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ABSTRACT To improve the accuracy of implicit curve reconstruction and reduce the occurrence of
supplementary zero-level sets during the reconstruction process, we propose an implicit curve fitting method
with a regularization term based on uniform rational B-splines. First, an implicit uniform rational spline
reconstructionmodel is established using an implicit B-spline reconstructionmethod. Second, by introducing
internal and external offset points during reconstruction, the occurrence of supplementary zero-level sets
is reduced, and a regularization term is added to adjust the structure of the reconstructed surface during
iteration. Finally, a comparison is made with the I-PIA(implicit progressive iterative approximation) method
under the same iteration steps and the same iteration accuracy. The proposed method demonstrates enhanced
reconstruction precision and effectively ameliorates the characteristics of the reconstructed surface, which
shows robustness in noisy datasets.

INDEX TERMS Implicit curve reconstruction, regularization term, uniform rational splines.

I. INTRODUCTION
Curve reconstruction is a widely studied topic in computer-
aided geometric design. Parameterization and implicit rep-
resentation emerge as two prevalent methodologies for
depicting curves, particularly when confronted with scattered
and disordered data points. Determining the parameterization
of data points is a formidable task when handling scattered
data, whereas implicit representation obviates the necessity
for parameterization.

Implicit reconstruction methods include implicit T-splines
[1], RBF(radial basis function) [2], implicit B-splines [3],
etc. Among these methods, the B-spline reconstruction
approach requires fewer parameters and is faster for curve
or surface reconstruction. However, it may not adapt well
to complex shapes. In contrast, rational splines provide a
more flexible way to describe point cloud data with complex
geometric features. The study of NURBS curves and surfaces
[4] has also attracted the attention of many researchers.
In [5] and [6], Costa et al. formulated and solved the
curve and surface fitting problem using a basis spline and
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non-uniform rational basis spline entities in the most general
case. In particular, the problem is solved by considering,
as design variables, not only the continuous parameters of
the entity but also the integer ones. With the advancement
of intelligent algorithms, more algorithms [7], [8] have
been applied to rational spline-based curves and surface
reconstruction.

The progressive iterative approximation (PIA) method
is a widely used approach for curve and surface fitting,
which interpolates data points by generating a series of
constraints on control points, and has been successfully
applied in various fields. In 1975, Qi et al. [9] discovered
the PIA property of uniform cubic B-splines, and de Boor
[10] later proved the convergence of the PIA. In 2004, Lin
et al. [11] proved the profit and loss correction properties
of non-uniform cubic B-spline curves and surfaces, and
in 2005 [12], Lin et al. proved that curves and surfaces
represented by normalized weight basis functions, such
as B-splines and NURBS, also possess PIA properties.
Traditional PIA methods converge slowly when dealing with
large-scale datasets. To address this issue, Lin and Zhang
proposed the E-PIA method [13] and Deng and Lin proposed
the LSPIA method [14]. These methods effectively reduce
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computational costs when processing large-scale data and
have been proven to converge.

In implicit reconstruction methods, supplementary zero-
level sets often appear because the value of the implicit
function depends only on the sampled points and their vicin-
ity [15] and lacks constraints in other regions. The occurrence
of supplementary zero-level sets is a challenging problem for
implicit curves and surface reconstructions. To reduce the
occurrence of supplementary zero sets during fitting, Rouhani
and Sappa [16] introduced tensor terms to reduce the extra
zero sets. To address this issue, Liu et al. [17] proposed a total
variation regularization model in 2017. In 2020, Hamza et al.
[18] proposed the I-PIAmethod, which effectively eliminated
pseudo-patches. Based on the I-PIA method, Wang [19]
proposed the IR-PIA method in 2022, which has faster
convergence speed and lower computational complexity
than the I-PIA method. Additionally, [20] proposed an
Euler elastica regularization term that significantly enhances
reconstruction. Furthermore, [21] added a normal term to
control the normal error of the curve. These regularization
terms are crucial for enhancing the efficiency and feature
refinement of the curves or surface reconstructions.

