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ABSTRACT This paper presents a comprehensive survey on interpretable intelligent fault diagnosis for
rotating machinery, addressing the challenge of the ‘‘black box’’ nature of machine learning techniques
that hampers reliability in automated diagnostic processes. It underscores the growing importance of
interpretability in intelligent fault diagnosis (IFD), marking a shift from traditional signal processing
methods to machine learning-based approaches that necessitate transparency for trustworthiness. Our review
systematically collates and examines the spectrum of interpretability in IFD, distinguishing between post-hoc
and ante-hoc strategies. We detail mainstream post-hoc methods, their applications, and critique their
limitations, particularly the absence of physical significance. The survey then explores ante-hoc methods
that incorporate physical knowledge upfront, enhancing interpretability. By categorizing and evaluating
three distinct knowledge embedding approaches, we shed light on their unique applications. Conclusively,
we highlight emerging research directions and challenges in the field, aiming to equip readers with a
nuanced understanding of current methodologies and inspire future studies in making IFD more reliable
and interpretable.

INDEX TERMS Intelligent fault diagnosis, post hoc interpretation, ante hoc interpretation, explainable
artificial intelligence, deep learning, rotating machine.

I. INTRODUCTION
Rotating machinery, critical to industries such as wind
energy, aerospace, and maritime, plays a foundational role
in modern manufacturing [1]. These machines, including
wind turbine transmission systems, helicopter gearboxes, and
marine propulsions, operate in challenging environments,

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehrdad Saif .

making failures inevitable and posing risks of accidents
and economic losses [2]. The importance of accurate fault
diagnosis (FD) for these machines cannot be overstated, as it
enables timely maintenance, extends service life, and ensures
operational safety [3], [4], [5].

Traditionally, FD in rotating machinery has relied on the
extensive experience and expert knowledge of engineers
skilled in data signal processing. Engineers could identify
malfunctions through auditory cues or by analyzing vibration
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signals across the time, frequency, and time-frequency
domains. Techniques such as spectral kurtosis [6], resonance
demodulation, [7] empirical mode decomposition [8], varia-
tional mode decomposition [9], and wavelet transform [10]
have been effectively employed for this purpose. Each
method has demonstrated significant success in diagnosing
faults. However, these traditional methods suffer from a
crucial limitation: the need for specific feature extraction
tailored to each unique fault type [11], [12]. This specificity
makes the process cumbersome and less applicable in a
general context, highlighting a gap for more universally
applicable diagnostic approaches [7].

The evolution of sensor technology and the exponential
growth of monitoring data have catalyzed the development
of intelligent fault diagnostic (IFD) methodologies [8]. These
methodologies leverage machine learning (ML) models to
interpret various monitoring signals and ascertain the health
status of machinery, showcasing a shift towards automation in
fault diagnosis [9]. For instance, HiddenMarkovModels have
been utilized for their strength in modeling dynamic time
series and classification capabilities in rotating machinery’s
acceleration and deceleration processes [10]. Similarly, the
integration of wavelet packet decomposition with Principal
Component Analysis and support vector machines (SVM)
for diagnosing faults in bearings represents the broader
application of ML in this domain [13]. Additionally, other
ML models, such as k-nearest neighbour [14], and artificial
neural networks [15], have been widely applied in the
realm of IFD, further illustrating the diverse and expanding
applications of ML in fault diagnosis.

Abbr. Meaning.
IFD Intelligent Fault Diagnosis.
IIFD Interpretable Intelligent Fault Diagnosis.
FD Fault Diagnosis.
SVM Support Vector Machines.
ML Machine Learning.
DL Deep Learning.
NLP Natural Language Processing.
CNNs Convolutional Neural Networks.
CAM Class Activation Mapping.
LIME Local Interpretable Model-agnostic

Explanations.
SHAP SHapley Additive exPlanations.
AM Attention Mechanism.
CV Computer Vision.
PHM Prognostics and Health Management.
CWRU Case Western Reserve University.
EDM Electrical Discharge Machining.
PU Paderborn University.
FCF Fault Characteristic Frequency.
XAI Explainable Artificial Intelligence).
RF Random Forest.
LRP Layer-Wise Relevance Propagation.
GA Gradient Ascent.
CIU Contextual Importance and Utility.

LGSC Layered General Sparse Coding.
NISTA Iterative Soft Thresholding Algorithm.
MCAN Multi-Scale Component Analysis Network.
MCA Morphological Component Analysis.
SPINN Signal Processing Informed Neural Network.
TLNN Temporal Logic Neural Network.
STL Signal Temporal Logic.
RSFDS Restricted Sparse Frequency-domain Space.
RL Reinforcement Learning.

In recent years, deep learning (DL) techniques have
emerged as a frontier for automating and enhancing the
precision of data analysis, gaining acclaim in fields such
as natural language processing (NLP) and image classifica-
tion [16]. DL’s ability to autonomously extract features and
facilitate end-to-end fault diagnosis represents a significant
leap over traditional ML-based IFD methods, which require
extensive manual effort and expertise for feature extraction.
Among various DL models, convolutional neural networks
(CNNs) and attention mechanisms have been particularly
notable for their achievements in computer vision and NLP.
Their application in fault diagnosis has seen an upsurge in
comprehensive research, offering improved reliability and
generalization capabilities [17], [18], [19], [20].

Despite their advanced diagnostic capabilities, the increas-
ing reliance on DL models has heightened the need for
interpretability. The ‘‘black box’’ nature of thesemodels often
results in a lack of transparency regarding their decision
making processes, undermining user trust. To enhance the
transparency of Deep Learning (DL) models, Explainable
Artificial Intelligence (XAI) techniques have been exten-
sively studied and can broadly be divided into post-hoc
and ante-hoc interpretable methods. Compared to the afore-
mentioned methods, XAI maintains the transparency of
traditional signal processing and machine learning methods
while inheriting the capability of DL to handle large datasets.
The development and differences of fault diagnosis methods
are illustrated in Figure 1.
Existing reviews on IFD, such as those by Liu et al. [21],

Lei et al. [7], Zhang et al. [22], Lv et al. [23], and
Zhu et al. [24], have offered comprehensive insights into the
applications of traditional ML and the evolution of IFD
methodologies, including the advent of DL. However, these
reviews do not adequately address the critical aspect of
interpretability within interpretable intelligent fault diagnosis
(IIFD). Interpretability, as highlighted by Lei et al. [7] and
Zhu et al. [24], is essential for the industrial application
of IFD models, enabling users to understand and trust
the model’s predictions. Despite its importance, there is
a notable gap in the literature regarding comprehensive
reviews focused specifically on interpretability within the
IIFD domain. This gap is significant, as interpretability not
only enhances trust by clarifying the decision-making process
but also facilitates the identification of relevant parameters
used for classification, improving model evaluation [25].
Without a clear basis for the model decision, users may
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FIGURE 1. The development and differences of IFD.

find the outcomes less credible. However, there is neither
a clear mathematical definition of interpretability nor a
complete theory and method system of pure mathematical
analysis [26]. Hence, we believe it is necessary to review
and summarize the current interpretability methods and their
applications in IFD, and to highlight the challenges they face.

Our survey seeks to address this gap by providing a
detailed review of current interpretability methods in IFD,
exploring their applications, and discussing the challenges
they face. By highlighting the importance of developing
interpretable models, this review aims to bridge the existing
gap between sophisticated diagnostic capabilities and their
practical industrial application, building upon the foundation
laid by previous literature and guiding future research toward
more transparent and trustworthy IFD models. In this paper,
we summarize the current research on IIFD, offering a refer-
ence for future studies in this direction. The contributions of
this review are articulated as follows:

1) This review systematically categorizes IIFD approaches
into two primary categories: ante-hoc and post-hoc inter-
pretations. Ante-hoc interpretation involves proactive mod-
ifications to the network architecture or training process to
enhance interpretability and transparency. In contrast, post-
hoc interpretation focuses on elucidating the decision-making
processes of already trained neural networks. We provide
comprehensive definitions, detailed explorations of various
interpretable methods, and summarize their applications and
inherent limitations.

2) While post-hoc interpretation has received considerable
attention and yielded numerous advancements in the last
two years, research on ante-hoc interpretation is relatively
nascent. Our in-depth examination of the current challenges
in ante-hoc IIFD uncovers promising research avenues that
warrant further exploration.

3) Our survey is at the forefront of collating approaches to
ante-hoc IIFD, organizing them into three novel categories:
interpretability of model embedding, model framework, and
model parameters.

This classification aims to address the existing research
void in ante-hoc interpretation and spark innovation in
developing fault diagnosis methodologies that are both

effective and transparent. We intend to guide researchers
in this domain toward uncovering new opportunities and
contributing to the ongoing progress of IFD in the industrial
realm.

The rest of this review is organized as follows. In section II,
we summarize the research methodology, dataset, and the
initial analysis of collected papers. Section III reviews the
applications of post-hoc interpretation, which is considered
a method that allows users to know better how algorithms
make decisions. Section IV argues applications of ante-hoc
interpretation to IFD including the motivation, the defini-
tions, and some exploratory works. In Section V we further
display a prospect when combined with the challenges of
IIFD. Conclusions are enclosed in Section VI.

II. RESEARCH METHODOLOGY AND INITIAL ANALYSIS
A. RESEARCH METHODOLOGY
This reviewmeticulously evaluates the evolving field of IIFD,
shedding light on significant contributions that enrich both
academic research and industrial practice while pinpointing
prevailing research gaps. To ensure an exhaustive overview,
our literature survey spanned publications from 2017 to
March 2024, drawing from an array of esteemed scientific
databases including Science Direct, IEEE Xplore, Springer,
Scopus, and Web of Science. To incorporate the cutting-edge
advancements in the field, we also reviewed preprints from
arXiv. Employing a strategic selection of keywords and
screening criteria led to the identification of 205 papers that
are central to the theme of IIFD. This curated collection
serves as a foundational resource for those delving into the
intricacies of current trends, methodologies, and challenges
in IIFD research.

To navigate the extensive realm of interpretable deep
learning within fault diagnosis, we crafted a comprehensive
three-level keyword tree, illustrated in Figure 2. This
structured methodology facilitated a deep dive into the
world of interpretable deep learning, categorizing it into
post-hoc and ante-hoc interpretability. A focused search
that paired ‘‘fault diagnosis’’ with terminology related to
post-hoc interpretability methods, which involves techniques
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applied after model training to clarify how decisions are
made, including Class Activation Mapping (CAM), Local
Interpretable Model-agnostic Explanations (LIME), SHapley
Additive exPlanations (SHAP), and Attention Mechanism
(AM), revealed an impressive corpus of 175 publications.
This exploration not only highlighted the diversity of
post-hoc explanation techniques within the IIFD domain but
also underscored the prolific research activity in this area.

