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ABSTRACT Hydraulic jump is a common physical phenomenon in the field of hydraulic engineering.
The essence of hydraulic jump is the conversion and dissipation of a large amount of energy due to the
interaction between vortex structures, mainly released in the form of turbulence and water waves. This
process significantly reduces the kinetic energy of water flow, thereby mitigating downstream erosion and
protecting hydraulic structures, which in turn extends their service life. As a crucial factor in the energy
dissipation design of discharge structures, the length of the hydraulic jump is influenced by various factors,
including flow velocity, upstream and downstream water depths, riverbed roughness height, and Froude
number. In this study, we applied dimensional analysis to identify the key parameters influencing hydraulic
jumps on the dataset provided by literature. We utilized a multi-task learning strategy, incorporating a shared
feature extraction layer for characteristic modeling of hydraulic jumps within Physics-Informed Neural
Networks (PINNs). Furthermore, we compared the performance of PINNs with other data-driven models
such as Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs), and Transformers. The
results demonstrated that these models are effective in estimating the length of hydraulic transitions and
distinguishing between steady and unsteady hydraulic jump processes. Notably, the PINNs model exhibited
better performance than other models, achieving an R2 score of 0.8818, RMSE of 4.4627(cm), MAE of
3.3784(cm), precision of 0.9677 and recall of 0.9677 on the test set. These findings are significant for
elucidating the characteristics and effects of hydraulic jumps in hydraulic structures, providing a scientific
basis for the safe operation and design of practical hydraulic engineering projects.

INDEX TERMS Hydraulic jump, feature prediction, PINNs, neural networks.

I. INTRODUCTION
In fluid mechanics, the energy dissipation phenomenon of
a hydraulic jump refers to the reduction of water flow’s
kinetic energy during a sudden transition from supercritical to
subcritical flow, occurring when fluids of different velocities
or depths interact [1]. The efficiency and morphology of
hydraulic jumps are influenced by various factors, including
flow velocity, upstream and downstream water depths,
riverbed roughness, and Froude number. Accurate prediction
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of hydraulic jump characteristics, particularly the jump
length, is essential for optimizing engineering designs and
ensuring riverbed stability [2], [3], [4]. Beyond erosion
prevention, hydraulic jumps also serve other purposes, such
as water aeration and chemical reagent mixing, which can
enhance water quality [5], [6].
Current research on hydraulic jump prediction can be

categorized into three main approaches: statistical and
empirical models [7], [8], [9], [10], numerical simulation
models [11], [12], and machine learning models [13], [14],
[15], [16], [17], [18]. Statistical and empirical models often
utilize regression analysis and time series analysis to predict
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the probability or trend of future hydraulic jumps. Numerical
simulation models solve fluid equations numerically to
simulate hydraulic jumps under various fluid environments
and predict their occurrence. Machine learning models learn
patterns and rules of hydraulic jumps from data using
algorithms.

In recent decades, the rapid development of machine learn-
ing and artificial intelligence techniques has greatly advanced
the study of hydraulic jump phenomena. Traditional physical
and mathematical models have made progress in predicting
hydraulic jump characteristics but face challenges when
dealing with complex riverbeds and nonlinear flows. In com-
parison, machine learning-based approaches have shown
higher accuracy and efficiency in studying hydraulic jump
characteristics. For example, support vector machines (SVM)
have been successfully applied to predict the characteristics
of free and submerged hydraulic jumps, demonstrating more
accurate results than traditional models [15]. Additionally,
nonlinear regression models and advanced machine learning
techniques, such as ANFIS and LASSO [16], have proven
effective in predicting the conjugate depth ratio of hydraulic
jumps with significantly higher accuracy than traditional
linear regression methods.

From the 1980s to the 1990s, efficient learning algorithms
and novel network structures emerged rapidly, leading to
significant progress in artificial intelligence [19], [20]. With
the improvement of computational power, more sophisti-
cated deep learning algorithms were developed, such as
Convolutional Neural Networks (CNNs) [21] and Deep
Belief Networks [22]. In recent years, researchers have
applied deep learning techniques to various aspects of
fluid dynamics, achieving promising results. CNNs have
been used for flow feature detection, pressure distribution
prediction, and real-time prediction of non-uniform steady
laminar flows, demonstrating higher accuracy and transfer
learning potential compared to traditional CFDmethods [23],
[24], [25].

