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ABSTRACT Abstract Colorectal cancer (CRC) is a serious health problem globally, needing early
identification for optimal treatment. Ingestion of mutagens such as heterocyclic amines (HCA), which are
produced when meat is cooked at high temperatures, is believed to increase the risk of colorectal cancer. The
present study’s objective was to investigate the relationship between different meats cooked at different
temperatures and CRC formation. Automated colorectal cancer detection methods that analyze regular
dietary patterns will aid clinicians. This study employed the PLCO dataset of 1,54,892 individuals aged
55 to 74 (76,679 men and 78,213 females). A deep learning framework was designed with a classification
and prediction phase. Two distinctive methods were applied to categorize meats cooked by various cooking
methods in the Resnet18 (convolutional 1D) model. In the first approach, we uploaded the complete dataset
for classification, whereas the second separated them into 30 segments and tested them. The prediction
layer then predicted cancer patients’ ages. The classification and prediction layers were created using
Resnet18 (convolutional 1D) with the Root Mean Squared Propagation (RMSProp) and Adam optimizers.
We estimated risk ratios (RR) with 95% confidence intervals (CI) for the association between meat intake
or cooking style and CRC risk. Our primary finding was a positive link with CRC for pan-fried hamburgers
(RR: 1.86, CI: 1.09-3.18) and bacon (RR: 1.1, CI: 0.79-1.53), while a negative relationship was detected
between pan-fried chicken (RR: 0.8, CI: 0.51-1.27) and beef steak (RR: 0.43, CI: 0.06-3.01). The broiled
chicken intake (RR: 0.8, CI: 0.78-1.67) decreased CRC risks, but broiled beef steak (RR: 1.46, CI: 0.96-2.24)
and meat (RR: 1.25, CI: 0.98-1.60) have statistically elevated the CRC risk. Grilled or barbecued hamburgers
(RR: 2.06, CI: 0.79-3.42) and beef steaks (RR: 1.31; CI: 0.76-2.25) showed a favorable connectionwith CRC.
Meanwhile, adverse associations were found between grilled or barbecued poultry (RR: 0.84, CI: 0.52-1.34)
and pork chops (RR: 0.46, CI: 0.11-1.82). Pan-fried hamburgers and bacon, broiled and barbecued beef steak
may be involved in the etiology of colorectal cancer.

INDEX TERMS Deep learning, ResNet-18, colorectal cancer, meat cooking methods, heterocyclic amines.

I. INTRODUCTION
Studying genetic defects in cancer cells has yielded critical
insights into the processes that drive cell development over
the past few decades. In that, cooking methods’ effect on
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factors promoting malignant cell formation remains largely
unexplored [1]. Cancer remains a severe and alarming health
issue despite living in an advanced and technologically
sophisticated world [2]. Cancer accounted for 10.3 million
deaths and 19.3 million new cases worldwide in 2020,
as reported by the World Health Organization (WHO) [3].
According to the Global Cancer Laboratory (GCO) and the
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International Agency for Research on Cancer (IARC) [4],
[5], [6], [7], [8], [9], [10], colorectal cancer (CRC), which
affects the colon and rectum [11], stands third in terms
of tumour incidence, a third most diagnosed carcinogen
in males, the second in females, the second cause of
cancer-related deaths globally. Global Cancer Observatory
(GLOBOCAN) reported that 1.15 million new cases of CRC
cancer were registered worldwide in 2020. With further
growth, these figures are expected to climb to 3.2 million
by 2040 [10]. IARC reports that males are more likely
than females to get colorectal cancer (CRC), with an
estimated lifetime threat of 1 in 21 males versus 1 in
24 females in the world population [12]. Depending on
people’s diet, cooking methods, and lifestyle, CRC might
impact individuals. Keeping a nutritious diet and engaging
in regular physical activity might avoid about 50% of CRC
instances.

FIGURE 1. Temperature odds for various cooking methods.

Nowadays, practically everyone has the opportunity to
taste various foods. Individuals prefer meat in their daily
diets due to its high content of essential proteins, vitamins,
and minerals. Iron (Fe) and vitamins A and B are rich
in meats [13]. Though there are many different kinds of
meat, the most often consumed forms are red (beef, mutton,
pork, and veal), white (poultry and fish), and processed
meat (pork, hamburger, and hot dogs). Consumption of red
and processed meats has been connected to an increased
risk of different carcinomas [14], [15], [16], [17], including
a 21% increase in colon cancer threat, an 18% increased
likelihood of colorectal cancer, and a 22% increase in rectal
cancer incidence. The Maillard reaction occurs when red
and processed meat is cooked at high temperatures such
as frying, roasting, and boiling or in the oven. Due to
this reaction in processed and red meat products, there is
production of heterocyclic amines (HCA) [18], [19], [20],
a dangerous chemical substance for humans that can cause
fatal diseases like cancer [21], [22], [23], [24]. Cooked foods,
especially well-done meats, contain mutagenic HCA. HCA’s
are the byproducts of high-temperature interactions between
amino acids and creatine [25], [26]. Foods cooked at higher
temperatures tend to have a bit more HCA content because
the cooking temperature determines the effect of HCA on
the food. Conversely, cooking the same food at a lower

temperature results in lower HCA levels. This impact is more
apparent in meat than fish [23]. Moreover, a possible positive
link was identified between meat type, cooking method, and
HCA formation in meats cooked at higher temperatures [27].