Recognizing the nascent stage of ante-hoc interpretability
in IFD — characterized by a lack of consensus on methods
— we employed a targeted keyword strategy encompass-
ing ‘‘ante-hoc/intrinsic + explainable/interpretable + fault
diagnosis.’’ This led to a novel classification of ante-hoc
explanation methods into three innovative categories:

1) Model Embedding Interpretability: refers to the inte-
gration of interpretable components or structures
within a model to enhance its transparency and the
ability to provide clear explanations for its predictions.

2) Model Framework Interpretability: refers the capacity
of a machine learning framework to clearly explain its
underlying logic and decision-making pathways.

3) Model Parameters Interpretability: refers to the ability
to understand and explain the relationship between the
parameters of a predictive model and the phenomena or
outcomes it is designed to diagnose.

An advanced keyword search integrating ‘‘fault diagnosis’’
with terms such as ‘‘physically informed,’’ ‘‘algorithms
unrolling,’’ ‘‘interpretable kernel,’’ ‘‘sparse,’’ ‘‘formal lan-
guage,’’ and ‘‘framework’’ unearthed over 30 pertinent
publications. This effort not only enhanced our understanding
of ante-hoc interpretability’s application in IIFD but also
contributed to filling the knowledge gap in this emerging area.

However, the process of conducting a literature review in
a rapidly advancing field like IIFD, especially one involving
explainable deep learning technologies, is inherently fraught
with challenges. One notable issue was the potential overlook
of relevant studies, possibly due to our dependence on a
specific set of keywords. This approach might have missed
capturing the entire spectrum of ongoing research. For
example, several studies employ techniques like CAM and
AM with a primary focus on assessing model performance
rather than interpretability per se. Moreover, the aspect of
‘‘uncertainty’’ as an integral component of model inter-
pretability— although acknowledged by researchers [1], [27]
— was not incorporated as a keyword in our search strategy.
This oversight might have resulted in excluding studies
where ‘‘uncertainty’’ plays a crucial role in interpretability or
where interpretability is discussed in an implicit context. This
experience underscores the critical importance of adopting a
flexible and comprehensive literature review strategy, capable
of adapting to the nuances and rapid developments within
such technologically dynamic domains.

B. INITIAL ANALYSIS
We conducted a preliminary analysis of the collected litera-
ture. Firstly, we analyzed the literature based on publication

year and keywords to summarize its development trends and
hotspots. Then, by examining the research subjects and the
main problems addressed, we summarized the applications of
the methods discussed in the literature. Finally, we classified
the explainable technologies in rotating machinery IFD by
drawing analogies to the traditional fault diagnosis process.

1) TRENDS AND HOTSPOTS
In the early stages of ML, models like expert systems and
decision trees were inherently interpretable, enabling users to
easily understand their decision-making processes. However,
the advent of DL marked a paradigm shift towards models
with complex, ‘‘black box’’ architectures, making their
decision mechanisms challenging to decipher. This transition
has underscored an urgent need for interpretability and
transparency in DL, a demand that has grown increasingly
vital across various domains over the last decade. By 2023,
research into DL interpretability had made significant
strides, particularly within Computer Vision (CV) and NLP.
These fields have seen the development of several general
post-hoc explanation tools, such as CAM, LIME, and SHAP,
which have greatly enhanced our understanding of DL
models. Research on IIFD began to gain momentum around
2017 and has seen rapid development since. Mechanical fault
diagnosis, compared to CV and NLP, faces a more urgent
need for deep learning interpretability due to the stringent
reliability and stability requirements in the industrial sector.
The ‘‘black box’’ nature of DL models poses a significant
challenge for their application in fault diagnosis, under-
scoring the vital importance of IIFD development for their
effective and trustworthy implementation in critical industrial
operations.

Drawing from the comprehensive review by Lei et al. [7],
which summarized IFD research up to 2019, we have further
analyzed recent trends in IIFD literature, as illustrated in
Figure 3. This analysis highlights a marked increase in
interest in IIFD from 2019 onward, coinciding with the
introduction of post-hoc DL explanation techniques, such
as CAM, after 2016. By the end of 2021, there were a
total of 60 IIFD-related publications, which then surged
to 129 papers over the next two years (2022 and 2023).
This ascending trajectory indicates a robust growth in IIFD
research, with future projections pointing to an even greater
volume of publications in 2024 and beyond. This uptrend
is likely driven by continuous advancements in explainable
deep learning technologies, signaling a promising direction
for further exploration and application in the field.

2) APPLICATION AND CLASSIFICATION
In our comprehensive summary of the applications derived
from the literature, we focused on categorizing the findings
based on research subjects and specific IIFD tasks. According
to Figure 4, bearings emerge as the most frequently studied
subject within IIFD research, which also encompasses
gearboxes, motors, engines, and a variety of other rotating
machinery, including compressors, wind turbines, pump sets,
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FIGURE 2. The three-level keyword tree.

FIGURE 3. Number of publications on ante-hoc and post-hoc IIFD
from 2018 to 2023.

and electric motors. Regarding the tasks undertaken in IIFD
research, fault classification, and prognostics and health
management (PHM) stand out as principal research areas.
Among these, bearing fault diagnosis has attracted the most
attention, highlighting its critical importance in maintaining
the operational integrity of machinery. Conversely, PHM,
especially concerning motors and other equipment, has been
identified as a promising and valuable research direction.
This diversified focus on both research subjects and IIFD
tasks underscores the broad applicability and crucial role of
IIFD techniques in ensuring the reliability and efficiency of
various mechanical systems.

After careful review, this article categorizes the collected
papers in relation to the general process of IFD into
interpretation based on model frameworks, model structures
and mechanisms, and feature importance, as illustrated
in Figure 5. Specifically, interpretation based on model
frameworks is often implemented during the data pre-
processing stage. Integrating traditional signal processing
methods with machine learning models can embed specific
fault characteristic knowledge and causal links into the

diagnostic process. Furthermore, the application of theoreti-
cal knowledge to analyze data distributions aids in evaluating
model decision boundaries or rules, thereby enhancing
interpretability.

Interpretation based on model structures and model
mechanisms usually occurs during the feature extraction
stage. The model structure interpretability is attained by
architecting convolutional kernels that carry physical sig-
nificance or by unrolling interpretable iterative algorithms
into neural networks. Such designs enable extracting features
with direct physical relevance, enhancing the ability of the
model to make meaningful diagnostic predictions. On the
other hand, the interpretability of the mechanism is often
achieved through the embedding of explainable mechanisms
such as sparsity and logical inference. This approach
ensures the model possesses inherent interpretability. These
strategies underscore the emphasis on making the feature
extraction stage as interpretable as possible, thereby con-
tributing to the overall transparency and effectiveness of IFD
models.

Interpretation based on feature importance corresponds
to the final feature classification stage. In the process of
IFD, the feature classification stage determines the final
classification results based on feature importance. However,
explanations that focus on feature importance typically rely
on passive approaches, such as the use of visualization tools
to evaluate if the model has successfully identified features
that align with expert knowledge. This passive nature does
not actively guide the model towards interpretability. Such
reliance on visualization tools for interpretation presents
notable limitations, particularly regarding the stability and
reliability of the explanation results. Without the abil-
ity to influence the interpretative of the model process
actively, there is a risk that the explanations provided
might not consistently reflect the underlying reasons for
the decisions of the model. Consequently, this explanatory
approach may raise concerns about the robustness and
trustworthiness of the explanation, highlighting the need for
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more dynamic and interactive explanation mechanisms in
the IIFD.

FIGURE 4. Outer ring: research object of the collected literature. Inner
circle: main problem distribution solved by the collected literature.

C. COMMONLY USED PUBLIC DATASETS IN IIFD
To achieve reliable and interpretable IFD, access to a
substantial amount of high-quality datasets is indispensable.
The absence of such data not only hampers the expected
performance of intelligent diagnostic models, especially
those based on DL, but also undermines the reliability of their
interpretive outcomes. The collection of data, predominantly
accomplished through various sensors, finds accelerometers
for gathering vibration signals as the most widely adopted
approach. Nevertheless, procuring sufficient high-quality
data in real-world industrial settings poses significant
challenges, including a limited number of fault samples,
extended collection durations, and elevated costs. In response
to these challenges, numerous reputable institutions have
made a variety of datasets available for public research
and application purposes. This section aims to provide an
overview of six datasets commonly utilized in the realm of
IIFD for rotating machinery. It is worth noting that current
research trends often involve the integration of public datasets
with proprietary data to evaluate the efficacy of newly
proposed methodologies.

1) CWRU DATASET
The Case Western Reserve University (CWRU) dataset [28],
renowned for its application in rotating machinery research,
is extensively cited as an open-source benchmark for
evaluating various diagnostic methods. As depicted in
Figure 6, vibration signals are captured using an accelerom-
eter mounted on the drive end of the motor casing.
Data collection encompassed four loading conditions, from
0 to 3 Horsepower (HP), at sampling frequencies of 12 kHz

and 48 kHz, with each recording lasting 10 seconds. Faults of
four levels (0, 0.007, 0.014, 0.021 inches) and types (rolling
element, inner ring, outer ring, healthy) were simulated using
electrical discharge machining (EDM).

This dataset enables a 10-class classification task, accom-
modating studies on variations in loading conditions, fault
locations, and severity levels, as outlined in Table 1. While
the diagnostic challenges presented by the CWRU dataset are
relatively modest—with many models achieving near-perfect
accuracy on the 12 kHz signals—this aspect underscores
the dataset’s quality and thoroughness. However, the high
accuracy rates can obscure the comparative analysis of model
performances. Despite these considerations, the CWRU
dataset’s wide application and adaptability render it an
indispensable asset for fault diagnosis research, especially
for exploring bearing faults across different conditions and
failure extents. Access to the CWRU bearing dataset is
provided at https://engineering.case.edu/bearingdatacenter.

TABLE 1. Detailed description of CWRU datasets.

2) PU DATASET
The Paderborn University (PU) Bearing Data Center offers
a comprehensive dataset featuring vibration signals from
32 sets of 6203 Deep Groove Ball Bearings, each with
dimensions of 17 × 40 × 12 mm. As detailed in Table 2,
these bearings are categorized into three groups based
on their condition: six healthy bearings; twelve bearings
with artificially induced defects on the inner and outer
races through methods such as drilling, EDM, and electric
engraving; and fourteen bearings that have incurred natural
damage from accelerated lifetime tests.

This dataset is further divided into five categories for
detailed analysis: healthy, artificially induced inner ring
faults, artificially induced outer ring faults, real inner ring
faults, and real outer ring faults. The distribution comprises
six healthy bearings, eleven with inner race faults, and twelve
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FIGURE 5. The classification of collected literature along with the process of IFD.

FIGURE 6. CWRU bearing experimental system.

with outer race faults. Bearings presenting both inner and
outer race faults—totaling three—are excluded from this
count due to the complexity of their damage.