Moreover, deep neural networks (DNNs) have shown sig-
nificant effectiveness in improving turbulence models [26].
When combined with computational fluid dynamics (CFD),
DNNs exhibit high accuracy and efficiency in predicting
various fluid dynamic parameters of fluidized beds, such as
solid velocity, gas volume fraction, and pressure drop under
different operating conditions [27]. These studies highlight
the potential of DNN models in reducing computational
resources and time while demonstrating their stability in
predicting fluidized bed behavior. Transformers [28] have
also shown remarkable performance in flow field prediction
and reconstruction tasks, exhibiting lower mean squared
errors and better generalization capabilities compared to
supervised learning methods [29], [30].
Furthermore, Physics-InformedNeural Networks (PINNs),

which incorporate physical laws into neural networks, have
been proposed to improve the efficiency and accuracy of
processing complex system problems, such as solving the
Reynolds-averaged Navier-Stokes (RANS) equations for

incompressible turbulent flows without the need for specific
turbulence models or assumptions [31], [32]. This approach
allows for more robust and generalizable models by ensuring
that the physical laws governing the system are inherently
respected during the learning process. The application of
PINNs has shown promising results across various domains,
including fluid dynamics, where they provide a significant
advantage in terms of computational efficiency and accuracy
compared to traditional data-driven models [33], [34].

This paper employs a multi-task learning strategy for deep
learning models. By designing a shared feature extraction
layer to capture the general features of the input data, the
model branches into two task-specific substructures: one is
a regression branch for predicting continuous variables, and
the other is a classification branch. The regression branch
uses a linear output layer, while the classification branch
employs a softmax activation function to predict multiclass
labels.

To explore the adaptability of machine learning in
hydraulic jump prediction, Physics-Informed Neural Net-
works (PINNs) are utilized to implement physics information-
driven modeling. Simultaneously, the performance of PINNs
is compared with other data-driven models, such as Deep
Neural Networks (DNNs), Convolutional Neural Networks
(CNNs), and Transformers models. The study further
investigates the prediction accuracy of multiple models for
hydraulic jump length and the steady and unsteady stages
of the hydraulic jump, aiming to provide a solid scientific
basis for future hydraulic engineering design, construction,
and management.

In previous research, there has been little comprehensive
study on estimating jump length and the development stages
of hydraulic jumps using multiple models such as DNNs,
CNNs, Transformers, and PINNs, especially employing
PINNs for hydraulic jump modeling. Therefore, this is one of
the most significant academic contributions of this research.
The relevant research results can provide important theo-
retical support for scientific decision-making in hydraulic
engineering design, construction, and management, and have
significant practical engineering implications.

II. FOUNDATION OF METHODS AND DATA
A. HYDRAULIC JUMP THEORY
Hager et al. citeb35 classified the classic hydraulic jump into
two types: developed and no-developed hydraulic jumps. The
developed hydraulic jump is relatively smooth and stable.
Slightly downstream of the toe, where the water depth is
h1, the forward flow approaches the bottom and further
disperses downstream. A stagnation point can be clearly
identified at the end of the hydraulic jump. Due to typical
boiling phenomena, air bubbles continuously rise at the end
of the roller, with only minimal surface waves entering the
tailwater.

Compared to the developed hydraulic jump, the no-
developed hydraulic jump possesses more kinetic energy,
and large-scale vortices can be visibly observed at the
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FIGURE 1. Smooth bed (a) Developed hydraulic jump (b) Non-developed
hydraulic jump.

riverbed bottom. The rapid flow experiences more intense
surface jumping when entering the section before the
jump, the length of the hydraulic jump is significantly
shortened, and noticeable surface waves are generated in the
tailwater section. The structures of both types are shown in
Figure 1.

In Figure 1, the cross-section I-I is called the initial
cross-section of hydraulic jump, and its water depth h1 at this
section is called the initial depth of hydraulic jump. The water
section II-II is called the sequent cross-section of hydraulic
jump, and its water depth h2 at this section is called the
sequent depth of hydraulic jump. The ratio of the sequent
depth of hydraulic jump to the initial depth of hydraulic
jump is known as the sequent depth ratio. The difference
between the initial depth of hydraulic jump and the sequent
depth of hydraulic jump is known as the jump height, and
the distance between the initial cross-section and the sequent
cross-section is called the jump length, denoted by the Lj.
As shown in Figure 1(b), Lr (i.e., the roller length) is the
horizontal distance between the end of the roller and the toe.
Furthermore, for a developed hydraulic jump, the values of

FIGURE 2. Rough bed (a) Developed hydraulic jump (b) Non-Developed
hydraulic jump.