This paper proposes a method that replaces B-spline basis
functions with uniform rational spline basis functions and
incorporates internal and external offset points. Furthermore,
a regularization term is introduced to control the overall
oscillation of the reconstructed surface and prevent the
occurrence of supplementary zero-level sets during the
iteration process. The PIA property of rational splines is
utilized to iteratively reconstruct the surface until the iteration
requirements are met. The results show that using uniform
rational spline basis functions instead of B-spline basis
functions can achieve higher accuracy than the I-PIA method
with the same number of iterations. Additionally, when
comparing the algorithm with and without the regular term
under the same iteration error, it is demonstrated that this
method effectively reduces the oscillation phenomenon of
the reconstructed surface and minimizes the occurrence of
supplementary zero-level sets.

The remainder of this paper is organized as follows.
Section II introduces the implicit B-spline curve recon-
struction method, and Section III introduces the method
of implicit uniform rational B-spline curve reconstruction.
In Section IV, we introduce the supplementary zero-level set
and propose a regularization term to reduce the oscillation of
the reconstructed surface. A series of numerical experiments
are used to demonstrate the effectiveness of the proposed
method in Section V. Sensitivity analysis is employed to
illustrate the stability of the optimization problem, while the
algorithm shows robustness in data sets with noise. Finally,
Section VI concludes the paper.

II. IMPLICIT CURVE RECONSTRUCTION WITH B-SPLINE
A. RECONSTRUCTION MODEL
This section introduces the implicit B-spline curve recon-
struction model. Given a set of unordered two-dimensional

point cloud data:

{Pi = (xi, yi), i = 1, 2, . . . ,m}, (1)

and their corresponding unit normal vectors: {ni, i =

1, 2, . . . ,m}. To fulfill (1), we need to find a nonzero implicit
function f (x, y) such that f (Pi) = 0. f (x, y) is a function
defined on � ⊆ R2:

f (x, y) =

N∑
i=1

M∑
j=1

CijBi(x)Bj(y), (2)

where Cij are the control coefficients and Bi(x),Bj(y) are the
cubic B-spline basis functions defined on the uniform nodes.
Thus, the resulting implicit curve can be expressed as

zf = {(x, y) ∈ � ⊆ R2
: f (x, y) = 0}. (3)

Because the number of unknowns in the equations formed
by all points satisfying (3) is usually greater than the number
of data points, supplementary zero-level sets are present in the
reconstructed result. To reduce the presence of supplementary
zero-level sets in the final fitted surface, we propose adding
internal and external offset points to the dataset as follows:{

Pl = Pi + d1ni, l = m+ i, i = 1, 2, . . . ,m,

Pk = Pi − d2ni, k = 2m+ i, i = 1, 2, . . . ,m,

(4)

where d1 and d2 are internal and external distances,
respectively. Let ϵ1,ϵ2 be the value of the implicit function
at internal and external offset points,i.e.,{

f (Pl) = ϵ1

f (Pk ) = ϵ2.
(5)

The problem of implicit curve reconstruction with B-spline
is to find a nonzero function f (x, y) to minimize the square
error function:

E(C) =

m∑
i=1

∥f (Pi)∥22

+

2m∑
l=m+1

∥f (Pl) − ϵ1∥
2
2

+

3m∑
k=2m+1

∥f (Pk ) − ϵ2∥
2
2. (6)

We fixed the uniform node vector, and our method to
modify the shape of the curve involved moving the control
coefficients. By considering the control coefficients Cij as
optimization variables, our problem is essentially equivalent
to the following optimization problem:

argmin
C

E(C). (7)
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B. ITERATIVE PROCESS
Define the initial implicit function as follows:

f (0)(x, y) =

N∑
i=1

M∑
j=1

C (0)
ij Bi(x)Bj(y), (8)

where N and M correspond to the number of basis functions
in the x and y directions, respectively. N andM are typically
chosen based on experience or the distribution of data points;
their selection and impact are discussed in [22] and [23].
Let C = [C11,C12, . . . ,CNM ]T, and collocation matrix of

the basis functions be

B1

=


B1(x1)B1(y1), · · · B1(x1)BM (y1), · · · BN (x1)BM (y1)
B1(x2)B1(y2), · · · B1(x2)BM (y2), · · · BN (x2)BM (y2)

...
...