FIGURE 2. Shortcut (skip) connection.

The way red meat and processed meat are cooked, or the
accumulation of carcinogens during the cooking process, may
induce the formation of nitrosamines and thereby increase
the risk of CRC, but the root causes remain uncertain.
Cooking temperatures and time of cooking, together with the
type of meat used, all determine the quantity and kinds of
carcinogenic mutagens that accumulate in cookedmeats [28].
Overall, it has been confirmed that cooking food by grilling,
pan-frying, or barbecuing produces more mutations [29],
and in particular, cooking food in pan-frying enhances
producing more mutagenic activity than grilling at the same
temperature [30]. As such, while assessing the risk factor for
colorectal cancer, this study prioritizes how meat is cooked.
(Fig.1) shows the various temperature ranges used in different
cooking processes.

FIGURE 3. Architecture of ResNet with residual units: (a) Residual
unit-based convolutional mapping, and (b) Residual unit-based identity
mapping.

With the advancement of science, colorectal cancer
detection might be automated using Artificial Intelligence
(AI), leading to a more precise diagnosis at lower costs and
in less time. Machine learning (ML) and Deep learning (DL)
approaches are commonly used methods in AI-based diag-
nostic methods [2], [31]. Deep learning functions similarly
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to unsupervised feature learning [32], [33]. DL architectures
with several nonlinear layers of artificial neural networks
(ANNs) extract input data without human intervention, and
growing levels of abstraction can be used to find hierarchical
data descriptions [34]. ResNet18 offers a novel solution to
the vanishing gradient problem known as skip connections,
making it the most effective technique for this study. CRC
is predicted using the ResNet18 learning model, which
separates the entire dataset into smaller blocks for easier
processing and analyses the CRC data using various cooking
methods as parameters.

FIGURE 4. RMSProp convergence.

II. BACKGROUND
A. RESIDUAL NETWORKS (RESNET 18) DEEP LEARNING
ARCHITECTURE
Deep learning models typically have layer restrictions and
need time to train. Deep layers in the network have gradient
vanishing concerns, which decrease performance. To address
this, He et al. [35] developed the ResNet model. It addresses
the gradient vanishing problem in deep convolutional neural
networks (DCNNs) by placing shortcuts (residuals) between
conventional layers. This is achieved by utilizing skip
connections (Fig.2), allowing direct connections between
layers. These skip connections enable the gradient to flow
more easily during training, improving the overall training
efficiency and network performance. ResNet considerably
improves speed in this way, even when dealing with multiple
network layers. It uses residual connections to accelerate
the convergence of these complex layer architectures. Each
ResNet block has stacked convolutional layers that use the
previous layer’s output. A related identity mapping path
enhances learning by mixing the outcome of each residual
block with its input [36], [37]. Additionally, using residual
blocks helps to mitigate the vanishing gradient problem,
which is prevalent in deep neural networks.

F(x) = S(x) − x. (1)

The above (1) describes the residual function of an indi-
vidual subnetwork within a multi-layer neural network. S(x)
denotes a smaller subnetwork function; x is the subnetwork’s
input. The function F(x) computes the difference between
the output of the smaller neural network S(x) and the input
x. The additional information that the subnetwork discovers

from the original input is stored in this function.

y = F(x) + x. (2)

Equation (2) shows the computation of the subnetwork
output y by adding the residual function F(x) output to the
input x to integrate the residual function into the network.
This strategy ensures that the network retains both the original
input and the additional residual information obtained by the
subnetwork.

yt+1 = F(xt ) + xt+1. (3)

Equation (3), like (2), calculates the output of the first sub-
network at time step t+1 (yt+1) during the backpropagation
process using the residual function F(xt ) computed at time t
and input xt .

y = F(xt+1) + xt . (4)

Equation (4) portrays the updated output y of the first
subnetwork at time step t during the backpropagation process.
The output is calculated by applying to the previous input xt
the updated residual function F(xt+1) (computed using the
input xt+1). The action of ’+ x’ in y=F(x)+x is approached
by a skip connection that executes identity mapping and links
the input of a residual block to its output [38]. Fig.3 illustrates
the architectural structure of the ResNet model, which uses
residual blocks made up of stacked convolutional layers that
use the previous layer’s output. These blocks additionally
have an identity mapping path, which improves learning by
merging each block’s output with its input.

FIGURE 5. The effect of RMSProp step.

B. ROOT MEAN SQUARE PROPAGATION OPTIMIZATION
ALGORITHM (RMSPROP)
Geoffrey Hinton developed RMSProp in 2012 as an adaptive
optimization approach specifically for training neural net-
works [39], solving problems in techniques such as stochastic
gradient descent (SGD). Unlike traditional methods that
use predetermined learning rates, RMSProp dynamically
modifies learning rates for each parameter at every time [40],
[41]. This correction requires dividing the learning rate by an
exponentially decaying average (EDA) of squared gradients,
which helps prevent diminishing or oscillating learning rates
throughout training. RMSProp ensures a more steady update
direction by taking an exponentially weighted average of the
gradients, decreasing oscillations, and ensuring significant
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steps in the horizontal direction, thus assisting in faster
optimization convergence (Fig.4). RMSProp, compared to
gradient descent, changes how gradients accumulate, pri-
oritizing recent gradient information while neglecting past
histories, thereby boosting deep learning model convergence
efficiency [41], [42], [43]. Notably, a huge oscillation is
observed in both horizontal and vertical directions of standard
GD convergence (Fig.4).