In their research, Paderborn University investigators cat-
egorized these bearings based on the predominant fault.
For instance, a bearing is classified under inner race
faults if the damage to the inner race exceeds that to
the outer race. This dataset is instrumental for conduct-
ing comparative studies and for research on information
fusion from different sensor signals, offering a unique
opportunity to compare real-world faults against artificial
ones. The PU-bearing dataset is accessible for down-
load at https://mb.unipaderborn.de/kat/forschung/datacenter/
bearing-datacenter/.

3) MFPT BEARING DATASET
The MFPT dataset, made available by the Society for
Machinery Failure Prevention Technology [29], encompasses

three experimental sets of bearing vibration data: a baseline
dataset, an inner race fault set, and an outer race fault set.
The baseline dataset comprises three files, each sampled at
97,656 Hz over a duration of 6 seconds under a 270-pound
load. Both the inner and outer race fault sets consist of
seven files, captured at 48,828 Hz for 3 seconds across seven
distinct load conditions: 0 lbs (for the inner race) / 25 lbs (for
the outer race), 50 lbs, 100 lbs, 150 lbs, 200 lbs, 250 lbs,
and 300 lbs. These measurements were recorded using a
single-channel radial accelerometer.

The bearings used in the MFPT experiments are deep
groove ball bearings, characterized by a pitch diameter of
31.62 mm, a ball diameter of 5.97 mm, a contact angle
of 0◦, and an element number of 8. The collected signals
were segmented into 50 samples for each load condition,
yielding a total of 350 samples across the seven load types.
Each sample contains 2,000 data points. Subsequently, the
dataset is categorized into three classes. As detailed in
Table 3, bearings are classified into one healthy state and
two fault states—inner ring fault and rolling element fault—
across 15 categories (one healthy state and 14 fault states)
based on the load conditions. This dataset is invaluable for
examining the dynamic behavior under varying operational
conditions. The MFPT-bearing dataset is accessible for
download at https://www.mfpt.org/fault-data-sets/.

4) IMS DATASET
The IMS bearing datasets, produced by the NSF I/UCR
Center for Intelligent Maintenance Systems (IMS) [30],
are derived from three test-to-failure experiments. These
datasets meticulously document four distinct bearing fault
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TABLE 2. Detailed description of PU datasets (S: single damage; R:
repetitive damage; M: multiple damage).

conditions: rolling element fault, inner ring fault, outer
ring fault, and healthy status. The bearings, installed at
various locations, all failed beyond their anticipated service
life. Data was captured at a 20 kHz sampling frequency,
with each recording lasting 1 second, resulting in a collec-
tion ranging from 984 to 4,448 sample files. It’s critical
to note that these failures should not be oversimplified
into merely three categories due to the variability in

TABLE 3. Detailed description of MFPT datasets.

fault locations within the bearings [31]. For research and
analysis purposes, the IMS bearing dataset is accessible for
download at https://ti.arc.nasa.gov/tech/dash/groups/pcoe/
prognostic-data-repository/.

5) XJTU-SY DATASET
The XJTU-SY bearing datasets, a collaborative effort
between Xi’an Jiaotong University and Changxing Sumy-
oung Technology Company, encompass data from fifteen
run-to-failure experiments on bearings under three different
operational conditions. Each dataset contains 32,768 data
points for every bearing, with a sampling frequency of
25.6 kHz, amounting to 1.28 seconds of vibration data col-
lected over one minute for detailed analysis. These datasets
are organized into fifteen classes, each corresponding to a
specific fault diagnosis, enabling comprehensive investiga-
tions into bearing performance and failure dynamics. The
selection of data aims to capture the end-of-life phase of the
bearings, enhancing the study of failure modes and diagnostic
techniques.

Comprehensive details about the operational lifespan and
failure types of each bearing are meticulously documented in
Table 4. Moreover, the fault characteristic frequency (FCF)
of each bearing is calculated and included in Table 4, reflect-
ing the test conditions and parameters. The experimental
setup is depicted in Figure 7. For research and analysis
purposes, the XJTU-SY datasets are available for download
at https://biaowang.tech/xjtusy-bearing-datasets/.
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TABLE 4. Detailed description of XJTU-SY datasets.

FIGURE 7. Test rig that produces the XJTU-SY bearing dataset.

6) SEU DATASET
The Southeast University (SEU) dataset, as detailed in the
study by Shao et al. [32], comprises both bearing and gear
datasets collected using aDrivetrainDynamic Simulator. This
dataset is meticulously structured to replicate two distinct
operational scenarios defined by a Rotating Speed - Load
Configuration: namely, 20 Hz-0 V and 30 Hz-2 V. Within
this dataset, gear conditions are divided into five categories:
healthy, chipped tooth, missing tooth, root fault, and surface
fault. Similarly, bearing conditions are also classified into
five categories: healthy, inner ring fault, outer ring fault,
combined inner and outer ring faults, and rolling element
fault. Collectively, the SEU dataset delineates 20 distinct
health states, with comprehensive details provided in Table 5.

This dataset is invaluable for conducting time-frequency
domain analyses of operational conditions and diagnosing

TABLE 5. Detailed description of SEU datasets.

faults in mechanical components. Each file in the SEU
dataset comprises seven columns of vibration signals and
a single column of motor torque signals, thus providing
a rich dataset for thorough analysis. The SEU gear-
box dataset is publicly available and can be accessed
for research via the following GitHub repository link:
https://github.com/cathysiyu/Mechanical-datasets.

7) SUMMARY
This paper provides a selective overview of datasets pertinent
to rotating machinery vibration signals, focusing on those
that are broadly recognized within the IFD community.
A notable example, the CWRU dataset, enjoys particular
esteem among researchers. Figure 8 visually contrasts
segments of vibration signals from the CWRU dataset
under various operational scenarios. Such comparisons
illuminate the substantial effects that fault type, severity,
operational conditions, and sensor positioning have on the
gathered data. These factors, in turn, significantly influence
the performance of fault diagnosis models. Analogous to
the CWRU, other datasets in the field present distinct
features that can shape the results of fault diagnosis
studies. The intent of this section is to guide researchers
towards datasets that best match their specific research
objectives, thereby enabling more effective contributions
to the fault diagnosis discipline. Notably, Zhao et al. [31]
conducted an open source benchmark study on these
datasets and provided the tutorial code via the follow-
ing GitHub repository link: https://github.com/ZhaoZhibin/
DL-based-Intelligent-Diagnosis-Benchmark.

III. POST HOC INTERPRETATION OF IFD
This section details the post-hoc interpretability methods
used in IIFD. It offers insights into their application areas and
outlines the fundamental principles that guide these methods,
enhancing understanding.

A. OVERVIEW
Contemporary fault diagnosis techniques predominantly
leverage neural networks and other advanced methods for
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FIGURE 8. The waveforms of vibration signals from the CWRU dataset. (a) Different faults (b) Different fault levels (c) Same fault under different
loading conditions (d) Same fault measured at different positions.

fault classification. Yet, these approaches frequently rely
on ‘‘black-box’’ models, characterized by their lack of
transparency and inability to elucidate the reasoning behind
their classifications. To address this issue, researchers have
turned to XAI strategies to interpret classification outcomes
or identify underlying patterns. Such interpretive efforts,
facilitated by XAI, are commonly classified under the
umbrella of post-hoc interpretability.

Presently, notable post-hoc interpretability methods in
fault diagnosis include CAM, SHAP, LIME, among oth-
ers. The following subsections will delve into these
methodologies in greater detail.

B. CAM-BASED POST HOC INTERPRETATION
CAM is a technique designed to elucidate neural network
decisions through the visualization of learned features,
highlighting their influence—be it positive or negative—on
predictions [28]. In this subsection, we succinctly examine

CAM’s theoretical underpinnings and its application within
the realm of IIFD.

1) A BRIEF INTRODUCTION TO CAM
As shown in Figure 9, CAM is generated by calculating
the weighted sum of the feature maps from the final
convolutional layer [33]. The weights are between the global
average pooling(GAP) and output, which computes the
spatial average for each unit in the feature map of the last
convolutional layer.

According to Ref. [33], CAM could be described as (1).

MC (x, y) =

∑
k

wck fk (x, y). (1)

where MC (x, y) is the result of CAM in category c, wck is
the weight of the kth feature map, and fk (x, y) is the kth
convolved feature map at position (x, y).
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CAM is designed explicitly for CNN architectures
that apply GAP to convolutional maps before prediction.
To extend CAM’s applicability to broader network types,
Selvaraju et al. [34] developed Gradient-weighted CAM
(Grad-CAM). This method utilizes the gradient information
flowing between the last convolutional layer and the output
nodes to gauge the significance of each neuron in making a
specific decision. The operation of Grad-CAM is detailed in
equations (2) and (3).

αcq =
1
z

∑
i

∑
j

∂yc

∂Ak
. (2)

LcGrad−CAM = RELU (
∑
k

αckAk ) (3)

Instead of GAP, Grad-CAM used αcq as the importance
weight of the k feature graphs. αcq is obtained by averaging
the gradients of the k feature graphs. Finally, the obtained
LcGrad−CAM is resampled to match the input sample size.
In recent years, many visualization methods based

on CAM or Grad-CAM have been proposed, such as
Grad-CAM++ [35], Eigen-CAM [36], and others.

2) APPLICATIONS OF CAM TO IIFD
The utilization of CAM and its derivatives in IIFD is
meticulously cataloged in Table 6. Specifically, Grad-CAM
emerges as a cornerstone post-hoc interpretability tech-
nique within the realm of machinery fault diagnosis. For
instance, Brito et al. [37] successfully applied Grad-CAM
to elucidate the workings of a fault diagnosis model for
rotating machinery, which was notably enhanced with syn-
thetically augmented data. This demonstrated the method’s
practicality in clarifying model decisions. Similarly, Lin
and Jhang [38] merged Grad-CAM with original signal
data to produce attention maps, offering deep insights
into the rationale behind specific bearing fault model
classifications.

Addressing a common challenge in traditional fault
diagnosis, where identifying defect frequencies often requires
deep domain knowledge. Yoo and Jeong [39] innovatively
applied Grad-CAM. This approach allowed for the visu-
alization of CNN activation regions to determine defect
frequencies directly, circumventing the need for expert input
and also pinpointing the most effective operational layer
for Grad-CAM application. Expanding the scope of model
interpretability, Lu et al. [40] employed Grad-CAM to
evaluate the significance of training samples, thus broadening
interpretability to include not just feature importance but
also the relevance of specific training samples in model
training. Chen and Lee [41] utilized Grad-CAM to generate
heat maps of the time-frequency domain features of CNN.
They validated the interpretative results of Grad-CAM
through NN, adaptive network-based fuzzy inference sys-
tem (ANFIS), and Decision-Tree and discovered machine
learning pays more attention to high-frequency features.
Saeki et al. [42] employed Grad-CAM to interpret results

from a CNN-based anomaly detection system for rotating
machinery, evaluating the Grad-CAM by comparing them
with the expert diagnostic.