...

B1(xm)B1(ym), · · · B1(xm)BM (ym), · · · BN (xm)BM (ym)

,

thus 
f (0)(x1, y1)
f (0)(x2, y2)

· · ·

f (0)(xm, ym)

 = B1C (0).

Let δ(0)i be the difference vectors for the data points, i.e.,

δ
(0)
i = 0 − f (xi, yi), i = 1, 2, . . . ,m.

Additionally, let 1(0)
ij , i = 1, 2, . . . ,N , j = 1, 2, . . . ,M be

the difference vectors for the control coefficients,i.e.,

1
(0)
ij =

m∑
k=1

Bi(xk )Bj(yk )δ
(0)
k .

Define

δ
(0)
1 =

[
δ
(0)
1 , δ

(0)
2 , . . . , δ(0)m

]T
,

11
(0)

=

[
1

(0)
1,1, 1

(0)
1,2, . . . ,1

(0)
N ,M

]T
,

which satisfies 1
(0)
1 = BT1 δ

(0)
1 . Similarly, the difference

vectors for the offset points and control coefficients can be
expressed as:

δ
(0)
l = ϵ1 − f (xl, yl), l = m+ 1,m+ 2, . . . , 2m,

δ
(0)
k = ϵ2 − f (xk , yk ), k = 2m+ 1, 2m+ 2, . . . , 3m,

1
(0)
ij =

3m∑
k=m+1

Bi(xk )Bj(yk )δ
(0)
k , k = m+ 1,m+ 2, . . . , 3m,

and they satisfy 1
(0)
2 = BT2 δ

(0)
2 , 1

(0)
3 = BT3 δ

(0)
3 , where

B2,B3 are the collocation matrices of the basis functions for
the offset points. The new matrix of control coefficients can

then be obtained by C (1)
= C (0)

+ µ(11
(0)

+ 12
(0)

+ 13
(0)),

and the new implicit function is

f (1)(x, y) =

N∑
i=1

M∑
j=1

C (1)
ij Bi(x)Bj(y).

Likewise, when we obtain the α-th result, C (α), let

1
(α)
1 = BT1 δ

(α)
1 ,

1
(α)
2 = BT2 δ

(α)
2 ,

1
(α)
3 = BT3 δ

(α)
3 ,

C (α+1)
= C (α)

+ µ(11
(α)

+ 12
(α)

+ 13
(α)),

then the implicit function after the (α + 1)-th iteration can be
expressed as:

f (α+1)(x, y) =

N∑
i=1

M∑
j=1

C (α+1)
ij Bi(x)Bj(y).

Let

b = [0, 0, · · · , 0︸ ︷︷ ︸
m

, ϵ1, ϵ1, · · · , ϵ1︸ ︷︷ ︸
m

, ϵ2, ϵ2, · · · , ϵ2︸ ︷︷ ︸
m

]T, (9)

and

D = [B1T,B2T,B3T]T, (10)

then the I-PIA for Implicit B-spline curve reconstruction can
be expressed in matrix form as

C (α+1)
= C (α)

+ µDT(B− DC)

= (I − µDTD)C (α)
+ µDTb. (11)

Remarkably, to ensure the convergence of (11), the weight
factor µ should satisfy the following condition:

0 < µ <
2

λmax
, (12)

according to [14], where the λmax is the maximum eigenvalue
of DTD. In this paper, we set

µ =
2

∥DTD∥∞

. (13)

III. IMPLICIT CURVE RECONSTRUCTION WITH UNIFORM
RATIONAL SPLINE
A. RECONSTRUCTION MODEL
In the previous section, we introduced a model and iterative
process for implicit curve reconstruction with B-spline.
To improve the fitting accuracy and fit more general curves,
we chose to use uniform rational basis spline function instead
of an implicit B-spline basis function for the reconstruction.