ϑt = βϑt + (1 − β)(▽θt )2 (5)

θt+1 = θt
η

√
sdw

(θt ) (6)

RMSProp adjusts the learning rate to be faster in the
horizontal direction while reducing oscillations in the vertical
direction (Fig.5). To regulate the learning rate, RMSProp uses
a moving average of the squared gradients, which normalizes
the gradient updates and ensures a stable learning process.
The above (5) and (6) show the computation of the gradients
in the RMSprop.

Where ϑ is the exponentially decaying average of squared
gradients at the time unit t. ▽θt is the gradient of the loss
function concerning the parameter θ at time unit t. β is
the decay rate (usually set to 0.9). The learning rate is
η. Equation (6) illustrates the subsequent parameter update
process based on this calculation.

ϑdw = β(ϑdw) + (1 − β)d2w (7)

ϑdb = β(ϑdb) + (1 − β)d2b (8)

RMSProp minimizes the learning rate horizontally at each
time step during training, determining the current minibatch
dw & db using (7) and (8).

Equations (9) and (10) represent the update process for
parameters ‘w’ and ‘b’ respectively, adapting the learning rate
in accordance with dw and db values.

wt+1 = wt −
η

√
ϑdw

(dw) (9)

bt+1 = bt −
η

√
ϑbw

(bw) (10)

A tiny positive integer (σ , typically 10−7) is added to the
denominators of (9) and (10) to prevent inconsistent weight
updates caused by very small ϑdw and ϑdb values. This will
result in (11) and (12).

wt+1 = wt −
η

√
ϑdw + σ

(dw) (11)

bt+1 = bt −
η

√
ϑbw + σ

(bw) (12)

C. PERFORMANCE EVALUATION METRICS
Various metrics are applied to measure classifier performance
and determine their predictive power. Accuracy is a key
measurement determined as the ratio of accurately identified
occurrences (true positives and negatives) to the overall cases
shown in (13). The true positive rate (TPR) is the percentage
of actual positive cases accurately predicted. The ratio of

precisely predicted negative samples is determined by the true
negative rate (TNR). Both were shown in (14) and (15).

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(13)

Sensitivity(or)Recall(TPR) =
TP

TP+ FN
(14)

Specificity(TNR) =
TN

TN + FP
(15)

F1Score = 2 ∗
(precision ∗ recall)
(precision+ recall)

(16)

The F1-score, the harmonic average of accuracy and recall,
is a balanced metric that considers both false positives and
false negatives, as illustrated in (16). It is a reliable statistical
performance evaluation metric, especially when the class
distribution is unbalanced.

Researchers commonly rely on accuracy for algorithm
assessment. When a dataset is imbalanced (instances of one
class are much bigger than in another), accuracy cannot
be regarded as a credible metric since it is skewed toward
the majority class and produces an unrealistically optimistic
result [44]. In such cases, the Matthews correlation coeffi-
cient (MCC) in combination with accuracy is recommended.
MCC serves as a robust alternative, initially developed by
Matthews in 1975 [45] and further refined by Baldi and
colleagues in 2000 [46]. The MCC was derived from the
confusion matrix and calculated using the values of TP (True
Positive), TN (True Negative), FP (False Positive), and FN
(False Negative) shown in (17) to measure the reliability of
binary classifications.

MCC =

(TP× TN ) − (FP× FN )
√
(TN + FP) ⋆ (TN + FN ) ⋆ (TP+ FP) ⋆ (TP+ FN )

(17)

(Lowest prediction value is −1; Highest prediction value
is +1).
Since MCC is class symmetric, the outcome remains the

same whether the positives and negatives are switched. MCC
can be undefined if either of the numbers TN+FP, TN+FN,
TP+FN, or TP+FP equals 0. The classifier’s performance is
represented by a single number falling within the range of
−1 to 1. The MCC value is −1, which indicates complete
disagreement (i.e., the classifier predicts every positive as a
negative and every negative as a positive). The MCC value is
one, indicating complete agreement, when the value is zero
or near zero, meaning random guessing [47], [48].

Area Under the Receiver Operating Characteristic
(AUROC) curves have become prominent in assessing the
performance of machine learning and clinical diagnostic
classifiers. AUROC ranges from 0 to 1. The AUROC
score 1 implies perfect classification, whereas 0 shows
complete misclassification. A score between 0.5-1 indicates
successful positive/negative class separation, whereas a score
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FIGURE 6. Proposed work flow for CRC detection.

of 0.5 indicates random predictions with no class-separating
capacities [49].

D. RESEARCH CONTEXT AND RELATED WORK
Meat and fish diets are excellent sources of essential nutri-
ents, including vitamins A and B, as well as minerals [13].
Red meats, in particular, are an incredible protein resource,
making them a frequently consumed food in our daily diet.
However, heating high-protein foods at high temperatures
might result in the formation of hazardous mutagens, such
as heterocyclic amines (HCAs) and polycyclic aromatic
hydrocarbons (PAHs) [18]. Additionally, cooking procedures
such as grilling, frying, and roasting have been shown to
significantly increase the formation of these mutagens.