Lr is consistent with Lj [35]. Additionally, rough riverbed also
has a significant impact on the characteristics of the hydraulic
jump. Its structure is shown in Figure 2.
Rough bed can effectively reduce the length and tailwater

depth of hydraulic jumps. Despite the complex water flow
dynamics in the jump region, numerous empirical formulas
based on experimental data [10], [36], [37], [38], [39]have
been used to estimate jump length. With advancements
in measurement technologies, research on hydraulic jumps
has made significant progress on multiple levels, not only
including the macroscopic characteristics of hydraulic jumps
but also encompassing the microscopic hydraulic phenomena
within them. These studies provide important references
for understanding the mechanisms of hydraulic jumps and
improving the design of energy dissipators.

B. HYDRAULIC JUMP ON ROUGH BED
The main factors influencing hydraulic jumps on rough
riverbeds are affected by the hydraulic conditions of water
flow, the roughness dimensions of the riverbed, and the
characteristics of the fluid. Among them, the length of the
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hydraulic jump on the riverbed (Lr ) is determined by a series
of parameters, including the acceleration due to gravity (g),
roughness height (ks), the initial depth of hydraulic jump,
the sequent depth of hydraulic jump, upstream flow velocity,
and the dynamic viscosity of the fluid. These parameters
collectively reveal the complex interactions between the
characteristics of the hydraulic jump and the roughness of the
bed.

Lr = f (ks, g, h1, h2, v1, v) (1)

By applying the principles of dimensional analysis
(Buckingham π theorem), the following equation can be
obtained:

Lr
h1

= f
(
ks
h1

,
ν1h1
ν

,
h2
h1,

V1
√
gh1

)
(2)

In which, V1√
gh1

represents the Froude number at the starting

position of the water jump, and ν1h1
ν

corresponds to the
Reynolds number approaching the flow rate. Since the value
of the Reynolds number is large, the effects of viscosity can
be considered negligible. Finally, the following equation can
be derived:

Lr
h1

= f
(
ks
h1

,
h2
h1

,Fr1

)
(3)

C. DATA
This paper uses the experimental dataset provided by
Carollo et al. [40] to assess the precision of various deep
learning models in estimating the length of hydraulic jumps
and their stages of development. The experiments were
executed in a rectangular flume of 14.4 meters in length,
0.6 meters in width, and 0.6 meters in depth.

The experimental tank featured walls and a base made
of glass, rendering the base into a smooth bed itself.
For simulating a rough base, coarse gravel was directly
laid and secured. The entire experiment commenced from
a point situated 3.5 meters downstream from the inlet
section, extending as far as 3 meters in its measuring
phase. Figure 3 provides a graphical overview of the
experiment.

The rough base consisted of gravel particles compactly
stacked and concreted at the bottom, with a total of
five variants of the rough base tested. Each gravel bed’s
particle size distribution was obtained through a sample of
100 particles, with its characteristic value of d50 standing
at 0.46 cm, 0.82 cm, 1.46 cm, 2.39 cm, and 3.20 cm,
respectively. The term d50 in this experiment refers to
the diameter under which 50% of the particles fall, this
metric was employed to characterize the height of roughness,
denoted as (ks).

The dataset encompasses a total number of 408 experi-
ments involving the rough base. Of these, 367 sets of data
were deemed valid, wherein 196 were complete hydraulic
jumps, and 172 were incomplete. The dataset was split
in a way that 75% of the data was used for training,

TABLE 1. The variation of experimental database used in this study.

FIGURE 3. Schematic diagram of the experiment.

while the remaining 25% was set aside for testing. Table 1
presents the change in range of the pre-jump depth, the post-
jump depth, the Froude number, the bed roughness’ height,
and the length of the hydraulic jump in the experimental
dataset employed in developing the artificial intelligence
models.

D. TECHNICAL FLOWCHART
This paper employs CNNs, DNNs, Transformer, and PINNs
models to evaluate the length of developed and no-developed
hydraulic jumps. The chosen gradient optimizer is the Adam
optimizer, and the activation function is the Tanh function.
To assess the accuracy of the predicted outputs, the results
of selected evaluation metrics are summarized in Table 2.
Based on error measurement values, two prior-knowledge-
embedded PINN models, named PINNs[1] and PINNs[2], are
identified as the optimal deep learning models for prediction.
The classification results of hydraulic jump types using the
PINN models are compared with those from other models
proposed in this study. The technical flowchart of this
research is shown in Figure 4.