The nonzero implicit function g(x, y) which we need is
defined as follows:

g(x, y) =

N∑
i=1

M∑
j=1

Cij
wijBi(x)Bj(y)∑N

i=1
∑M

j=1 wijBi(x)Bj(y)
, (14)
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where wij are non-negative weights. Thus, the resulting
implicit curve can be expressed as:

zg = {(x, y) ∈ � ⊆ R2
: g(x, y) = 0}. (15)

Similarly, the internal and external offset points were
added to the data set. Then our problem of implicit curve
reconstruction with a uniform rational spline is to find
a nonzero function g(x, y) to minimize the square error
function:

E(C,w) =

m∑
i=1

∥g(Pi)∥22

+

2m∑
l=m+1

∥g(Pl) − ϵ1∥
2
2

+

3m∑
k=2m+1

∥g(Pk ) − ϵ2∥
2
2. (16)

Then the problem could be basically equivalent to solving
the optimization function:

argmin
C,w

E(C,w), (17)

where w = [w11,w12, . . . ,w1M , . . . ,wNM ]T. In contrast to
the B-spline, the iteration process for reconstruction with
a uniform rational spline can be divided into iterations of
weights and control coefficients.

1) ITERATION OF WEIGHTS
By introducing weights into the implicit function, the curve
has a higher degree of freedom, which can improve the shape
of the resulting curve and allow it to better approximate the
positions of data points. Therefore, we consider the iteration
of the weights.

Let

E(C,w) =

3m∑
k=1

∥g(xk , yk ) − ϵ∥22,

ϵ =


0, k = 1, 2, . . . ,m
ϵ1, k = m+ 1,m+ 2, . . . , 2m
ϵ2, k = 2m+ 1, 2m+ 2, . . . , 3m,

(18)

the partial derivative of the objective function with respect to
weights is calculated as:

∂E(C,w)
∂wlm

= 2 ×

3m∑
k=1

⟨(g (xk , yk) − ϵ) ,
∂g(xk , yk )

∂wlm
⟩.

Finally, the gradient of E with respect to weigths is
obtained by

∇wE(C,w) =

[
∂E

∂w11
, . . . ,

∂E
∂w1M

, . . . ,
∂E

∂wNM

]T
, (19)

Thus the iteration of weights is expressed as

w(α+1)
= w(α)

− τ · ∇wE, (20)

where τ is appropriate step size.

2) ITERATION OF CONTROL COEFFICIENTS
Similarly, we define the initial implicit function,i.e.,

g(0)(x, y) =

N∑
i=1

M∑
j=1

Cij
wijBi(x)Bj(y)∑N

i=1
∑M

j=1 wijBi(x)Bj(y)
. (21)

Let δ(0)i be the difference vectors for the data points,i.e.,

δ
(0)
i = 0 − g(xi, yi), i = 1, 2, . . . ,m,

δ
(0)
l = ϵ1 − g(xl, yl), l = m+ 1,m+ 2, . . . , 2m,

δ
(0)
k = ϵ2 − g(xk , yk ), k = 2m+ 1, 2m+ 2, . . . , 3m.

Maintaining the weight w1 unchanged after the iteration of
the weights, the differential vectors of the control coefficients
are calculated as

1
(0)
ij =

3m∑
k=1

wijBi(xk )Bj(yk )∑N
i=1

∑M
j=1 w

(1)
ij Bi(xk )Bj(yk )

δ
(0)
k .

Let

1(0)
=

[
1

(0)
11 , . . . ,1

(0)
1M , . . . ,1

(0)
NM

]T
= RT1 δ

(0)
1 + RT2 δ

(0)
2 + RT3 δ

(0)
3 ,

where R1,R2,R3 are the collocation matrices of the basis
functions for the data points and offset points, respectively.