In 2020, Mehta et al. [50] performed a study using
a US dataset to explore the association between red and
processed meat intake, different cooking techniques (such
as grilling, barbecuing, pan-frying, and oven-broiling), and
CRC risk. The research indicated that high consumption
of barbecued or grilled red meat items was related to an
elevated risk of CRC in women. Similarly, Mosley et al. 2020
[51] investigated the relationship between red and processed
meats, various cooking techniques (including oven-roasting,
baking, grilling, barbecuing, pan-frying, and deep-frying),

and CRC risk. Their results observed that these cooking
techniques greatly enhanced the formation of sessile serrated
lesions (SSL), consequently doubling the risk of CRC.
Additionally, in the same year, Tao et al. [52] conducted
research in Vietnam, concentrating on beef, various cooking
techniques (such as pan-roasting, roasting, and grilling), and
CRC incidence. Their investigation revealed that ingesting
beef cooked using these methods increased CRC formation.
Furthermore, Nassab et al. [53] conducted an investigation
using an Iranian dataset and discovered that consuming high
amounts of fried and grilled foods significantly raises the risk
of colorectal cancer.

In 2018, de Badlay et al. [54] examined the association
between meat consumption, cooking practices, and CRC
risk factors. Study results showed that excessive grilled or
barbecue meat consumption was correlated with a higher risk
of CRC. Similarly, Lu F. et al. conducted a study in 2017
[55] that examined the relationship betweenHCA intake from
charcoal-grilled chicken and hamburgers and the incidence
of CRC. Research outcomes found a direct link between
consuming high levels of HCAs from charcoal-grilled
chicken and hamburgers and an increased CRC risk. Research
conducted by Amit et al. in 2015 [30] proved that consuming
pan-fried beef and oven-cooked ribs dramatically raised the
risk of CRC. Surprisingly, consuming grilled hamburgers
was observed to have a protective effect against CRC.
Furthermore, studies undertaken in 2014 by Steck et al. [56]
determined that red meat, especially well-done and fried red
meat, was linked to a higher CRC risk.

Most prior studies have focused on specific foods or
cooking methods and indicated that CRC risk increased
with fried red meat, roasted beef, grilled poultry, grilled
hamburgers, and barbecued meats. However, they do not
recommend safe consumption levels of these foods. Our
research aims to address this gap by examining a variety
of foods, such as pork, beef, chicken, hamburgers, pork
chops, sausages, and beef steaks, alongwith different cooking
methods, including pan-frying, broiling, grilling, and baking.
The present study analyzed and detailed the effects of these
foods and cooking methods on CRC risk. Additionally, this
research provides recommended quantities of certain foods
prepared using specific cooking methods. This insight will
ensure that individuals choose those foods and eat them
in safe amounts. Rather than avoiding any foods from the
regular diet, eating them in moderation can help protect
against CRC incidence.

III. MATERIALS AND METHODS
A. STUDY PARTICIPANTS AND DESIGN
The PLCO Cancer Screening investigation is a large-scale,
multicenter, randomized research intended to determine the
impact of screening on prostate, lung, colon, and ovarian
(PLCO) cancer mortality and if screening can lower the risk
of death from these carcinomas [57]. Between 1993 and 2001,
1,54,892 participants (76,679 males and 78,213 females)
aged 55 to 74 were recruited at ten sites throughout the
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TABLE 1. Data separated into train, test, and validation using stratified
shuffle.

United States and randomly assigned to participate in
the intervention or control arm. While individuals in the
control group receive regular medical care, those in the
intervention group receive screening tests [58], [59]. Prior
PLCO cancer history, involvement in other cancer studies,
or continuing cancer therapy were all excluded. Participants
answered a self-administered questionnaire as a baseline,
where demographic, dietary, and medical history information
was obtained. The study was authorized by the National
Cancer Institute’s (NCI) human subjects review board. All
ten screening centers approved the trial, and all participants
provided written informed consent.

B. DATA COLLECTION
The PLCO study obtained baseline information via a
self-administered baseline questionnaire (BQX) and a
Dietary History Questionnaire (DHQ). The BQX gathered
demographic details from 96.8% of subjects across both
intervention and control arms. The DHQ was completed by
77% of participants, and dietary information was collected
from both groups.

C. OUTCOME ASCERTAINMENT
Participants’ CRC cases were confirmed by their pathology
data, medical data, and/or death certificate information.
Furthermore, individuals were also requested to disclose if
theywere recently confirmed to have cancer, the year and date
of diagnosis, the type of cancer, and their physician’s contact
information.

D. DATA ACCESSIBILITY
The data mentioned in this paper were obtained from the
PLCO Cancer Screening Trial. Researchers interested in
accessing the data mentioned in the study should apply via
the PLCO Cancer Data Access System (CDAS). Website
(https://cdas.cancer.gov/learn/plco/instructions/?subtype=
Data-Only).

TABLE 2. Details of the classification layer and prediction layer and
deployed techniques.

E. STATISTICAL ANALYSIS
To estimate risk ratios (RRs) with 95% confidence intervals
(CIs) for relationships between meat intake or cooking
style and CRC risk, a modified ResNet18 convolutional 1D
model with age functioning as a time scale was employed.
Participants’ admission time was their present age at the
beginning of the trial, and their exit time was their age at
the time of cancer diagnosis, death, or the end of the follow-
up, whichever came first. Participants’ cancer diagnosis
and demise information was updated in 2009 and 2018.
To analyze CRC risk concerningmeat consumption, the study
chose equally spaced categories of dietary intake values: 100g
increments for all food items, except for the lowest category
(<100g).

