+ 1)− ek (n)) (42)
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FIGURE 1. Monolithic XY platform. Dimensions are 125 mm long, 125 mm
wide and 60 mm high.

FIGURE 2. Output trajectories from execution of Algorithm 1 in iterative
trials.

and the corresponding controller matrices are given as

K 1 =
[
−2.6159 −1.4627

]
,

K3 = 2.9064, K4 = 2.6810.

To explore the tracking effect of different frequency
domain ranges in the low frequency range, the spectro-
grams of the reference trajectories of the two algorithms
are designed as shown in Fig. 3. Here the system iter-
ation duration is set to be 1s and sampling frequency
to 100 Hz.

The Root Mean Square (RMS) is introduced to measure
the error size of the two algorithms, which is calculated as
follows

RMS(ek ) =

√
1
H

∑H

n=1
e2k (n). (43)

By comparing the RMS values of the two experiments
in Fig. 4, it is clearly observed that the proposed method

FIGURE 3. The corresponding frequency spectrum.

FIGURE 4. Comparison of the RMS of two algorithms.

FIGURE 5. Output trajectories of both algorithms under the 1st iteration
cycle.

in this paper converges faster. Fig. 5 shows the tracking
accuracy of the output trajectories of the proposed algorithm
and the PD-type algorithm at the 1st iteration. Fig. 6, Fig. 7,
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FIGURE 6. Output trajectories of both algorithms under the 2nd iteration
cycle.

FIGURE 7. Output trajectories of both algorithms under the 3rd iteration
cycle.

FIGURE 8. Output trajectories of both algorithms under the 10th iteration
cycle.

and Fig. 8 show the tracking accuracy of the two algorithms
at the 2nd, 3rd, and 10th iterations, respectively. The black
solid line is the desired trajectory, the red solid line is the

method designed in this paper, and the blue dashed line
is the PD-type ILC. It is observed from Fig. 5 to Fig. 8
that both ILCs can provide robust stability and monotonic
error convergence as experiment progresses. In addition, the
convergence error rate of the algorithm proposed in this paper
is improved compared to the PD-type ILC algorithm, which
allows for more accurate tracking of the reference trajectory.
This further validates the performance advantages of the
robust feedforward ILC algorithm.

VI. CONCLUSION AND FUTURE WORK
For discrete linear systems with polyhedral uncertainty,
the robust feedforward ILC strategy is studied in detail in
this article. In frequency domain, a controller with good
robustness and adaptability is designed by conducting several
tests on the controlled object and analyzing the stability
of system by using the statistical property of repeated
process. Then, generalized KYP lemma is used to derive
the constraints of controller parameters, which ensures
that system has good tracking accuracy and stability in
practical applications. Finally, results provide evidence of
the effectiveness and practicality of the proposed scheme for
the specified class of linear discrete systems with polytopic
uncertainties.

However, in practice, obtaining the system matrix
described in (8) is difficult and the potential actuator variance
is not considered in this paper. Therefore, uncertainty
identification should be one of our future tasks, and by
identifying and modeling the uncertainty of the system,
we can better adapt to the changes and uncertainties in the real
environment, so as to improve the feasibility of the algorithms
and extend their applications in various application scenarios.
In addition, the effects of different types of disturbances on
the stability and performance of the control system will be
explored. The algorithm will be further optimized through
the combination of theory and experiment.
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