Likewise, when we obtain the α-th result, w(α+1),C (α), let

w(α+1)
= w(α)

− τ · ∇wE,

1(α)
= RT1 δ

(α)
1 + RT2 δ

(α)
2 + RT3 δ

(α)
3 ,

C (α+1)
= C (α)

+ µ1(α),

then the implicit function after the (α + 1)-th iteration can be
expressed as:

g(α+1)(x, y)

=

N∑
i=1

M∑
j=1

C (α+1)
ij

w(α+1)
ij Bi(x)Bj(y)∑N

i=1
∑M

j=1 w
(α+1)
ij Bi(x)Bj(y)

. (22)

Let

D = [R1T,R2T,R3T]T, (23)

then the curve reconstruction with uniform rational spline can
be expressed in matrix form as

C (α+1)
= C (α)

+ µDT(b− DC)

= (I − µDTD)C (α)
+ µDTb. (24)

To ensure the convergence of (24), µ should satisfy 0 <

µ < 2
λmax

, where λmax is the maximum eigenvalue of DTD.
Similarly, we set

µ =
2

∥DTD∥∞

. (25)
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FIGURE 1. Variations around (x, y ) on recondtructed surface.

IV. REGULARIZATION TERM TO DECREASE THE
SUPPLEMENTARY ZERO-LEVEL SETS
A. THE CONSTRUCTION OF REGULARIZATION TERM
In curve reconstruction problems, the presence of supplemen-
tary zero-level sets often arises because of the intersection
between the reconstructed curve and zero-level set. This
is an unresolved issue in curve reconstruction. Liu et al.
[17] provided a solution for this problem. In this paper,
we propose a method based on minimizing the oscillation
function of the reconstructed surface to modify the properties
of the constructed surface and make it as smooth as
possible, thereby reducing the occurrence of supplementary
intersection points between the reconstructed surface and
zero-level set.

Regarding the constructed implicit surface, the constraint
conditions can only be applied to the given data points and
their corresponding offset points. However, there is a lack of
constraints in the other regions inside and outside the curve.
Therefore, supplementary zero-level sets are likely to occur
in these areas.

Therefore, we define an oscillation function S�1 (f (x, y)) to
show the oscillation around (x, y) ∈ �1 on the reconstructed
surface as follows:

S�1 (f (x, y)) = [(f (x + 1x, y) − f (x, y))2

+ (f (x − 1x, y) − f (x, y))2

+ (f (x, y+ 1y) − f (x, y))2

+ (f (x, y− 1y) − f (x, y))2]/16. (26)

In Fig. 1, S�1 (f (x, y)) reflects the smoothness around (x, y)
on the surface to a certain extent. The greater the S�1 (f (x, y)),
the greater the oscillation around (x, y) on the surface, and the
more likely it is to intersect with the zero-level set to appear
as supplementary level sets.

Define the oscillation function on � as:

S�(f ) =
1
16

∫
�

(f 2x + f 2−x + f 2y + f 2−y)dxdy. (27)

For cubic B-spline curve function, we have:

|f ′
| = n|

N−1∑
i=0

ci+1 − ci
ti+n+1 − ti+1

Bi+1(t)|

≤
n

mini{ti+n+1 − ti+1}

N−1∑
i=0

|Ci+1 − Ci|

= c1
N−1∑
i=0

|Ci+1 − Ci|. (28)

So that we can make an estimation as follows:

f 2x + f 2−x + f 2y + f 2−y

≤ c1[(
∑
ij

|Ci+1,j − Cij|)2 + (
∑
ij

|Ci−1,j − Cij|)2

+ (
∑
ij

|Ci,j+1 − Cij|)2 + (
∑
ij

|Ci,j−1 − Cij|)2]

≤ c2[
∑
ij

|Ci+1,j − Cij|2 +

∑
ij

|Ci−1,j − Cij|2

+

∑
ij

|Ci,j+1 − Cij|2 +

∑
ij

|Ci,j−1 − Cij|2]

= c2
∑
ij

(|Ci+1,j − Cij|2 + |Ci+1,j − Cij|2

+ |Ci+1,j − Cij|2 + |Ci+1,j − Cij|2)

≜ c2
∑
ij

||RCij||2, (29)

where c1, c2 are nonzero constants, c1 can be derived
from (28), and c2 can be obtained by Cauchy-Schwarz
inequality. Let R be the difference operator of the control
coefficients:

1
16

∫
�

(f 2x + f 2−x + f 2y + f 2−y)dxdy

≤ c2
∑
ij

||RCij||2 ·

∫
�

dxdy

= c2|�|

∑
ij

||RCij||2

≜ c̃
∑
ij

||RCij||2. (30)

In particular, when RCij is invalid, meaning that some of
its elements exceed the index range, we set the corresponding
control coefficient difference to zero, for example,

RC11 = (C21 − C11, 0,C12 − C11, 0)T.