1) CONVOLUTIONAL NEURAL NETWORKS (CNNs)
Convolutional Neural Networks (CNNs) are a type of
deep neural network designed for grid topology data,
such as images. Unlike traditional fully connected net-
works, CNNs maintain the spatial structure of data through
convolution operations, adaptively learn spatial features,
and abstract these features across multiple layers, thus
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FIGURE 4. Technical Flowchart.

achieving high-level semantic understanding of the input
data. This ability to automatically learn hierarchical feature
representations makes CNNs extremely effective in handling
spatially structured data like images, establishing them as a
mainstream model in image analysis.

Additionally, the application of CNNs has expanded to
areas such as computational fluid dynamics, demonstrating
significant potential in analyzing numerical simulation flow
parameters and predicting changes in flow fields. CNNs can
also be used to recover and reconstruct accurate flow datasets
from incomplete data, which is crucial for improving the
completeness and reliability of flow field testing. Therefore,
the advantages of CNNs in processing structured data
have prompted many researchers to explore their potential
further.

In this research, tabular data is initially transformed into a
‘‘pseudo-image’’ format by the CNNs model, which encodes
spatial relationships within the data into pixel values to
harness the spatial feature extraction capabilities of CNNs.
The convolutional neural network architecture employed
comprises five convolutional layers alongwith corresponding
pooling layers, which are adjusted after each convolution to
either maintain or reduce the dimensionality of the data. The
input for prediction is composed of 275 experimental data
sets, each represented by four variables. Thus, the CNNs
begin with a 1-channel 275×4 matrix as the input. The
convolutional layers progressively increase the number of
channels (from 16 to 256) and utilize convolutional kernels
and pooling layers of varying sizes and strides to either
maintain or reduce the length of the data. Finally, a fully

FIGURE 5. The schematic diagram of the CNN model structure.

connected layer reduces the number of output channels
from 256 to 3, which is used to generate the values
for regression tasks and the probabilities for classification
types.

In the process of performance testing of CNNs model,
it was found that the optimization process is constrained
by the number of epochs and the learning rate. In order to
comprehensively consider obtaining the best results on both
the training set and the test set, adjustments were made to
the epochs and the learning rate. The technical parameters
of the BP algorithm are set as follows: learning rate = 5e-4,
initial maximum number of epochs = 40000. The schematic
diagram of the CNN model structure used in this article is
shown in Figure 5.

2) DEEP NEURAL NETWORKS (DNNs)
Deep Neural Networks (DNNs) are a mainstream and widely
used type of neural network. Their distinctive feature is the
use of multiple layers of neurons between the network’s input
and output, allowing them to discover and predict extremely
complex associations given a sufficiently large dataset. This
characteristic makes deep neural networks versatile, enabling
their application across a broad range of tasks including
classification, regression, and prediction.

In this research, the DNNs model features an input
layer, five fully connected layers, an output layer, and a
normalization layer. Initially, the four input features are
processed by the first fully connected layer, which contains
64 neurons, to extract preliminary feature information.
Subsequently, four hidden layers with the same number
of neurons further enhance the extraction and processing
of features. Finally, these features are transformed into
three outputs through the sixth layer. After processing
through a Softmax layer, results suitable for multitasking are
obtained.

The technical parameters using the BP algorithm are set
as follows: learning rate = 5e-4, initial maximum number
of epochs = 20,000. The DNNs model used in this article
is shown in Figure 6:
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FIGURE 6. Diagram of the DNNs Model.

3) TRANSFORMER MODEL (TRANSFORMER)
The Transformer is a sequence model based on attention
mechanisms, initially used in natural language processing.
In recent years, due to its excellent ability to capture
long-term dependencies and efficient parallel computation,
the Transformer has begun to be applied in the field of fluid
dynamics. This model consists of an encoder, a decoder,
and attention mechanisms, allowing for better modeling of
long-term dependency relationships. Compared to traditional
convolutional neural networks, the Transformer is sensitive
to the order of data and better utilizes contextual associations
between sequences, providing unique advantages in capturing
the spatiotemporal evolution patterns of dynamic flow
fields.