Beyond these applications, the field has seen the develop-
ment and adoption of advanced CAM variations like Grad-
CAM++, Score-CAM, and Eigen-CAM to further enhance
interpretability in IIFD. Chen et al. [16] embedded 1-D
Grad-CAM++ in the model to identify regions of interest
in the convolutional layer, combining prior knowledge of
bearing faults to comprehend the learned features and
model decisions. Lan et al. [43] applied Grad-CAM++

to illustrate the interpretability of the proposed model by
visualizing the saliency map. Yu et al. [44] employed
Eigen-CAM to provide intuitive explanations for the fault
diagnosis results of ResNets, demonstrating the capacity
of the model to accurately capture fault and Eigen-CAM
outperforming Grad-CAM. In order to improve the per-
formance of the CAM-based method in fault diagnosis,
researchers introduced the optimization architecture for
CAM. Yang et al. [45] designed a located loss in CNN to
drive the model to learn primary features. They explained
that the model decisions originate from these primary
features through SS-CAM. Li et al. [28] proposed the
Multilayer Grad-CAM, which can effectively extract periodic
pulses in time-domain signals. Simultaneously, it clearly
displays different bearing fault characteristic frequencies in
the spectrum, addressing the issue of decreasing feature
resolution of Grad-CAM with deeper networks on vibration
signals. Additionally, they defined three metrics (RATM,
RATA, CEI) to quantify the interpretability of deep neural
networks. Chen et al. [46] designed GS-CAM which
combine the Grad-CAM and Score-CAM to analyze the
attention distribution of the proposed model on time-domain
signals. Kim et al. [47] propose the frequency-domain-
based grad-CAM to visualize the classification criteria in
the frequency domain using the learned network in the time
domain.

Despite these advancements, CAM-based approaches
exhibit limitations in their adaptation to regression tasks.
A significant limitation of CAM-based approaches is their
potential inability to fully capture temporal aspects of data,
which is critical for fault diagnosis involving sequential
or time-series analysis. Additionally, gradient-based CAM
methods also have additional drawbacks. On the one hand, the
weights obtained from the gradient-based CAM can not pro-
vide the right confidence scores for the feature maps, leading
to coarse localization saliency maps with Grad-CAM when
the input data contains numerous essential features. On the
other hand, gradient-based CAM for CNNs may inadver-
tently focus on irrelevant parts of the data due to gradient satu-
ration in the flat zero-gradient regions of the ReLU activation
function. These limitations highlight the complexities and
potential areas for improvement in employing CAM-based
methods for fault diagnosis, especially in accurately inter-
preting and localizing fault-relevant features in complex data
scenarios.
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FIGURE 9. The principle of Class Activation Mapping:the predicted class score is mapped back to the previous convolutional layer to generate the CAMs.
The CAM highlights the class-specific discriminative regions [33].

TABLE 6. The application of CAM and customed CAM to IIFD.

C. LIME-BASED POST HOC INTERPRETATION
LIME is a technique that explains the predictions of any
machine learning model by approximating it locally with
an interpretable model, thus allowing for the understanding
of individual predictions regardless of the original model’s
complexity. This technique involves creating a simple,
interpretable model (such as a linear model or decision tree)
that approximates the behavior of the complex model within
the vicinity of the instance being explained. Therefore, LIME
provides insight into which features were most influential

for a particular prediction, enhancing the transparency
and trustworthiness of the model on a case-by-case basis.
We briefly review LIME and summarize its applications in
IIFD.

1) A BRIEF INTRODUCTION TO LIME
LIME facilitate the identification of an interpretable model,
g ∈ G, within a local scope based on an interpretable
representation [74]. Here, G represents the collection of
potential interpretable models, while Ω(g) denotes the
complexity of model g. As illustrated in Figure 10, for a
given sample x evaluated by g, with f being the actual model
and f (x) the predicted probability by g, LIME introduces
perturbations in the vicinity of x to generate a perturbed
sample z. The proximitymeasureπx(z) quantifies the distance
between x and its perturbation z. The objective is to minimize
the loss function L(f , g, πx), which measures the discrepancy
between f and g within the vicinity of x, while also
considering the complexity Ω(g), as shown in:

πx(z) = argminL(f , g, πx) + Ω(g). (4)

Given the challenges in computing this in the original
image dimension, LIME employs Super Pixels to transform
x into a binary representation x ′

∈ {0, 1}d
′

, subsequently
generating z′. The proximity measure πx(z) is defined as:

ξ (x) = exp
(

−
D(x, z)2

σ 2

)
. (5)

Here, D(x, z) represents the distance between x and z,
and σ is the kernel width of the perturbation. With (5),
after reverting z′ back to the original dimension, computing
f (z), and evaluating π(x), the loss function L in (4) can be
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FIGURE 10. The principle of LIME: an algorithm used for explaining predictions of machine learning models. The process starts with a
sample data point, x , which goes through a feature extraction phase to produce x ′ . The algorithm then perturbs x ′ to generate z ′ , a version
of the data with slight variations. The perturbed data z ′ is then restored back to its original representation, z , after which the machine
learning model makes a prediction f (z) . Concurrently, LIME calculates the explanation model ξ (x) using the loss function L(f , g, πx ),
which considers the fidelity of the local model g to the predictions of the global model f , weighted by the proximity πx of the perturbed
samples to the original sample x . The explanation model g is trained to approximate f (z) locally around x , thereby providing interpretable
insights into the model’s prediction for x .

reformulated as:

L(f , g, πx) =

∑
z,z′∈Z

πx(f (z) − g(z′))2. (6)

The specific implementation of g(z′) depends on the chosen
class G, for instance, in linear systems, g(z′) = ωg · z′,
where ωg is the weight derived from distance. Through the
optimization of (4), LIME can train a local interpretable
model based on the interpretable feature space, offering a
pragmatic approach to understanding model predictions on
a granular level.

2) APPLICATION OF LIME TO IIFD
As a post-hoc interpretability method, LIME has seen exten-
sive application in IIFD, with relevant studies summarized
in Table 7. This research is categorized based on data
collection methods and diagnostic targets, primarily focusing
on bearings, gears, motors, and engines. Unlike CAM, which
visualizes feature importance across the model, LIME delves
into explaining individual predictions, shedding light on
the features crucial for specific decision-making instances.
In the realm of IIFD: Lu et al. [11] developed a 1-D CNN
model combined with LIME for accurate fault classification
in rolling bearings under various speeds. Wang et al. [75]
created a predictive model for evaluating the rolling contact
fatigue in martensitic steel, utilizing LIME to ensure the
model’s interpretability and reliability. Several enhancements

to LIME have been proposed to augment its interpretability.
Recio-García et al. [76] improved the data generation
process with a case-based reasoning method. Saini and
Prasad [77] optimized LIME’s sampling strategy using the
Gaussian process. Zafar and Khan [78] applied Hierarchical
Clustering and K-Nearest Neighbor for data grouping instead
of random perturbation. Dikopoulou et al. [79] introduced a
graphical methodology for achieving global model-agnostic
interpretability with LIME. Xiang et al. [80] enhanced
LIME’s stability and local fidelity through a variational
autoencoder.

LIME is prized for its local fidelity, simplicity, and broad
compatibility, offering a nuanced understanding of black-box
models. However, its application in IIFD faces challenges.
Firstly, the selection of samples in LIME may require expert
judgment, introducing potential biases. Secondly, LIME
cannot fully represent the original model, with its effective-
ness heavily model-dependent. Lastly, the methodology for
determining weights and the extensive computation required
for each model analysis [81] pose significant limitations.
Consequently, despite its theoretical appeal, LIME’s practical
deployment in IIFD has been more theoretical than empirical
in recent years.

D. SHAP-BASED POST HOC INTERPRETATION
SHAP is a method that assigns each feature an importance
value for a particular prediction, based on the concept

103360 VOLUME 12, 2024



G. Chen et al.: Enhancing Reliability Through Interpretability

TABLE 7. Summary of LIME used in IIFD.

of Shapley values from cooperative game theory, thereby
offering a consistent and locally accurate interpretation of
the model’s output. The flow chart of SHAP is shown in
Figure 11. This section provides a concise overview of SHAP
and discusses its applications within the context of IIFD.

1) A BRIEF INTRODUCTION TO SHAP
SHAP, introduced by Lundberg et al. [114], offers a refined
methodology for interpreting predictions from machine
learning models. It works by analyzing a trained model’s
input and output, attributing specific contributions—known
as SHAP values—to each input feature based on their impact
on the model’s prediction. This process involves tracing the
prediction back to its input features in a layer-wise manner.

The computation of SHAP values is defined by the
following equation:

Φi =

∑
S⊆F/i

|S|!(|F | − |S| − 1)!
|F |!

[fS (x) − fS/i(x)]. (7)

In this equation, Φi represents the SHAP value for feature
i, indicating its relative contribution to the prediction. SHAP
utilizes various approximation methods to accommodate
different machine learning architectures, including Kernel
SHAP for general models, Tree SHAP for tree-based models,
and Deep SHAP for deep learning networks. Each approach,
grounded in the principle expressed in (7), aims to quantify
the influence of individual features on the prediction.

1) Kernel SHAP offers a universal solution applicable to
a broad range of models.

2) Tree SHAP provides specialized analysis for tree-based
models, enhancing efficiency and accuracy.

3) Deep SHAP tailors its analysis for deep learning
models, adapting to their complexity.

The choice among these SHAP variants depends on the
model’s structure and the specific interpretability require-
ments. Together, these methods strive to make model
predictions transparent, thereby allowing SHAP to illuminate
complex model behaviors with a solid mathematical founda-
tion.

2) APPLICATIONS OF SHAP TO IIFD
SHAP has been an effective way in the research of post-hoc
IIFD. Asutkar and Tallur [115] enhanced the fault detection
strategy using SHAP to identify the most prominent features
contributing to fault detection. Yao et al. [116], [117], [118],
[119] classified different types of faults based on ensemble
methods (such as Random Forest (RF), Gradient Boosting,
and AdaBoost) and used SHAP to explain the classification
results of the model. Kumar and Hati [120] proposed a
deep CNN model based on an adaptive gradient optimizer
and conducted a SHAP analysis to interpret the vibration
images and decision-making process of the proposed model.
Hasan et al. [121] introduced a data preprocessing method
utilizing the Stockwell Transformation Coefficient, followed
by an interpretable feature selection using RF. The fault
diagnosis was then conducted using a K-NN classifier, with
the diagnostic results of K-NN being interpreted according
to SHAP. Brito et al. [122] utilized SHAP to prioritize
the importance of features, providing interpretation and
analysis of the results derived from the unsupervised anomaly
detection model.