Thus, we have an estimation of the oscillation function
on � as in (30). When the reconstructed surface oscillation
tended to zero, f 2x + f 2−x + f 2y + f 2−y also tended to zero. The
oscillation function can be effectively approximated using a
matrix composed of the differences in the control coefficients.
Then, the problem is to move the control coefficients Cij to
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minimize the function:

R(C) =

∑
ij

∥RCij∥22. (31)

B. UPDATE ITERATION MODEL
After incorporating the regularization term, the objective
function is updated as follows:

argmin
C,w

E(C,w) + λR(C), (32)

where λ denotes the appropriate step size. Similarly, the
iteration of weights remains the same as in (20), and the
iteration of the control coefficients updates correspondingly
as follows:

C (α+1)
= C (α)

+ µDT(b− DC) − λ∇CR(C), (33)

where the gradient of the regularization term with respect to
the control coefficients is obtained as follows:

∇CR(C) =

[
∂R(C)
∂C11

, . . . ,
∂R(C)
∂C1M

, . . . ,
∂R(C)
∂CNM

]
. (34)

V. EXPERIMENT
During the iterative process, we set following evaluation
metrics:

1) E shows the energy of iteration:

E = ∥R1C∥
2
2 + ∥R2C∥

2
2 + ∥R3C∥

2
2 + λR(C). (35)

2) Eave shows average error:

Eave =
1
m

∥R1C∥
2
2. (36)

3) Emax shows relative maximum error:

Emax = max(|R1C|). (37)

Let 1E = |Enew − Eold | be the iterative error between
adjacent iterations. The iteration is stoppedwhen1E satisfies

1E < etolerance, (38)

or the maximum number of iterations is reached.

A. ALGORITHM OF RECONSTRUCTION METHOD WITH
REGULARIZATION TERM
Based on the above indicators, the pseudo-code of the
optimization algorithm is given as follows:

B. RESULTS
Example 1: 120 data points sampled from the curve which

is defined as follows{
x = 4cos(t),
y = sin(t)(3 − 5sin(t)),

t ∈ [0, 2π ].

The grid size is 9 ∗ 9, the internal and external offsets
are 0.1 and the corresponding offsets of the function are
−0.01 and 0.01, respectively. We set τ = 1e-2. Both under
200 iterations, Fig. 2(a) and Fig. 2(b) show the comparison of

Algorithm 1 Implicit Uniform Rational Spline Reconstruc-
tion Method With Regularization Term
1: Input: {Pi}mi=1: Data points;

{di}2i=1, {ϵi}
2
i=1: Internal and external offsets and

corresponding offsets of function;
Grid size;
Kmax : Maximum iterations;
etolerance: Error tolerance for convergence.

2: Output: Evaluation metrics(E,Eave,Emax ,R(C));
C: Control coefficient matrix;
w: Weight matrix.

3: Set all the initial control coefficients C (0)
ij to 0 and all the

weights w(0)
ij to 1.0;

4: Construct uniform knot vector according to grid size;
5: Construct collocation matrixs of the basis functions for

data points and offset points R1,R2,R3, and constitute D
by (23);

6: Compute the initial energy of iteration : E (0);
7: for k = 0; k < Kmax , + + k do
8: Compute R(C) by (31) and ∇CR(C) by (34);
9: Update w(k+1) by solving (20);

10: Update C (k+1) by solving (33);
11: Reconstruct R1,R2,R3, and constitute D by (23);
12: Compute the energy E (k+1) by (35)
13: if |E (k+1)