This study does not involve temporal information, thus
there is no need to generate sequences. Instead, the task is
to extract useful features from the input data for classification
or regression purposes. Consequently, the Transformer model
employed in this research initially maps the input data dimen-
sionality from 4 to 64 through a linear layer. Subsequently,
positional encoding is applied to enhance the representation
of position information within the sequence. The core of
the model consists of several Transformer encoder layers,
each featuring a dimensionality of 64, eight attention heads,
and a feed-forward network with a dimensionality of 2048.
The aim is for the Transformer model to capture complex
dependencies within the input data. Additionally, the model
utilizes a dropout rate of 0.1 to mitigate the risk of overfitting,
and the ReLU activation function to enhance training
stability and non-linear expression capabilities. Ultimately,
the output from the Transformer encoder is mapped onto
numerical and categorical predictions through another linear
layer, and normalized via a Softmax layer to produce
the final category probability distribution. The technical
parameters for the backpropagation algorithm are set as
follows: learning rate = 5e-4, initial maximum number of

FIGURE 7. Diagram of the Transformer Model.

epochs= 20,000. The Transformer structure used is shown in
Figure 7:

4) PHYSICS-INFORMED NEURAL NETWORKS
Although machine learning methods have shown potential
and achieved initial success in practice, they often fail
to extract interpretable information from large amounts
of data. Pure data-driven models might fit observational
results well, but due to extrapolation or observational biases,
predictions can be physically inconsistent or unreliable
[41], [42]. Therefore, it is necessary to combine machine
learning models with fundamental physical laws and domain
knowledge. Algorithms such as ‘‘Physics-Informed Neural
Networks’’ (PINNs) utilize prior knowledge to improve the
interpretability and predictive accuracy of models [42]. This
approach is particularly suitable for dealing with complex
systems and long-distance spatiotemporal interactions, such
as turbulence and viscoelastic materials. Using PINNs can
produce more interpretable methods even in the presence of
imperfect data (such asmissing or noisy values, outliers, etc.),
providing precise and physically consistent predictions, and
are even applicable for extrapolation or generalization tasks
[43].

The core idea of PINN (Physics-Informed Neural Net-
works) is to use neural networks to fit given data points while
satisfying known physical constraints, integrating data and
prior knowledge [44], [45], [46], [47] or physical laws [48],
[49], [50]. By interpreting the connections between input
and output variables, PINN deepens our understanding of the
physical world.

In this study, we incorporate two physical equations into
Physics-Informed Neural Networks (PINNs) based on the
framework of Deep Neural Networks (DNNs). The PINN
algorithm employed is specifically designed for solving
straightforward forward problems, integrating prior knowl-
edge during the training process. The network architecture
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is illustrated in Figure 8. The prior knowledge utilized
includes:

1. The Wu Chigong Formula : Derived from experimen-
tal data fitting, the Wu Chigong formula [8] is employed
to calculate the length of hydraulic jumps. This formula is
widely used in practical applications due to its high reliability.
The equations are given as follows:

Lj = 10 · (h2 − h1)Fr−0.32 (4)

2.Fu Minghuan et al.Optimized Formula :FuMinghuan
and colleagues [9] optimized the classical hydraulic
theory-based formula for calculating the length of hydraulic
jumps. This optimized formula considers various influencing
factors, significantly enhancing the calculation accuracy, with
the final fitting error being only 4%. The equation is presented
as follows:

Lj = 0.9782 · (Fr1.5 − 1)2(Fr1.001 − 1)−2.5035(h2 + h1)

− ks (5)

In the formula, Fr , h1, h2, ks and Lj represent the Froude
number, the initial depth of hydraulic jump,the sequent depth
of hydraulic jump, the roughness height, and the length of the
hydraulic jump, respectively.

By embedding these physical formulas into the PINNs,
we aim to leverage the strengths of both data-driven
and physics-based approaches to improve the accuracy
and robustness of hydraulic jump length predictions. This
methodology ensures that the model adheres to known
physical laws while learning from empirical data, leading
to more reliable and generalizable predictions in hydraulic
engineering applications.

The loss function is a key component in the training of the
PINN algorithm, and this paper considers two aspects of loss:

1. Data Retention Loss
This loss function measures the discrepancy between the

network’s predicted results and the actual observational data,
ensuring the model has high predictive accuracy at known
data points. By minimizing this loss, DNNs can effectively
fit and retain information from the training data.