To better explain deep learning models, researchers have
made improvements to SHAP. Yao et al. [123] used the
integration of SHAP with DeepLIFT in the form of Deep-
SHAP, an algorithm better suited for deep learning models
characterized by high non-linearity and complex layer
structures, and has successfully automated the extraction of
fault characteristic frequencies. Wang and Wang [124] used
SHAP to interpret the results of motor fault diagnosis with
SVM, RF, and NN and found that the average vibration
frequency is the most critical feature in diagnosing motor
faults. In addition, SHAP is also used for process control
[125], machine predictive maintenance [107], [126], [127],
[128], [129], and sensor fault diagnosis [64], [130], [131],
among other applications.

Compared to LIME, which constructs local linear approxi-
mations to explain individual predictions, SHAP elucidates
the decision-making behavior of single predictions and
interprets the significance of features in the entire fault
diagnosis model. This approach offers a more comprehensive
and precise overall model explanation [132], providing
deeper insights into the model’s workings. However, it is
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FIGURE 11. The flow chart of SHAP: Inputs produce predictions for class Ci , and SHAP values determine each feature’s influence on that prediction. The
chart shows the SHAP value distribution across features, with the magnitude indicating impact strength and color representing feature value. The process
isolates the ‘‘Root Cause Feature’’ by identifying the feature with the highest SHAP value, highlighting the most influential factor in the model’s output.

TABLE 8. The application of SHAP and customed SHAP to IIFD.

important to consider the computational complexity of SHAP
and its higher demand for computational resources.

E. AM-BASED POST HOC INTERPRETATION
AM is designed as a technique to augment the performance
of models by enhancing their capability to discern internal
correlations and extract global information, skills that are
crucial in IFD [23], [145]. Besides, AM has been explored
for its potential to improve long-range information extraction
and alleviate the issue of catastrophic forgetting [146]. This
section delves into the role of AM as a post hoc interpretation
method in IIFD, highlighting its significance in boosting
model interpretability and effectiveness in diagnosing faults
by focusing on the most relevant features within data.

1) A BRIEF INTRODUCTION TO AM
The attention module serves as a pivotal computational unit
for analyzing long-range dependencies, using a query (Q)
alongside key (K )-value (V ) pairs, as illustrated in Figure 12.
Initially, matrices WQ, WK , and WV , which are randomly
initialized, are used to compute Q, K , and V . The process
then involves calculating correlation coefficients between
features by applying an attention function to Q and K .
Equations (8) and (9) depict the most frequently utilized
functions for this purpose. The attention output is derived as a
weighted sum of the values, with weights obtained through a
softmax function (10) applied to the correlation coefficients,
adjusted by

√
dk .

Attention mechanisms are broadly categorized into three
types: soft attention, hard attention, and self-attention. Soft
attention offers a probabilistic approach to weighing the
importance of different parts of the input data, providing a
differentiable solution that integrates smoothly with neural
network architectures. This flexibility allows for the entire
data context to be considered in a weighted manner,
contributing to gradient-based learning. In contrast, hard
attention selects specific segments of the input data to
focus on, effectively ignoring the rest. This selection is
non-differentiable, often relying on reinforcement learning
techniques for optimization due to its discrete nature.

Self-attention stands apart by allowing input elements
to directly interact and evaluate their mutual relevance,
pinpointing focus areas within the data. It dynamically
allocates attention based on the input’s internal context, quan-
tifying element interdependence. Self-attention’s parallel
computation capability is notably advantageous for lengthy
sequences, performing simultaneous attention assessments
across all input elements via straightforward matrix opera-
tions. Vaswani et al. [147] enhanced this with the introduction
of multi-head attention, conducting attention operations in
parallel across multiple ‘‘heads.’’ This facilitates the model’s

103362 VOLUME 12, 2024



G. Chen et al.: Enhancing Reliability Through Interpretability

ability to simultaneously attend to information from varied
representational subspaces and positions. An example of
this enhancement is demonstrated through an 8-head self-
attention mechanism, detailed in Figure 13.

dot-product : Similarity(Query,Keyi) = Query · Keyi. (8)

Cosin : Similarity(Query,Keyi) =
Query× Keyi

∥Query∥ × ∥Keyi∥
.

(9)

Softmax(Simi) =
eSimi∑Lx
j=1 e

Simj
(10)

2) APPLICATION OF AM TO IIFD
AM have been increasingly applied in IIFD, as evidenced
by several key studies [20], [148], [149], [150], [151].
These investigations primarily leverage AM for feature
extraction and fault diagnosis but often do not address
model interpretability. A comprehensive summary of AM
applications in post-hoc IIFD is detailed in Table 9, catego-
rizing AM-based IIFD into three distinct groups: CNN-based,
Transformer-based, and Attention-based interpretability.

a: CNN INTEGRATION WITH AM
Combining AM with CNNs harnesses CNN’s self-learning
capacity and AM’s proficiency in identifying key features.
This combination facilitates attention score visualization,
aiding the interpretation of diagnostic results. Li et al. [152]
integrated AM with CNN to highlight important data
segments and extract unique features for enhanced interpre-
tation of diagnostic outcomes through attention visualization.
Similarly, Wang et al. [153] examined CNN’s feature-
learning mechanism with AM’s aid, offering insights into
CNN model interpretability. Chan and Shuai [154] utilized
AM to extract frequency-domain data features, enabling early
degradation detection and component fault identification
through attention-weight distribution.

b: TRANSFORMERS AND AM
Transformers, employing AM extensively and discard-
ing conventional convolutional structures, achieve precise
sequence-to-sequence (seq-to-seq) predictions through an
encoder-decoder architecture built on AM layers. Trans-
formers excel at capturing global associations with self-
attention, yet they may struggle with clearly establishing
the causal link between signal patterns and fault types.
Addressing this challenge, Li et al. [155] introduced a
variational attention-based transformer network for efficient
association extraction in rotating machinery fault diagnosis.
Tang et al. [156] proposed a signal transformer that explores
signal state features across various spaces, enhancing model
interpretability with an attention visualization approach for
fault identification.

c: ATTENTION-BASED INTERPRETABILITY
Several innovative Attention-based IIFD methods aim to
improve AM’s efficacy. Sun et al. [157] employed an
enhanced NonLocal-Pooling-Attention module for effective
feature capture under noise, analyzing the model’s internal
workings through visualization. Liao et al. [158] derived an
attention mechanism from quadratic neurons, offering inher-
ent interpretability. Liu et al. [159] recommended an attention
fusion unit for interpretable feature capture, visualizing atten-
tion weights to identify key time-domain signal components.
Zhang et al. [110] introduced an attention-based network
for feature extraction, addressing overfitting and highlighting
essential information. Additionally, Zhang et al. [160] inno-
vatively merged causal discovery with AM, enhancing model
generalizability and interpretability by learning real causal
connections between faults and symptoms.

It can be noted that the AM serves as an effective tool
for enhancing the interpretability of models. Its capability to
highlight significant features while ignoring irrelevant ones
enables AM to provide explanations at the feature level.
While some studies categorize AM as a form of ante-hoc
interpretability due to its intuitive explanations, it is important
to recognize that AM does not incorporate prior knowledge
inherently. Instead, its attention scores are developed through
iterative training processes, positioning AM more accurately
within the realm of post-hoc interpretability. In addition,
there are notable drawbacks. Firstly, AM can sometimes
assign high attention weights to segments that are not
related to faults, thereby misleadingly emphasizing them in
the analysis. Second, the majority of studies focusing on
AM are primarily concerned with post-hoc interpretability
analysis, indicating a lack of integration of reasonable prior
knowledge during the construction phase of the model. These
drawbacks underscore the need to view AM as a post-hoc
interpretability tool, designed to enhance model transparency
and understanding after the model has been trained, rather
than as an inherent part of the model’s initial design and
development.

TABLE 9. The application of AM to IIFD.
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FIGURE 12. The calculation process of attention.

FIGURE 13. The intuitive example of an 8 heads self-attention.

F. OTHERS APPROACHES
In addition to the methods outlined previously, alternative
approaches exist employed in the post-hoc interpretable IIFD
domain. We will present them in this subsection.

1) LAYER-WISE RELEVANCE PROPAGATION VISUALIZATION
Layer-Wise Relevance Propagation (LRP) is a commonly
used visualization method to complete classification tasks
[167]. As shown in Figure 14, The fundamental idea of LRP
is to decompose the model prediction results and propagate
the Relevance Score from the model output backward to the
first layer.

Studies on LRP-based mechanical fault diagnosis mainly
focus on bearings, gears, and motors. Grezmak et al. [168],

[169], [170] studied the training performance of neural
networks for motor vibration signals, gearbox fault types, and
severity through the application of LRP and relevance score
heatmaps. Kim et al. [171] used LRP in conjunction with the
signal-preprocessing method for bearing IIFD in changing
working conditions. Han et al. [172] confirmed that the cur-
rent signal of amotor can be used in its deep fault condition by
comparing the classical ideal feature point and the XAI-LRP
output. Herwig et al. [173] analyzed the gear wearmechanism
by applying LRP in tribological image training. Nie and
Xie [174] proposed a normalized recurrent neural network
for the early fault diagnosis of wind turbines and adopted
LRP to reveal the model’s decisions. Parziale et al. [175]
investigated the diagnostic performance of LRP in condition
monitoring of rotating shafts by examining correlation
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FIGURE 14. Illustration of the LRP: the left side represents a neural network’s forward pass, processing features to produce an output. On the
right, the output’s relevance is traced backward through the network to the input features. This backward pass assigns relevance scores to each
neuron, demonstrating their contribution to the final decision, making the model’s internal reasoning transparent.

heatmaps. Based on LRP, Pan et al. [176] considered the
effect of nonlinear activation functions, proposed Layer-
wise contribution-filtered propagation. In addition, LRP is
also used for Predictive maintenance decision interpreting
[177], quantifying desirable properties in PHM [178], and
explaining the relevance of inputs [179], [180], or trained
weights in process control [181].
LRP-based post-hoc interpretable fault diagnosis mod-

els offer a powerful means to visually decode the
decision-making process of a model. However, some
disadvantages are preventing it from being applied by most
researchers in mechanical fault diagnosis. Firstly, although
the relevant heatmaps could visibly classify the inputs, they
lack interpretability for the model itself, which is now of
great importance in the fault diagnosis field [182]. Secondly,
another crucial drawback of LRP is its strict criteria for input
data, which poses a significant challenge in cases where IIFD
problems involve data with a high signal-to-noise ratio.

2) SQUARE ENVELOP SPECTRUM
The Square Envelope Spectrum (SES) is an advanced method
used for mechanical fault diagnosis. It operates by trans-
forming the target signal into the Hilbert envelope spectrum
through Hilbert and Fourier transforms. By analyzing the
envelope spectrum, we can extract valuable information that
may be challenging to detect in both the time and frequency
domains.