− E (k)
| < etolerance then

14: Compute Eave,Emax by (36), (37);
15: return R(C),E,Eave,Emax .
16: end if
17: end for

FIGURE 2. The reconstruction results of Example 1.

the reconstruction result with B-spline and that with uniform
rational spline.
Example 2: 193 data points are sampled from the figure.
The internal and external offsets are 0.1 and the cor-

responding offsets of the function are −0.01 and 0.01,
respectively. Two different methods were used to reconstruct
the curves of grid sizes 10*10 and 15*15 respectively. Under
200 iterations, we set τ = 1e-2.
Fig. 3 and Fig. 4 show the results of our algorithm without

regularization term.When the grid scale increased, the results
of the curve reconstruction noticeably improved. Under the
same number of iterations, the implicit reconstructionmethod
with a uniform rational spline had a smaller average error.
Furthermore, for the same grid size (Fig. 3(a) and Fig. 3(b),
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FIGURE 3. The reconstruction results of Example 2(10*10).

FIGURE 4. The reconstruction results of Example 2(15*15).

FIGURE 5. The reconstruction results without regularization term of
Example 3.

details in Table 1), the method with uniform rational spline
outperforms better in fitting accuarcy and shaping details.

When a higher accuracy is required for curve reconstruc-
tion, it often leads to the presence of supplementary zero-level
sets owing to insufficient constraints. To address this issue,
we introduce a regularization term to reduce the presence of
extra zero-level sets. In the following examples, we set

etolerance = 1e− 7.

Meanwhile, to demonstrate the improvements resulting
from altering the spline basis functions and incorporating
regularization terms, we set

η = |
E − E ′

E
| × 100%,

where E ′ represents the evaluation metric with either uniform
rational splines or a regularization term, whereas E does not
include them. The larger η is, the better the optimization
effect of our improvement is, and vice versa.
Example 3: 289 data points are sampled from the figure.
The grid size is 13∗13, internal and external offsets are 0.1,

and the corresponding offsets of the function are −0.01 and
0.01. We set λ = 0.0142 and τ = 1e − 3. Under the same
iteration accuracy, the iteration results with and without the
regularization terms are as follows:
Example 4: 639 data points are sampled from the figure.
The grid size is 15∗15, internal and external offsets are 0.1,

and the corresponding offsets of the function are −0.01 and
0.01. We set λ = 0.0216 and τ = 1e − 3. Under the same

FIGURE 6. The reconstruction results with regularization term of
Example 3.

FIGURE 7. The reconstruction results without regularization term of
Example 4.

FIGURE 8. The reconstruction results with regularization term of
Example 4.

FIGURE 9. The reconstruction results without regularization term of
Example 5.

FIGURE 10. The reconstruction results with regularization term of
Example 5.

iteration accuracy, the iteration results with and without the
regularization terms are as follows:
Example 5: 595 data points are sampled form the figure.
The grid size is 17∗17, internal and external offsets are 0.1,

and the corresponding offsets of the function are −0.01 and
0.01. We set λ = 0.0242 and τ = 1e − 3. Under the same
iteration accuracy, the iteration results with and without the
regularization terms are as follows:
Example 6: 400 data points are sampled from the figure.
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TABLE 1. Reconstruction result of Example 1 and Example 2.

FIGURE 11. The reconstruction results without regularization term of
Example 6.

FIGURE 12. The reconstruction results with regularization term of
Example 6.

FIGURE 13. The reconstruction results without regularization term of
Example 7.

The grid size is 25 ∗ 25, the internal and external offsets
are 0.1, and the corresponding offsets of the function are
−0.01 and 0.01. We set λ = 0.00425 and τ = 1e − 3.
Under the same iteration accuracy, the iteration results with
and without the regularization terms are as follows:
Example 7: 262 data points are sampled from the figure.
The grid size is 28 ∗ 28, the internal and external offsets

are 0.1, and the corresponding offsets of the function are
−0.01 and 0.01. We set λ = 0.00215 and τ = 1e − 3.
Under the same iteration accuracy, the iteration results with
and without regularization terms are as follows:

To visualize the changes in the reconstructed surface
during the iterative process, we present four iteration states
of the method with the regularization term in Example 6 as
follows:

FIGURE 14. The reconstruction results with regularization term of
Example 7.