2. Equation Loss
This loss function measures how well the DNNs’ pre-

dictions satisfy the governing equations, reflecting the
constraints imposed by physical laws. By minimizing this
loss, the DNNs’ predictions will more closely adhere to the
physical laws and rules modeled.

The organic combination of these two loss components
allows the PINN algorithm to learn both data and physical
knowledge simultaneously, fitting observational data to
the maximum extent while ensuring physical consistency,
thereby obtaining a more accurate and reasonable prediction
model. The design of the loss function reflects the core idea
of the PINNmethod—based on data, constrained by physical
laws, to achieve effective integration.

In the standard framework of Physics-Informed Neural
Networks (PINNs), a deep neural network (DNN) with

multiple hidden layers, denoted as Lr (Fri , h1i , h2i , ksi , θ),
is used to approximate the solutions to equations, represented
by L̂j. This network incorporates trainable weights w and
biases b, indicated by θ , and uses a nonlinear activation
function, also referred to as σ . Inputs to the DNN include the
Froude number(Fr ), the initial depth of hydraulic jump(h1),
the sequent depth of hydraulic jump(h2), and roughness
height(ks). The output of the network, which is the solution to
the equation, is also denoted as Lr (Fr , h1, h2, ks). This setup
defines the general formulation of the equation within the
PINNs framework.

Lr (Fr , h1, h2, ks) +N [Lr ] = 0 (6)

In this context,Fr , h1, h2, ksrefers to the input vector, while
N [·] represents the nonlinear operator. Thus, the residual of
the equation can be expressed as:

e := Lr (Fr , h1, h2, ks) +N [Lr ] (7)

The observational dataset is denoted as {Lri ,Fri , h1i ,
h2i , ksi}, consisting of known data points from experimental
measurements. These data points will be used to train the
network, ensuring that the network can accurately fit the
known conditions.

The neural network architecture includes an input layer
that receives the observational dataset, followed by a series
of hidden layers that perform nonlinear transformations on
the input data. Each hidden layer applies a mapping transfor-
mation to the output of the previous layer, specifically using
a hyperbolic tangent (tanh) nonlinear activation function.

Let (yk ) denote the hidden variable of the k-th hidden layer.
The neural network can thus be described as follows:

lly0 = (Fr, h1, h2, k),

yk = σ (W kyk−1
+ bk ), 1 ≤ k ≤ L − 1 (8)

In this configuration, (Wk ) and (bk )respectively signify the
weight matrix and bias vector of the k-th layer, (σ ) indicates
the chosen nonlinear activation function. The hidden variable
(y0) represents the input data.
Finally, the output layer generates an approximate

solution(ŷ)by applying a linear transformation to the output
of the last hidden layer.

ŷ = W kyk−1
+ bk , k = L (9)

Following this, the residual point set {Fri , h1i , h2i , ksi}is
defined to enforce the network’s compliance with the control
equations.

By computing the residuals within equations (12), (13),
or (14) — specifically, the differences between the left
and right sides of these equations — we construct the
loss terms for each equation. Subsequently, the losses from
data retention and the physical equations are combined
through weighted summation to derive the comprehensive
total loss function, denoted as loss L. The configuration of
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weights demonstrates the emphasis placed on different loss
components.

L = wdataLdata + weqLeq (10)

In which:

llLdata =
1

Ndata

Ndata∑
i=1

(yi − ŷi)2

Leq =
1
Neq

Neq∑
i=1

(e)2 (11)

The weights wdata and weq are used to balance the inter-
action between the two types of losses. These weights can
be defined by the user or adjusted automatically and play a
crucial role in enhancing the trainability of Physics-Informed
Neural Networks (PINNs) [51], [52]. In this context, yi
represents the true data values, ŷi denotes the predicted data
values, and e symbolizes the residuals of the equations.The
technical parameters of the BP algorithm are set as follows:
learning rate = 5e-4, initial maximum number of epochs =

25000. The PINN algorithm is illustrated in Figure 8.

5) PERFORMANCE METRICS FOR MODEL EVALUATION
This paper utilizes three different standards: Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and the
Coefficient of Determination (R2), to evaluate the perfor-
mance of regression tasks in applied models. Additionally,
it uses recall, and precision to assess the performance of
classification tasks.