The dietary intake values of the subjects are divided into
consumption values for bacon, meat, chicken, hamburger,
pork chops, sausage, and beef steak. For analytical purposes,
food consumption values are broken down into red and white
meat cooked at high and low temperatures. Dietary ingest
data for the subjects were converted into grams and utilized.
Following that, in the result analysis phase, we compared the
participants’ daily food intake values (cooked using various
cooking methods) with the incidence of colorectal cancer.
The study results are presented based on the entire study
population and according to daily intake of red and processed
meats prepared in different cooking methods in varying
amounts.

Relative risk or risk ratio is a ratio that estimates the chance
of an event occurring in an exposed group over the probability
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TABLE 3. Performance metrics and time taken for the classification and
prediction phase.

of an event occurring in an unexposed group [60].

RiskRatio = POe/POu (18)

Equation (18) POe represents the likelihood of an event
occurring in the exposed class, while POu represents the
chance of an event occurring in the unexposed class. RR > 1:
The event is more likely to occur. RR < 1: The event is less
likely to occur. RR of 1: No difference in the event.

IV. IMPLEMENTATION OF THE PROPOSED RESNET18
(CONV 1D)
The study utilizes a large dataset of around 1,54,892
participants (76,679 males and 78,213 females) records,
which provides precise information on how people consume
meat and covers a wide range of meat consumption habits.
This comprehensive analysis enabled us to investigate the
complex relationship between various eating patterns and
colorectal cancer. Nonetheless, due to a shortage of positive
instances in the dataset, examining the relation between
meat-derived mutagens and CRC risk caused challenges
during analysis.

The proposed procedure for implementing colorectal
cancer detection using a modified ResNet18 (Conv 1D)
workflow structure is shown in (Fig. 6). The dataset initially
had a lot of noise; therefore, duplicate features were removed
to speed up the training process to retain the accuracy. This
consisted of two significant steps: Data cleansing involved
replacing erroneous values in demographic and dietary
information with appropriate ones and ensuring uniform data
types within columns for better integration with the proposed
ResNet model. Furthermore, feature reduction entailed
optimizing the dataset by removing blank, zero, and negative
entries, especially in dietary profiles frequently filled out

TABLE 4. Baseline characteristics and colorectal cancer.

as alphanumeric values. After successfully eliminating the
above data, only 1,17,886 (1,16,071- Healthy and 1,815-
Cancer) objects were left for the following consecutive
process.

One fully coupled neural network layer and block normal-
ization are employed independently in the classification and
prediction layers (Fig. 7). The trained classifier layers, with
uniquely assigned class weights, are then used to categorize
features into healthy or colorectal cancer (CRC) classes.
Following categorization, the groups of colorectal cancer
patients were forwarded to the prediction phase. In the
prediction phase, trained prediction layers with uniquely
assigned class weights are employed to estimate the age
range of CRC patients. A customized ResNet18 (conv 1D)
structure is used for the classification method (1 and 2) and
the prediction method. Table 2 contains information like the
number of training epochs, size of the batches, optimizers,
and learning rate utilized during classification and prediction
layer training. Table 2 also explains how the number of
trainable parameters in the learning model varies depending
on this study’s ResNet18 (conv 1D) model.

A. EXPERIMENTAL SETUP
Upon eliminating noise, the normalized and refined data
undergo a series of transformations as a crucial prepro-
cessing step before being given into the learning model.
Subsequently, out of the total pool of 1,54,892 individuals,
approximately 1,16,071 individuals in healthy, and 1,815
with cancer objects were identified for further analysis.
Two unique methods were used in the context of learning
models. In the first method, the preprocessed dataset is fed
straight into the learning model; in the second method, the
refined dataset is divided into thirty smaller, block-sized data
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FIGURE 7. Overview of the proposed approach for CRC detection using ResNet18 (Conv 1D)
model.

for in-depth analysis. Notably, participants’ demographic
information was withheld from the dataset in line with
the research objective, and only dietary information was
provided for both approaches. Furthermore, the healthy
and cancer participants were split equally in each batch.
Thus, approximately 3,869 participants for each block were
evenly distributed and arranged into 30 blocks from a total
population of 1,16,071 healthy participants. In contrast, all
1,815 cancer participants were included in 30 blocks. So, each
batch comprised 5,684 individuals, resulting in 30 batches
encompassing approximately 1,17,000 healthy individuals
and 1,815 cancer patients. The colo-exit-days were used
to find when individuals left the trial and to determine
the age range in which participants were most likely to
develop cancer. We observed a wide range of colo-exit-days
in the study, from a minimum of one day to a maximum of
5,906 days.

B. CLASSIFICATION PHASE
The proposed ResNet18 (Conv1D) model is well-suited for
real-time sequential data. This research utilizes the ResNet18
(Conv1D) CNN architecture to extract features, classify
healthy and cancer data, and predict the age of cancer
patients. After filtering out irrelevant information, a modified
dataset containing the dietary information of the participants
(both healthy and cancer patients) is created and sent for
further analysis. Using a stratified shuffle split technique, the
dataset is divided into training, validation, and test sets in a
70:15:15 ratio. The validation set helps prevent overfitting
and enhances the model’s performance on new, unseen data.
Each time, stratified shuffle split randomly picks the samples
based on the original dataset’s class ratio. Stratified shuffle
split ensures that the class balance in the resulting sets reflects

the original dataset’s class distribution, as shown in Table 1.
The typical ResNet18 convolutional 2D model is customized
into a convolutional 1D model using appropriate residual
blocks, batch normalization, and activation functions, making
it suitable for the real-time sequential task of colorectal
cancer classification. A custom callback function is then
used to evaluate the model’s performance during training.
The loop function executes the training process 30 times
(epochs), processing cancer and healthy data into training,
validation, and test sets in each iteration. It initializes and
loads the ResNet18 (Conv1D) model, compiles it with a
specified loss function and optimizer, and trains it with
specified class weights to address the class imbalance. The
class weights are set at 0.7344 for healthy patients and
1.5661 for cancer patients, ensuring balanced distribution
during training. During training, callbacks are used to save
the model’s performance metrics at each epoch.