FIGURE 15. Four states of reconstrction with regularization term.

The above experimental results demonstrate the recon-
structed curves and heatmaps of the surfaces on a two-
dimensional plane. From the results and the data in Table 2,
it can be seen that adding a regularization term could avoid
unnecessary intersection between the surface and the zero-
level set during the iteration process, making the generated
surface smoother and achieving the fitting target. In addition,
the value of the regularization term is effectively reduced.
Fig. 15 shows the change in the reconstructed surface during
the iteration process after adding the regularization term.
Owing to the effect of the regularization term on the surface,
no supplementary zero-level set was created between the
surface and the zero set during the reconstruction process.

Furthermore, to evaluate the efficacy of our regularization
term, we conducted a sensitivity analysis of the coefficient λ
of the regularization term.
Example 8: In Example 7, we apply our method to curve

reconstruction. By keeping the other parameters unchanged,
λ was varied from 0.001 to 0.006. Table 3 and Fig. 16 present
the results.

In fact, more point cloud data is not so regular, so for
data points with noise, we are more concerned about whether
the algorithm can run normally. Let us consider the curve
reconstruction problem in which the initial data points are
affected by noise.
Example 9: For example 1, we use algorithms to recon-

struct the curve for 400 noisy data points. Under the same
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TABLE 2. Reconstruction result of Example 3 to 6.

TABLE 3. Value of evaluation metrics while λ varies.

FIGURE 16. Sensitivity annalysis while λ varies.

FIGURE 17. The reconstruction results with regularization term of
Example 9.

FIGURE 18. The reconstruction results without regularization term of
Example 9.

parameters as those in Example 1, the grid size is 20∗ 20 and
λ = 0.512. The details are as follows:
Example 10: For the original curve without noise:{

x = 4cos(t),
y = 5sin(t),

t ∈ [0, 2π ].

FIGURE 19. The reconstruction results with regularization term of
Example 10.

FIGURE 20. The reconstruction results without regularization term of
Example 10.

FIGURE 21. The reconstruction results with regularization term of
Example 9

We use algorithms to reconstruct the curve for 500 noisy data
points. The grid size is 20 ∗ 20, the internal and external
offsets are 0.1 and the corresponding offsets of the function
are −0.01 and 0.01, respectively. We set τ = 1e-2 and λ =

0.314. The details are as follows:
Example 11: For example 6, we use algorithms to recon-

struct the curve for 800 data points with noise. Under the same
parameters as those in Example 6, the grid size is 25∗ 25 and
λ = 0.134. The details are as follows:
In Examples 9 to 11, the results indicate that the algorithm

demonstrates strong robustness when applied to datasets with
noise. Additionally, in Table 4, the I-PIA method takes more
time to process noisy data, which is indicative of overfitting.
By contrast, the algorithm with the regularization term is
more efficient and consumes less time. Furthermore, the
algorithm can ensure smoothness of the reconstructed curve.
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TABLE 4. Value of the evaluation metrics while λ varies.

FIGURE 22. The reconstruction results without regularization term of
Example 9.

VI. DISCUSSION AND CONCLUSION
This paper proposes a method for implicit curve recon-
struction based on uniform rational splines and provides
the corresponding weight iteration and control coefficient
iteration formats. With increased degrees of freedom, this
method could achieve higher accuracy in reconstructing the
target curve, compared to the traditional implicit B-spline
reconstruction(I-PIA). Furthermore, the algorithm demon-
strates superior robustness when applied to noisy datasets.
The reconstruction process is more concise, whereas the
I-PIA algorithm would overfit. Moreover, the introduction of
a regularization term enhances the smoothness of the recon-
structed surface. By incorporating the regularization term,
the occurrence of supplementary zero-level sets in the results
is minimized compared to the iteration process without a
regularization term. Consequently, the reconstructed curve
demonstrates a higher accuracy while maintaining the same
level of iteration precision.
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