The method for calculating RMSE is outlined as follows:

RMSE =

√√√√√ 1
N

N∑
j=1

(Ljo − Ljp )2 (12)

In the formula, N is the number of data points in the dataset,
Ljo and Ljp respectively represent the observed and simulated
values of the hydraulic jump length.

The calculation method for MAE is as follows:

MAE =
1
N

n∑
i=1

|Ljo − Ljp | (13)

In the formula, N is the number of data points in the dataset,
and respectively represent the observed and simulated values
of the hydraulic jump length. This formula directly reflects
the average size of the prediction error through the absolute
error.

The method for calculating R2 is outlined as follows:

R2 = 1 −

∑n
i=1(Ljo − Ljp )

2∑n
i=1(Ljo − L̄jo )2

(14)

where Ljo is the j-th actual observed value, Ljp is the j-th
predicted value, and is the average of the actual observed
values. The value of R2 ranges from 0 to 1, with values closer
to 1 indicating a better fit of the model.

The calculation method for Precision is as follows:

Precision =
TP

TP + FP
(15)

In the formula, TP (True Positives) refers to the number of
positive instances correctly predicted, and FP (False Posi-
tives) refers to the number of negative instances incorrectly
predicted as positive. Precision measures the proportion
of actual positive cases among the samples predicted as
positive.

The calculation method for Recall is as follows:

Recall =
TP

TP + FN
(16)

In this context, FN (False Negatives) represents the number
of positive instances incorrectly predicted as negative. Recall
assesses the percentage of actual positive samples that are
accurately identified as positive.

III. RESULTS AND DISCUSSION
The study utilizes the Froude numbers, the roughness
heights, the initial depth of hydraulic jump,the sequent
depth of hydraulic jump data as inputs for the model.
Through the implementation of Physics-Informed Neural
Networks (PINNs) and three other data-driven neural net-
work models, the research aims to predict the length and
classify the hydraulic jumps on horizontal river beds. The
findings demonstrate that the PINNs algorithm achieves
superior accuracy in both regression and classification tasks.
Regarding time efficiency, the PINNs approach exhibits
slightly faster performance compared to the data-driven
models. The results of the four models, including PINNs
employing two different algorithms, are summarized in
Table 2.

A. CONVOLUTIONAL NEURAL NETWORKS (CNNS) MODEL
As shown in Table 2, the Convolutional Neural Network
(CNN) model demonstrates a high prediction accuracy of
98.55% on the training dataset, with an equally high recall
rate of 98.55%. These values indicate the model’s efficacy
in learning from the training data and correctly identifying
most instances. The coefficient of determination (R2) of
91.10% further supports this performance, signifying that
a substantial proportion of the variance in hydraulic jump
lengths is explained by the model. The Mean Absolute
Error (MAE) stands at 2.5264(cm), and the Root Mean
Squared Error (RMSE) is 3.5731(cm). The relatively low
MAE suggests that, on average, the model’s predictions
are very close to the actual values. The RMSE, which
penalizes larger errors more than the MAE, also remains
reasonably low, indicating that large prediction errors are
infrequent.

On the testing dataset, the CNN model maintains strong
performance, achieving a prediction accuracy of 95.72%
and a recall rate of 95.65%. As expected, there is a slight
decrease in performance due to the model’s exposure to new,
unseen data. However, the high accuracy and recall rates
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FIGURE 8. Diagram of the PINNs Model.

TABLE 2. Miti-model simulation results for developed and non-developed hydraulic jumps.

FIGURE 9. The scatterplot of observed and simulated hydraulic jump
length using CNNs for training (a) and testing (b) period.

demonstrate the model’s generalization capability beyond
the training data. The testing dataset’s R2 value of 0.8728,
although slightly lower than the training R2, still indicates a
strong correlation between the predicted and actual values.
The MAE of 3.4443(cm) and RMSE of 4.6295(cm), while
higher than the training errors, remain within an acceptable

FIGURE 10. The Confusion Matrix of observed and simulated hydraulic
jump length using CNNs for training (a) and testing (b) period.

range, reinforcing the model’s robustness and reliability in
making accurate predictions.

Figure 9 illustrates the scatter plot of observed versus
predicted hydraulic jump lengths using the optimal CNN
model. The proximity of the data points to the line of
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FIGURE 11. The scatterplot of observed and simulated hydraulic jump
length using DNNs for training (a) and testing (b) period.

perfect prediction (where observed equals predicted) visually
confirms the model’s accuracy. Most data points cluster
closely around this line, indicating precise predictions.