In IIFD, SES has undergone significant enhancements,
leading to improved interpretability in fault analysis. This
enhanced SES technique not only facilitates fault diag-
nosis but also serves as a benchmark for evaluating
the interpretability performance of other diagnostic meth-
ods. Based on the normalized square envelope spectrum
[183], Hou et al. [184] designed an interpretable weights
upgrade algorithm as an optimized square envelope spec-
trum to enhance the identification of the fault frequency.
Wang et al. [9] introduced an approach to enhance the inter-
pretability of the extreme learning machine by incorporating
a square envelope and Fourier transform as input features.

Ding et al. [185] employed the short-time Fourier transform
and envelope spectrum analysis techniques to enhance the
interpretability of the supposed deep learning-based method.
Li et al. [8] corroborated the physical significance of the
features extracted by their proposed model utilizing means of
analyzing SES. Algburi et al. [186] utilized SES to evaluate
the performance of the interpretable elements separated
by singular spectrum analysis and generalized structured
shrinkage algorithm. Yang et al. [187] applied SES in
conjunctionwith the nonnegativematrix factorizationmethod
to accurately identify unknown fault modes in planetary
gearbox systems. Li et al. [152] incorporated SES as an
auxiliary tool to unravel the interpretability of attention
mechanisms in the context of diagnostic applications.

It is noteworthy that the SES is frequently employed
as a supplementary instrument for retrospective analysis in
the realm of interpretable fault diagnosis. This auxiliary
utilization of SES arises from its characteristics, facilitating
its application in the examination and comprehension of
diagnostic outcomes. However, its deployment primarily
occurs subsequent to the initial diagnostic phase and mainly
provides post-hoc interpretable results, and relying on prior
knowledge leads to its limited application.

3) GRADIENT-BASED METHODS
Gradient-based methods are widely employed in the field
of IIFD, including integrated gradients, gradient ascent, and
gradient boosting. These methods analyze the gradients of the
output relative to the input to quantify the impact of input
features on model predictions, thereby elucidating feature
importance and aiding in understanding model decision-
making processes.

a: INTEGRATED GRADIENTS
Sipple [188] utilized IG to differentiate samples for anomaly
interpretation in the Internet of Things. Peng et al. [189]
introduced Smooth Integrated Gradients, which not only
pinpoint responsible variables for faults but also provide
a denoising effect in feature importance assessments.
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Du et al. [190] applied IG in conjunction with continuous
wavelet transform to select significant frequency ranges in
frequency component analysis.

b: GRADIENT ASCENT (GA)
In the context of IIFD, Guo et al. [53] explored the
workings of CNNs through frequency domain GA-based
kernel visualization techniques, offering insights into the
internal mechanisms of these networks.

c: GRADIENT BOOSTING AND XGBoost
XGBoost, an advanced form of gradient boosting that inte-
grates decision tree boosting [191], is particularly effective
in classifying features and determining their importance,
embodying a post-hoc interpretability approach. It has been
utilized for providing interpretable root causes in PHM [192]
and for feature replacement in process control [193].

d: OTHER APPLICATIONS
An et al. [194] leveraged gradient mapping to enhance soft
thresholding algorithms, establishingmore interpretable clas-
sification criteria. Li et al. [195] developed a high-sensitivity
gradient-based interpretation method that improves upon
previous visualization techniques in terms of efficiency and
accuracy.

Despite the sensitivity and accuracy of gradient-based
methods in IIFD, they face challenges, particularly in
parameter selection, such as setting the appropriate gradient
threshold, which can significantly affect the outcomes.
Additionally, these methods often assume linear changes in
fault characteristics, which may lead to less than optimal
performance in nonlinear scenarios, highlighting a critical
area for further research and methodological refinement.

4) CUSTOMIZING RELEVANCE
Customizing relevance-based methods tailor algorithms to
emphasize the importance of specific input features or
data points relative to the output, providing a focused
insight into how particular factors influence model decisions
in a defined context. These methods harness customized
relevance indicators to ascertain feature significance without
relying on complex algorithmic frameworks, thereby facili-
tating post-hoc interpretation through visual representations.

For instance, Malhi et al. [196] employed the Con-
textual Importance and Utility (CIU) to decipher black
box models, showcasing visual classification outcomes by
utilizing CIU’s analytical capabilities. CIU distinguishes
between Contextual Importance (CI), which links directly
to inputs, and Contextual Utility, which relates to outputs.
Oliveira et al. [197] tackled the limitations of Autoencoders
in anomaly detection by introducing the Residual eXPlainer,
which computes feature correlation Rnm using Z-scores and
provides explanations via deviation analysis of reconstructed
input features. Zhuo et al. [198] drew inspiration from adver-
sarial attacks to propose an adversarial fault reconstruction

method, incorporating it into an explanatory framework that
assesses variable contributions within general fault detection
and classification models. Li et al. [28] defined three metrics
to quantify the interpretability of deep neural networks,
achieving a detailed activation map that offers enhanced
resolution and better explainability of model results.

These methods are particularly effective when applied to
specific operational conditions, as they are more targeted
compared to general approaches in experimental scenarios.
They also tend to have simpler structures, requiring fewer
computational resources. However, designing a suitable
relevance score algorithm that aligns with specific problems
can be challenging, which may limit the generalizability of
these methods. This often necessitates a balance between
customized specificity and broad applicability in the design
of relevance-based interpretative machine learning methods.

G. EPILOG
This section introduces post-hoc interpretable fault diag-
nosis methods, which rely on visual analysis of model
classification results to provide explanations. However,
these methodologies have two primary limitations in their
applicability. Firstly, they are typically considered model-
agnostic methods, which means they do not depend on
specific knowledge of the model. However, in the context
of IIFD problems, a sufficient understanding of the model is
necessary. Secondly, the process of post-hoc fault diagnosis
often neglects the incorporation of physical information
related to the specific problem. This omission poses a risk
of providing unfaithful explanations, rather than genuine
knowledge derived from the data [199].

IV. ANTE-HOC INTERPRETATION OF IFD
While post-hoc interpretability methods provide valuable
insights into model behavior, they inherently possess several
limitations. First, although these methods attempt to project
feature maps back to the input space for easier interpretation,
the physical significance of these feature maps often remains
obscure. Second, the training process involves convolutional
kernels that are randomly initialized and optimized based on
classification loss, which keeps the process largely opaque.

In this section, we examine scholarly works that address
fault diagnosis issues through the lens of model intrinsic
interpretability. The discussion is structured into three distinct
subsections: 1) Model Embedding Interpretability, 2) Model
Framework Interpretability, 3) Model Parameters Inter-
pretability. These categories underscore different aspects of
interpretability, each vital for a comprehensive understanding
of how models diagnose faults and the transparency of their
operations.

A. OVERVIEW
Interpretability, often synonymous with transparency, is an
inherent characteristic of a model that denotes the clarity
and understandability of its decisions and functions to
humans [200]. To distinguish between post-hoc and intrinsic
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interpretability, Vollert et al. [201] categorized model trans-
parency into three levels: simulatability, decomposability, and
algorithmic transparency. A model is considered intrinsically
interpretable if it satisfies the criteria at the decomposability
level, where the features employed are inherently inter-
pretable. Models built on non-interpretable features do not
meet this criterion [202]. It is important to note that inter-
pretable features are those embedded with prior knowledge
or physical significance, differentiating them from features
merely highlighted in post-hoc explanations. Furthermore,
ante-hoc interpretability inherently encompasses aspects of
post-hoc interpretability [203], [204].
Ante-hoc interpretability can be achieved through the use

of straightforward, self-explanatory models or by integrating
interpretability into a model’s structure before training [205].
Simple models such as Logistic Regression, Decision
Trees, and Rule-based systems are naturally interpretable
and categorized under ante-hoc interpretability [201]. Inte-
grating interpretability into a model’s structure involves
incorporating physical elements that enhance transparency.
Terms frequently used to describe models with inherent
interpretability include transparent models [200], intrinsic
interpretability [206], ad-hoc interpretability [207], and
ante-hoc interpretability [202].
Recent research in ante-hoc IIFD is expanding rapidly.

We have collected over 30 articles across three domains—
Fault Diagnosis, PHM, and Anomaly Detection—to analyze
and review, summarized under the following categories:

1) Model Embedded Interpretability: Incorporation of
physical technologies into model design, such as specific
kernels, interpretable feature extraction model or expert
defined signal processing approaches.

2) Model Framework Interpretability: Development of a
diagnostic pipeline that integrates signal processing methods
with data-driven models.

3) Model Parameters Interpretability: Implementation of
sparse parameters or weight to imbue diagnostic models with
physical relevance and interpretability.

In the sections that follow, we will delve into fault
diagnosis research from these three interpretive perspectives,
providing a comprehensive review of the current landscape.

B. INTERPRETABLE MODEL EMBEDDING
Model embedding-based intrinsic interpretability refers to
the design of the interpretable network by embedding prior
physical knowledge into the network structure, achieving
feature-level explanation.

1) INTERPRETABLE CONVOLUTION KERNEL
The main idea of interpretable convolutional kernels is to
rely on manual experience to embed physically meaningful
kernels instead of conventional convolution kernels [208]. For
example, in vibration fault diagnosis, the wavelet transform
is a renowned signal processing technique. It is capable
of transforming a raw signal from the time domain into
the time-frequency domain using a wavelet basis function.

Thus, Lan et al. [43] and Li et al. [209] explored a Wavelet
Kernel Network (WKN) where the first convolutional layer
is replaced by a continuous wavelet convolutional layer.
This layer utilizes parameterized wavelet dictionaries for
the wavelet transform of the input signal, with only scale
and translation parameters learned from the input. This
method emphasizes extracting impactful components from
raw signals in the first layer of WKN, enhancing physical
interpretability and robustness to varied data.

Nevertheless, WKN is limited to using only a single
type of wavelet kernel for extracting fault-related features.
This necessitates the pre-selection of an appropriate wavelet
basis function tailored to various datasets and working
conditions. Furthermore, the reliance on a single wavelet
kernel restricts its capability to effectively capture infor-
mative fault features, especially in complex fault scenarios
like compound faults [210], [211], [212]. To overcome this
issue, Jiang et al. [213] constructed the multi-wavelet kernel
convolution (MWKC) layer through selected four wavelet
functions and utilized it to replace the first layer of the
CNN to capture the different impulse excitations from raw
vibration signals. To balance the varying significance of each
wavelet kernel within the MWKC layer, a kernel weight
recalibration module is devised to dynamically assign dif-
ferent weights to various wavelet convolutional kernels. The
proposedMulti-Wavelet Kernel Convolution Neural Network
incorporates the mechanical knowledge of fault impulse
excitation into the CNNmodel to enhance interpretability and
credibility. Recent studies employing wavelet convolution
for ante-hoc interpretability are summarized in Table 10.
In addition to wavelet-based kernels, other physics-based
kernels are also proposed. Such as, Sadoughi and Hu [214]
designed a physics-based kernel based on bearing fault
characteristic frequencies and shaft speed to achieve the
embedding of information pertinent to bearing-related fault
features. Wu et al. [215] developed a multiple learnable
multiplication filtering kernel which combined with a special
antialiasing constraint join with L1 sparse regularization
constraint to effectively separate fault features from complex
spectrum in a comprehensible way.