C. PREDICTION PHASE
This phase uses the prediction layer to predict the age
of patients diagnosed with colorectal cancer. Based on a
cohort of 1,815 identified CRC cases, the study revealed a
noteworthy finding: a total absence of CRC diagnoses in
the age range of 51 years or younger. Subsequently, the
remaining patients were stratified into three distinctive age
groups for further analysis: individuals aged 50-64 years (n=

351), 65-69 years (n = 453), and 70 years (n = 1,011).
To account for participant exit due to CRC detection or
mortality, we employed the colo-exit-age variable, which
records each participant’s age of exit, providing valuable data
for analyzing potential relationships between age and CRC
outcomes within our research.
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FIGURE 8. a) Comparison of MCC and AUROC in classification with and
without batch split for ResNet 18 (Conv 1D) Model. b) Comparison of
Prediction Phase MCC and accuracy for ResNet 18 (Conv 1D).

Before model training, we addressed the class imbalance
in the distribution of identified CRC cases. We employed
the ‘‘balanced’’ variable to calculate specific class weights
inversely proportional to the class frequencies in the target
variable (y). These class weights were incorporated during
the training to handle the potential class imbalance and
enhance model performance (class weights: 50-64 years =

1.7236, 65-69 years = 1.3355, 70 years = 0.5984). To main-
tain class distribution within the training, validation, and
test sets, a stratified shuffle-split technique separates the
data at a 70:15:15 ratio. Subsequently, the proposed custom
ResNet18 (Conv1D)model was constructed utilizing residual
blocks, batch normalization, and activation functions. Then,
the ResNet18 (Conv1D) model was pre-loaded for training,
with an internal looping structure to ensure training for
50 epochs.

V. RESULTS
At first, we evaluated the learning model by categorizing
the whole dataset directly without using block splitting.
The dataset was then segmented into thirty blocks, and the
classification phase was used to test each of the distinct
blocks. Both methods used the same classification layer
parameters. The acquired MCC and AUROC values during
the classification phase of CRC prediction are shown in Fig 9,
whereas Fig 10 illustrates the confusion matrix produced

TABLE 5. Meat consumption and colorectal cancer risk.

in the age prediction phase. In Fig 10, the ages 60-64 are
represented by label 0, 65-69 by label 1; and 70 and above
by label 2. During the classification phase, the highest MCC
and AUROC values achieved in the first approach were
0.27 and 0.49, respectively, indicating poor performance
of the learning model without block-split. However, the
second approach, where the data was divided into 30 blocks,
achieved the highest MCC value of 0.80 and AUROC value
of 0.85. On the other hand, the prediction phase yielded
a maximum MCC value of 0.88 and an accuracy of 97%.
Rather than providing the whole dataset all at once to the
classification phase, this study discovered that sending the
dataset divided into 30 blocks greatly enhanced the learning
model’s performance.

This research focuses on detecting CRC patient and
predicting their ages. Therefore, MCC and AUROC values
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FIGURE 9. MCC and AUROC snapshots from the ResNet18 (conv 1D) classification phase.

FIGURE 10. Snapshots and confusion matrix from the prediction phase.

of the classification phase (both approaches) are related to
the correct identification of the CRC classes. Similarly, the
accuracy value is associated with the accurate prediction
of the CRC patient’s age prediction phase. The findings
demonstrate that models without block split have lower MCC
and AUROC values in comparison to the suggested block-
splitting model. High accuracy and MCC values are also
shown in the prediction phase, which proves that the models
are good at predicting the ages of CRC patients. These results
show how the suggested models can accurately estimate the
age of CRC patients and how important block splitting is for
better classification results.

We also summarize the demographic, lifestyle, familial
cancer, and CRC cancer features found in this cohort analysis
and unveils key risk factors associated with CRC. Individuals
aged 65-69 years and those over 70 had notably higher CRC
risks (RR: 1.46, CI: 1.32-1.61) and (RR: 1.58, CI: 1.42-1.78),
respectively. Retirement and unemployment emerged as
significant factors, showing elevated CRC likelihood among
retirees (RR: 1.31, CI: 1.19-1.43) and jobless individuals
(RR: 1.13, CI: 0.73-1.75). Both current and former smokers
confronted increased CRC threats (RR: 1.14, CI: 0.99-1.31)
and (RR: 1.11, CI: 1.01-1.22), respectively. Likewise, alcohol
consumption, whether present or past, showed a positive link
with CRC threat (RR: 1.26, CI: 1.06-1.88) and (RR: 1.05,
CI: 0.90-1.21). The presence of a cancer history among

TABLE 6. Broiled, Grilled, and Baked meat intake and colorectal cancer.

the immediate family members of participants (RR: 1.3,
CI: 1.13-1.50) and a prior incidence of CRC (RR: 2.57,
CI: 2.30-2.87) increased the chance of developing CRC.
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FIGURE 11. a) Comparison between CRC risk factors with cancer patients in different age groups of participants. b) Comparison
between CRC risk factors with cancer patients belonging to different occupations. c) Comparison between CRC risk factors with
cancer patients associated with participants’ smoking habits. d) Comparison between CRC risk factors with cancer patients
associated with participants’ drinking habits. e) Comparison between CRC risk factors with cancer patients associated with
participants’ family CRC history. f) Comparison between CRC risk factors with cancer patients associated with participants’
family cancer history.

These diverse risk factors provide valuable insights into com-
prehending and potentially mitigating CRC risks prevalent in
societies. Fig 11 shows the CRC risk factor comparison of
participant’s general characteristics.

A. MEAT INTAKE AND CRC RISK
Every meat (red, white, processed, and processed red meat)
has statistically significant favorable relationships with CRC
risk, independent of cooking techniques. Excluding roasted
pork chops, which showed a negative connection with
CRC risk even at intake levels exceeding 26g/d (RR: 0.35,
CI: 0.05-0.51), themajority of meat variables were associated
with increased risk estimations. However, when all meats

cooked at high temperatures are accounted for, there is no
strong evidence of a relationship betweenmeat diets and CRC
risk.

Regardless of cooking temperature (high or low), red meat
was linked to an increased risk of colorectal cancer (CRC),
especially when consumed in excess of 26g/d (RR: 1.14,
CI: 0.99-1.32; and RR: 1.32, CI: 1.92-2.14, respectively).
Though no correlation was found between the overall poultry
intake and CRC threat, eating in excess of 26g/d of fried or
barbecued white meat was linked to an increased risk of CRC
(RR: 1.07, CI: 0.97-1.18). Additionally, daily consuming
more than 26g of specific processed meat types, such as
processed red meat, processed ham, and hot dogs, processed
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TABLE 7. Pan-fried meat consumption and colorectal cancer risk.

non-poultry cold cuts, and processed bacon and sausages,
exhibits a positive association with heightened CRC risk
(RR: 1.13, CI: 1.00-1.27; RR: 1.1, CI: 0.97-1.25; RR: 1.13,
CI: 1.01-1.27; and RR: 1.16, CI: 1.04-1.29, respectively).
Interestingly, a strong positive correlation exists between
increased consumption of fast-food-style hamburgers and
CRC threat (RR: 1.94, CI: 0.45-2.96).

B. PAN-FRIED MEATS AND CRC RISK
The study examined the relationship between CRC risk and
the consumption of various types of meat cooked using pan-
frying (‘‘a fast cooking method involving a preheated frying
pan’’). The meats assessed encompassed beef steak, bacon,
meat, poultry, hamburger, pork chops, and sausage. Findings
suggest that consuming more than 26g of fried hamburgers
(RR: 1.86, CI: 1.09-3.18); and fried sausages (RR: 2.4, CI:
0.79-2.29) daily, as well as 11g of bacon consumption (RR:
1.1, CI: 0.79-1.53) raises the CRC hazards. On the other hand,
a higher intake of pan-fried meat (RR: 0.91, CI: 0.76-1.09);
pan-fried chicken (RR: 0.8, CI: 0.51-1.27); and pan-fried beef
steak (RR: 0.43, CI: 0.06-3.01) showed a significant negative
relationship with CRC. However, no noteworthy connections
were observed between other types of meat and CRC risk.

C. BROILED, GRILLED, AND BAKED MEATS AND CRC RISK
Daily broiled chicken consumption reduces (RR: 0.8, CI:
0.78-1.67) colorectal cancer risks, while broiled beef steak
(RR: 1.46, CI: 0.96-2.24) and broiled meat (RR: 1.25, CI:
0.98-1.60) have statistically elevated CRC risk. Broiled ham-
burgers and pork chops have inconsistent risks. Moreover,
a statistically significant positive link was observed between
the intake of grilled or barbecued meat, hamburger, and
beef steak (RR: 1.07, CI: 0.93-1.23; RR: 2.06, CI: 0.79-3.42;
and RR: 1.31 CI: 0.76-2.25, respectively). Meanwhile, there
was a substantial negative correlation between grilled or

FIGURE 12. a) Comparison of CRC risk factors with meat and red meat
cooked in high and low temp. b) Comparison of CRC risk factors with
white meat (excluding chicken pan-frying, grilling, or barbecuing). c)
Comparison of CRC risk factors with various processed meats and red
meats.

barbecued poultry (RR: 0.84, CI: 0.52-1.34) and pork chops
(RR: 0.46, CI: 0.11-1.82). Concerning baked food, excessive
consumption of chicken (RR: 0.79, CI: 0.62-1.00), pork
chops (RR: 0.9, CI: 0.66-1.23), and beef (RR: 0.77, CI: 0.11-
1.41) was statistically showed a strong negative link with
CRC.