Although interpretable convolution kernels have intro-
duced some of the ante-hoc interpretability, the physical
kernel model only replaced the first convolutional layer of
the standard CNN and still cannot explain the whole network.
Moreover, the analytical expression of the designed kernel
has to be defined in advance by manual experience. In this
way, the designed kernel is less adaptive so it can only extract
a specific type of fault features. In addition, the replacement
operation is only performed for some local layers, while the
rest layers still follow conventional structures. Consequently,
the interpretability of such models is still insufficient.

2) CUSTOM NETWORK STRUCTURES
To overcome the above problems, some custom network
structures, designed to combine prior knowledge, are also
being progressively developed for the implementation of
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physical knowledge embedding. A physics-based CNN
was proposed in ref. [214], which added three signal
processing techniques(spectral kurtosis, envelop analysis,
and fast Fourier transform) to the front of the CNN as
new layers to incorporate useful information from physical
knowledge about bearings and their fault characteristics.
Huang et al. [166] established a form of prior knowledge
regarding the correlation between faults and attributes,
utilizing the Pearson Correlation Coefficient. This knowledge
was then integrated into the feature extractor of CNNs
through AM. Consequently, the proposed attention-based
CNN is designed to focus on the correlations between data
regions and faults during the feature extraction process.
Chen et al. [216] formulated the time-frequency network,
where the physically meaningful time-frequency transform
method is embedded into the traditional convolutional layer
as a trainable preprocessing layer. This preprocessing layer
named as time-frequency convolutional layer, is constrained
by a well-designed kernel function to extract fault-related
time-frequency information. It not only improves the diag-
nostic performance but also reveals the logical foundation of
the CNN prediction in a frequency domain view.

Custom network structures to achieve ante-hoc inter-
pretability of IIFD can help researchers understand the
reasons behind model decisions to some extent, improving
model reliability and the ability to handle issues with
small sample sizes. When the model exhibits anomalies,
physical knowledge can also assist in analyzing the problems.
However, custom network structures increase the complexity
of the model, making the design, training, and tuning more
challenging. It also limits the flexibility of the model and
poses a risk of overfitting, thereby reducing the model’s
generalization capability.

3) DOMAIN KNOWLEDGE EMBEDDED FRAMEWORK
In this subsection, we streamline various IIFD frame-
works that embed domain expertise for fault diagnosis.
The signal processing informed neural network (SPINN)
framework, as introduced by Shang et al. [217], melds
signal processing with deep learning through its Denoising
Fault-Aware Wavelet Network. This network adopts a
Wavelet transform for initial input processing, enhances
feature extraction via thresholding in noisy conditions,
and isolates pivotal fault features with index-based filter-
ing before classification, prizing explainability and noise
reduction. The power-perturbation-based decision boundary
analysis by Gwak et al. [218] analyzes vibration classifica-
tion models’ decision boundaries through power variations
in key frequency bands. It gauges frequency significance
and model power sensitivity by testing with perturbed data,
elucidating decision boundaries. Kim et al. [171] crafted
the single domain generalizable and physically interpretable
framework that synergizes signal preprocessing and neural
networks. It integrates specific knowledge about impulse
excitation signals to provide domain generalization and

physical interpretation. Bayesian Networks are deployed for
causal fault analysis, with Nor et al. [219] utilizing a Bayesian
deep learning model with SHAP for transparent anomaly
detection and prognostics. Yang et al. [220] employed a
hybrid Bayesian Network that combines data and expert
knowledge to delineate process variable interactions, thereby
facilitating fault detection with graphically interpretable
results. Lastly, addressing the imbalance in sample distribu-
tion, Liu et al. [163] introduced the Adversarial Variational
Autoencoder with Sequential Attention (AVAE-SQA) for
interpretable data augmentation in rolling bearing fault
diagnosis. This approach incorporates variational inference
and attention mechanisms, providing theoretical explanations
of data distributions and decision rationales aligned with fault
mechanisms.

Each framework embodies a strategic blend of domain
knowledge and innovative machine learning techniques to
enhance diagnostic precision and interpretability, pivotal for
the application in real-world industrial settings.

C. INTERPRETABLE MODEL FRAMEWORK
To advance ante-hoc IIFD, interpretability model frameworks
are developed as structured methodologies that enhance the
clarity of machine learning models. Compared with previous
mentioned IIFD methods, these frameworks facilitate an
understanding of how inputs are transformed into outputs and
help explain the decision-making processes involved. Given
the diversity of theories behind each explainable framework,
we provide detailed descriptions of select frameworks that
demonstrate notable features.

1) ALGORITHM UNROLLING
Recently, algorithm unrolling [221] has garnered increasing
interest in the DL, presenting an innovative solution to the
challenge of model interpretability. This method involves
unrolling each iteration of an iterative algorithm into a
discrete network unit, based on the iterative formula. Then,
these units are systematically connected to form a neural
network. In this process, the predefined parameters of the
iterative algorithm are reconfigured as adaptable parameters
within the neural network. This allows for their optimization
through backpropagation in an end-to-endmanner, enhancing
the network’s learning capability. An algorithm unrolling
network is interpretable since it is not empirically designed
but is methodically developed under the procedure of an itera-
tive algorithm [208]. Unrolled iterative algorithms, including
the iterative shrinkage-thresholding algorithm (ISTA) [222],
[223], [224], orthogonal matching pursuit [225], and the
alternating direction method of multipliers [226]. In the
domain of mechanical fault diagnosis, the exploration of
algorithm unrolling networks is currently at an early stage.

Algorithm unrolling has rapidly advanced in theoret-
ical research and practical applications in recent years.
As a commonly used signal processing tool, sparse cod-
ing generally regards sparse coefficients as the features
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to characterize signals, which has been widely used in
mechanical fault feature extraction [227]. The ISTA for
the convolutional sparse coding optimization problem was
unrolled into a neural network known as CISTA-Net by
Rao et al. [208] using the algorithm unrolling approach.
Because the iterative method determines the structure of
CISTA-Net, it has a well-established theoretical foundation.
Zhao et al. [228] introduced the layered general sparse
coding (LGSC) algorithm, solving the general sparse coding
issue with a multi-layered approach and evolving it into
LGSC-Net using deep unrolling. This innovation bridges
LGSCwith CNNs by demonstrating how the soft nonnegative
thresholding operator and the ReLU function, augmented
with a bias term, are equivalently capable of representation.
By integrating multi-layer processing, existing structures,
and domain knowledge from the Multi-Layer Sparse Coding
(ML-SC) model, LGSC demonstrates notable interpretability
and a robust theoretical basis. Motivated by the ML-SC
model, An et al. [194] developed a nested iterative soft
thresholding algorithm (NISTA) as a solution for anML-CSC
model which is specifically designed for extracting fault
features from vibration signals. To allow the parameters
in the algorithm to adapt to various scenarios, NISTA is
unrolled to form an explainable neural network. Within this
network, all parameters are updated in an end-to-end manner
using back-propagation. The design process of NISTA-Net
is based on a well-defined theoretical framework, making
the network’s architecture both understandable and inter-
pretable. Qin et al. [229] introduced a multi-scale component
analysis network (MCAN), designed for high-performance
and interpretable mechanical equipment fault diagnosis.
MCAN is constructed by unrolling the iterative solution
algorithm of a morphological component analysis (MCA)
model. This model integrates multi-scale priors of vibration
signals into a network, rendering the architecture network
interpretable. Essentially, MCAN is an unrolled network
of optimization algorithms tailored for the MCA model,
incorporating vibration signal priors. The entire forward
propagation process of the network is analogous to solving
the MCA model’s corresponding problem, thereby endowing
the network with inherent interpretability.

Algorithm Unrolling transforms traditional iterative algo-
rithms (such as optimization or signal processing algorithms)
into an equivalent DL model. This approach combines the
strengths of algorithms (like robustness and accuracy) with
the adaptability and learning capabilities of deep learning.
It enhances interpretability while improving efficiency and
performance. Moreover, it serves as a bridge between
traditional theoretical methods and data-based deep learning
approaches. However, the design and implementation of
algorithm unrolling is complex, requiring a deep under-
standing of both the original algorithm and deep learning
architectures. Due to certain specific assumptions or limita-
tions in traditional algorithms, it can be challenging to train
with limited data. Similar to embedding physical knowledge,
Algorithm Unrolling faces issues with poor generalization,

making it difficult to adapt to different tasks or data
types.

2) LOGICAL NETWORK FOR FORMAL LANGUAGES
INTERPRETATION
Logical inference involves deriving logical expressions that
describe system properties from data [230]. It is often
implemented in a formal language in the ante-hoc IIFD. The
fault diagnosis construction procedure can be formulated as a
language generation process and the formal languages can be
seen as interpretable classifiers, which provide interpretabil-
ity for the fault diagnosis procedure. Recently, there has been
applying temporal-logic-based formal language to diagnose
faults and obtain good performance. Chen et al. [231] pro-
posed a temporal logic neural network (TLNN), in which the
network can be described and interpreted as a weighted signal
temporal logic. TLNN not only keeps the nice properties
of traditional neuron networks but also provides a logical
interpretation of itself with formal language. The result of
experience with real data sets shows the embedded formal
language of the neuron network can provide explanations
about the decision process, thus achieving interpretable fault
diagnosis. Tian et al. [232] adopted the weighted signal
temporal logic (wSTL) as a formal language and proposed
a temporal logic network (TLN) for interpretable fault
diagnosis of rolling element bearings. To further validate
the interpretability of the model, timed failure propagation
graphs are used to describe the logical relationship and
propagation between fault events in the time domain.
Experimental results demonstrate TLN’s ability to extract
impulse fault patterns from signals, accurately describe
fault events through learned wSTL formulas, and enhance
understanding of fault events for non-expert individuals
through TFPGs. However, signal temporal logic (STL) is
relatively weak in resisting noise, while real systems often
operate in noisy environments. Since the fault signals of many
systems are contaminated by noise and can only be detected
in the frequency domain. Hence, Chen et al. [233] proposed
a novel formal language for fault diagnosis, called signal
spectral logic (SSL), which is inspired by the signal temporal
logic and defined over signals’ spectral kurtosis. The SSL is
suitable to describe the spectral properties of time-series data
and diagnose the fault for rotational machines, thus providing
interpretation for the fault diagnosis results, and is robust to
noisy environments. Another challenge of applying formal
language to fault diagnosis is to find the optimal formula
(sentence). Kong et al. [230] tried all combinations of basic
formulas according to a predefined order and selected the best
one. Nevertheless, this method suffered from a combinatorial
explosion issue. To reduce the computational complexity, the
author in [7] formulated the formula generation problem as a
Markov decision process and solved it with a reinforcement
learning algorithm. Furthermore, formal languages-based
approaches like frequency temporal logic [234], and shapelet
temporal logic [235] have also been utilized in IIFD.
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Designing an interpretable fault diagnosis framework typ-
ically involves merging traditional fault diagnosis techniques
with modern data-driven methods (such as machine learning
or deep learning). The aim is to provide insights into the
causes and nature of faults while maintaining transparency in
the diagnostic process. However, designing and implement-
ing an efficient and interpretable fault diagnosis framework
can be highly complex and costly. Moreover, designing an
effective interpretable fault diagnosis framework may require
in-depth domain expertise and experience. Finally, overem-
phasizing interpretability might compromise the model’s
accuracy or efficiency, and the explanations provided could
be based on the perspective of the framework, which might
not be entirely accurate or comprehensive.