VI. DISCUSSION
Our research investigates the relationship between the risk
of colorectal cancer and the intake or preparation of various
types of meat, and no definitive positive link to colorectal
cancer was identified with any particular meat. However,
it has been observed that how meat is prepared may have
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FIGURE 13. a) Comparison of CRC risk factors with Deep-fried & stewed
poultry. b) Comparison of CRC risk factors with hamburger and pork
chops.

a more significant impact than the amount consumed.
As a result, in this cohort research, an analysis of meat
consumption behaviors with portion sizes and cooking
techniques was undertaken. Processed red meat, processed
ham, hot dogs, various processed cold cuts excluding chicken,
as well as processed bacon and sausages, have all been linked
to an increased risk of colorectal cancer. The substantial
correlation usually reported between increased intake of red
meat (cooked at high or low temperatures) and CRC risk may
be due to the development of mutagens such as heterocyclic
amines (HCAs) during the cooking process. When red meat
is cooked at temperatures higher than 150◦C, HCAmolecules
accumulate, increasing the risk of CRC. Our study confirms
the findings of several cohort and case-control studies [50],
[61], [62], [63], [64], [65] and demonstrates a substantial
correlation between the consumption of red meat and the
risk of colorectal cancer (CRC). There was no statistically
significant positive correlation identified between consuming
white meat and certain types of red meats like pork and an
increased likelihood of colorectal cancer. However, a few
studies, both cohort and case-control, have revealed no
apparent association between red meat consumption and the
possibility of CRC [66], [67].
Mutations that occur during high-temperature red and

white meat cooking are distinct, while the process behind
these disparate interactions between mutations remains
unclear. Some studies suggest that the meat type and cooking

FIGURE 14. a) Comparison of CRC risk factors with pan-fried bacon, meat,
and poultry. b) Comparison of CRC risk factors with Pan-fried Beef Steak,
Hamburger, Pork Chops, and Sausage.

temperature may decide the HCAs (heterocyclic amines)
and PAHs (polycyclic aromatic hydrocarbons) compounds
formed from red and white meats [28], [63]. However,
compounds such as heme iron, which usually appears in red
meat, may increase the risk of colorectal cancer [23]. One of
the notable findings suggests that the cooking method may
play a crucial role in the relationship between food types and
CRC risk. Bacon, hamburger, and sausage prepared at high
temperature exhibits a positive link. Meanwhile, significant
inverse associations were seen in the intake of chicken and
pork chops cooked by any cooking method like pan-fried,
broiled, grilled, and baked, indicating a potential preventive
benefit against CRC. This may be attributed to the formation
of harmful compounds, such as HCAs and PAHs, during
cooking. Pan-fried beef steak and meat show a negative link.
Besides, both foods prepared by the broiling method exhibit
a positive link. Some foods showed a statistically significant
positive or negative association with CRC regardless of
cooking methods. Certain food items showed variations in
their effect on CRC depending on the cooking method.

Previous studies on the relationship between meat con-
sumption and colorectal cancer have yielded inconsistent
results. This can be attributed to the different methodologies
utilized in cohort, case-control, and population-based studies,
as well as the wide range of variables used as exposure
measures. Dietary information collected from the majority of
participants in cohort studies occurred prior to their cancer
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FIGURE 15. a) Comparison of CRC risk factors with Broiled Meat, Poultry,
Hamburger, Pork Chops, and Beef Steak. b) Comparison of CRC risk
factors with Grilled Meat, Poultry, Hamburger, Pork Chops, and Beef
Steak. c) Comparison of CRC risk factors with Baked Meat, Poultry, and
Pork Chops.

diagnosis. Consequently, most case-control studies [52], [54],
[68], [69] have revealed a positive correlation between meat
consumption and colorectal cancer compared to findings in
cohort studies [70], [71]. Despite a few foods exhibiting a
positive link in this study, the statistical significance of their
influence on CRC was robust.

Our research has a few limitations. First, when participants
were diagnosed with cancer, they were allowed to self-report
the specifics of their diagnosis, and death certificates were
also considered as evidence of cancer. Sometimes, the
information provided in the death certificate is also likely
to be erroneous. As a result, more transparency in cancer
confirmation should be promoted. Future work should focus
on integrating robust clinical data sources and validation

processes to strengthen the accuracy and reliability of cancer
diagnoses. Second, participants gave identical values to
several nutritional indicators because they were given the
flexibility to enter and change dietary information at different
levels. Consequently, they filled in multiple dietary variables
on the Food Frequency Questionnaires (FFQ) forms with
the same numbers and left several columns unfilled. Many
essential pieces of information are thus either absent or
inaccurate. The integrity of the details supplied by the
participants during the experiment was recorded without
cross-validation. Therefore, strict data entry protocols and
robust data validation techniques to ensure that the data
obtained provide sufficient and complete information should
be implemented in the future and focused on increasing
data quality. This could significantly improve the accuracy
of the colorectal cancer prediction. Third, because no com-
prehensive dietary evaluation approach was employed, the
nutritional values of certain foods were limited. At the same
time, the dietary contents of several foods were insufficient to
be incorporated into numerous cooking methods. Therefore,
this has led to a lack of clarity on the effects of certain
foods and cooking methods on the CRC risk. To better
understand the link between cooking methods and colorectal
cancer risk, further investigation should be undertaken,
combining thorough food records with detailed information
about various cooking methods.

In summary, high-temperature cooking can increase the
risk of colorectal cancer by causing hazardous mutagens to
form in the food. Processed meat consumption, particularly
ham, bacon, and sausages, has been associated with an
elevated risk of CRC. These findings suggest that epidemi-
ological research on the connection between meat intake and
CRC should consider the type of meat consumed and how it
is cooked. Overall, our results encourage the intake of less red
and processed meat.
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