D. INTERPRETABLE MODEL PARAMETERS
In addition to the approaches discussed in earlier sections,
our literature review has uncovered unique ante-hoc IIFD
approaches, such as the introduction of sparsity and the
explanation of model weights. These methods endow models
with interpretability by incorporating specific parameters
designed for ante-hoc application.

1) SPARSITY IN MODEL LEARNING
Given that fault signals from rotating machines often exhibit
sparse, non-Gaussian, and non-stationary characteristics,
many studies have adopted sparsity to enable models to
learn interpretable fault signal representations. There are
two main reasons for introducing sparsity [236]: 1) Sparse
weight distributions inherently offer clearer explanations as
they concentrate weight energy, simplifying the assessment
of contributions and importance. 2) Fault vibration signals
typically exhibit square envelope spectra indicating cyclic
fault frequencies, which vary among different faults. Sparsity
helps to better capture and differentiate these fault features.
For instance, Pu et al. [237] developed a restricted sparse
frequency-domain space (RSFDS) for rolling bearing fault
features (RBFFs), incorporating a multichannel fusion mech-
anism that maps RBFFs to RSFDS, thus enhancing physical
clarity and interpretability. Ma et al. [238] introduced a
sparsity-constrained GAN model, imposing sparsity during
the model’s training phases to foster the learning of
explainable signal representations.

2) EXPLANATION OF MODEL WEIGHTS
By pre-setting neural network weights based on physical
knowledge, the interpretability of decision processes is
enhanced, making outcomes more reliable. Yan et al. [205]
constructed an interpretable weight matrix, which interacts
with the time-frequency diagram to track the degradation
process. This matrix, embedded within a neural network,
determines the initial weights between the network’s input
and hidden layers, while the subsequent layers are optimized
through intelligent algorithms. This structure ensures that
the extracted features reflect fault-related characteristics,
enabling the network to distinguish between normal and

abnormal patterns effectively, thereby achieving ante-hoc
interpretable fault diagnosis. Combining model weight
explanations with sparsity further enhances interpretability,
as demonstrated by Yan et al. [236] who developed a
weight-oriented optimization model driven by discrimination
and sparsity.

E. EPILOG
This section reviews ante-hoc interpretability in IIFD,
dividing it into three directions: 1) model embedding
interpretability, 2) model framework interpretability, and
3) model parameters interpretability. By summarizing the
advantages and disadvantages of these directions, it reveals
three main issues. First, there is the complexity and high cost
of design. Embedding prior knowledge often requires a solid
foundation in the principles of fault diagnosis and an in-depth
understanding of deep learning. Second, there is the issue
of poor generalization. The ante-hoc interpretable models
designed are mostly based on specific physical principles.
However, in reality, faults often involve multi-physics field
coupling, so models may fail when working conditions
change or in the presence of noise interference, making
them unsuitable for different tasks or data types. Lastly,
there is the issue of insufficient performance. The reasoning
process added to interpretable models increases the com-
putational burden, involving more parameters and complex
structures, which can make training more difficult, especially
in resource-limited situations. Therefore, researching a
lightweight ante-hoc interpretable fault diagnosis model that
maintains both versatility and robustness while preserving
model performance is urgently needed.

V. DISCUSSION: FUTURE CHALLENGES IN IIFD
With the advancement of the IIFD, DL has gradually replaced
the conventional fault diagnosis pattern of signal processing,
feature extraction, and fault identification. This evolution
towards deep learning enables the automatic extraction of
features and identification of equipment failures, signifi-
cantly reducing the reliance on prior diagnostic knowledge
and enhancing both the efficiency and accuracy of fault
identification. Nonetheless, the ‘‘black box’’ nature of deep
learning models poses challenges to their reliability and gen-
eralizability, bringing the issue of interpretability, especially
in rotating machinery diagnosis, to the forefront of urgent
issues to be addressed. At the end of this review, we highlight
the challenges faced by IIFD, aiming to position and stimulate
interest in the future development trends of the IIFDfield over
the next decade, encouraging anticipation of and engagement
with the potential directions this field may take.

A. DEFINING AND EVALUATING THE INTERPRETABILITY
OF IIFD METHODS
In the realm of IIFD, various methods have been developed
to interpret the outcomes of intelligent diagnostic processes.
Despite these advancements, a standard definition of inter-
pretability within intelligent diagnostics remains elusive.
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TABLE 10. Papers of ante-hoc interpretable methods.

Current interpretation methods struggle to clearly articulate
the complex internal learning mechanisms and decision
processes of deep learningmodels, often relying on subjective

factors that may lead to inconsistent, contradictory, or even
incorrect interpretations. This subjectivity underscores the
need for a unified standard to assess interpretability, which
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would minimize the impact of subjective interpretations and
ensure more consistent and reliable diagnostic outcomes.

To address this, there is a pressing need to design metrics
that can quantitatively evaluate interpretability. This would
facilitate the establishment of a standardized benchmark
for interpretability, transcending the current qualitative
assessments that vary widely across different methods.
By developing robust metrics, the field can measure and
compare the reliability of interpretations, enhancing the
credibility and utility of diagnostic models.

B. IMPROVING GENERALITY IN IIFD METHODS
The generality of models within IIFD poses substantial
challenges, particularly when these models are tailored to
specific types of physical knowledge. While this special-
ization enhances model interpretability for certain fault
diagnoses, it severely restricts their applicability across
different contexts. Models optimized for narrowly defined
problems may not perform adequately or provide meaningful
interpretations when confronted with unfamiliar data distri-
butions. This limitation highlights the necessity of developing
flexible models capable of maintaining high interpretability
across various scenarios and fault types. Enhancing model
adaptability would ensure that IIFD advancements can be
effectively applied in diverse diagnostic environments, thus
broadening their practical impact.

C. BALANCING PERFORMANCE AND INTERPRETABILITY
IN IIFD MODELS
Achieving a balance between interpretability and perfor-
mance poses a significant challenge in IIFD. Post-hoc
interpretation methods can provide insights after model
training by analyzing feature importance, but the variability in
these interpretations can affect the robustness and reliability
of the results. On the other hand, ante-hoc methods, which
incorporate prior knowledge directly into model structures,
offer more stable explanations but can sometimes compro-
mise model performance. These methods constrain the model
to focus on inherently interpretable features, which may limit
its learning potential and necessitate greater computational
resources. The ongoing challenge lies in developing models
that transparently articulate their decision-making processes
while performing effectively across diverse and dynamic
environments. Achieving this balance is critical for advancing
fault diagnosis technologies that are both trustworthy and
highly functional.

D. INTEGRATING DOMAIN KNOWLEDGE WITH IIFD
METHODS
Integrating domain knowledge into IIFD methods is imper-
ative to ensure the reliability and relevance of diagnostic
models. Domain knowledge provides essential insights into
system mechanics and failure modes, which are crucial for
tailoring feature engineering and model tuning processes.
However, converting this often tacit knowledge into a format
usable by automated systems poses significant challenges,

particularly with complex machine learning architectures
like deep learning. Successfully integrating domain knowl-
edge enhances model reliability, aligns with regulatory
transparency requirements, and ensures that diagnostics are
grounded in substantive expert understanding. Overcoming
these integration challenges is crucial for developing diag-
nostic systems that are both effective and accepted within
industry sectors.

E. IDENTIFYING CAUSAL RELATIONSHIPS FROM FAULT
INTERPRETATIONS
Identifying causal relationships rather than mere correlations
in fault diagnostics is essential for accurate fault identification
and effective intervention. This distinction is crucial in
safety-critical applications such as aerospace and automotive,
where incorrect diagnostics can lead to catastrophic fail-
ures. Addressing this challenge involves refining diagnostic
models to discern causal relationships from vast data sets,
ensuring that the faults identified are genuinely responsible
for observed issues. Establishing these relationships not only
enhances the reliability of diagnosticmodels but also supports
targeted and efficient corrective actions, ultimately leading to
safer and more dependable system operations.

VI. CONCLUSION
In this paper, we review the applications of interpretable
DL models in IFD, which can roughly divided into post-hoc
interpretation and ante-hoc interpretation methods. Post-hoc
interpretation methods refer to explaining the diagnostic
results of the model after the training, primarily by assessing
feature importance to analyze the relationship between inputs
and outputs. Common post-hoc methods include CAM,
LIME, SHAP, and the AM. Utilizing post-hoc interpretation
to analyze fault diagnosis results can enhance model trans-
parency and boost practitioners’ confidence in the diagnostic
outcomes. Nevertheless, post-hoc interpretation is uncertain,
as the interpretive results may fluctuate with the model’s
training and potentially yield inconsistent explanations.
To further advance toward more interpretable IFD, recent
research has explored the embedding of physical knowledge
as a strategy for achieving ante-hoc interpretability. This
approach ensures more stable and reliable explanations
by incorporating prior expert knowledge into the model
from the beginning. We innovative categorize ante-hoc IFD
into three approaches based on their method of knowl-
edge embedding: 1)interpretable model embedding, where
designing convolutional kernels with physical significance,
2)interpretable model frameworks, where facilitating an
understanding of how inputs are transformed into outputs
by integrating or embedding expert knowledge within the
learning framework, and 3)interpretable model parameters,
where explainable model parameters make the learning
process partly interpretable). Although ante-hoc IFD offers
more robust explanations, it may compromise model perfor-
mance and suffer from limited generalizability, potentially
restricting its application in industry. To bridge the gap,
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the derivation of dynamic equations through deep learning
inference holds promise for establishing a reliable and
interpretable fault diagnosis model. Finally, we discuss the
challenges of IIFD, hoping to provide readers with clear
research directions. This review is expected to systematically
present the development of IIFD and provide valuable
guidelines for future research in this field.
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