Figure 10 presents the confusion matrix, providing a clear
visualization of the classification results. Each column of
the matrix represents instances within a predicted category,
while each row represents instances within an actual category.
All correct predictions are located on the diagonal, making
any non-zero values off the diagonal easily identifiable as
errors, thus allowing for visualization of mistakes. The results
indicate that CNNs can serve as a reliable alternative to
empirical equations for simulating hydraulic jump lengths
and performing classification tasks.

B. DEEP LEARNING NEURAL NETWORKS (DNNS) MODEL
As shown in Table 2, the Deep Neural Network (DNN)
model achieved a prediction accuracy and recall rate of
99.64% on the training dataset, with a coefficient of
determination (R2) of 93.00%. The Mean Absolute Error
(MAE) was 2.4032(cm), and the Root Mean Squared Error
(RMSE) was 3.1688(cm). On the test dataset, the model’s
prediction accuracy was 95.65%, recall rate was 95.65%,
and R2 was 0.8458. The MAE was 3.7764(cm), and the
RMSE was 5.0981(cm). Figures 11 and 12 provide scatter
plots of observed versus simulated lengths of developed
and no-developed hydraulic jumps, as well as classification
graphs for type prediction based on optimal results. The
results demonstrate that DNNs perform well in regression
and classification tasks for hydraulic jumps, showing bet-
ter fitting on the test set compared to CNNs, although
their generalization performance is slightly inferior to
CNNs.

C. TRANSFORMERS MODEL
Various metrics of the model are shown in Table 2.the
Transformers Model demonstrated high accuracy, precision,
and efficiency on the training set with notable metrics such
as an accuracy of 93.87%, a recall rate of 93.82%, and
a coefficient of determination (R2) of 0.9481.The Mean
Absolute Error (MAE) was recorded at 1.5382(cm), with a
root mean squared error (RMSE) of 2.7283(cm). However,the

FIGURE 12. The Confusion Matrix of observed and simulated hydraulic
jump length using DNNs for training (a) and testing (b) period.

FIGURE 13. The scatterplot of observed and simulated hydraulic jump
length using Transformer for training (a) and testing (b) period.

performance significantly differed in the testing dataset,
showing an equal accuracy and recall rate of 46.83%,
a negative R2 of −0.3020, and substantially higher MAE and
RMSE values of 11.8339(cm) and 14.8122(cm), respectively.
These results highlight the challenges inmodel generalization
beyond the training dataset. Figures 13 and 14 illustrate
the scatter plots of observed and simulated hydraulic jump
lengths, and the classification chart of type predictions,
respectively. The research results indicate that the model
fits well on the training set data in terms of hydraulic
jump prediction. However, its lack of generalization becomes
evident when tested, and its performance in classification
tasks lags significantly behind DNNs and CNNs. Therefore,
from the perspective of this research, the Transformer model
is not suitable for such multi-task prediction.

D. PHYSICS-INFORMED NEURAL NETWORKS MODEL
Based on the framework of DNNs, two physical equations
were used for knowledge embedding in PINNs. Firstly, the
Wu et al.’s formula [8] was employed, which is renowned for
its simplicity in computation and widespread use in practical
engineering applications and is considered to have good
generalization capabilities across multiple scenarios. The
research results show that in the prediction of hydraulic jump
lengths when using the Wu Chihong formula as the basis for
knowledge embedding, the model achieved a Mean Absolute
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FIGURE 14. The Confusion Matrix of observed and simulated hydraulic
jump length using Transformer for training (a) and testing (b) period.

FIGURE 15. The scatterplot of observed and simulated hydraulic jump
length using PINNs[1] for training (a) and testing (b) period.

Error (MAE) of 1.9305(cm) and a Root Mean Squared Error
(RMSE) of 2.6892(cm) on the training set; on the test set,
the MAE was 3.5535(cm) and the RMSE was 4.7905(cm).
As shown in Figure n, the linear relationship between
the observed and predicted data during the training and
testing phases reached correlation coefficients of 0.9496 and
0.8638, respectively, indicating the model’s high linear
fitting capability to the data. Figure n also displays the
classification of samples using this algorithm, where all
accurate predictions are located on the diagonal of the
confusion matrix, demonstrating its exceptional accuracy in
classification performance.

The second method involves embedding a semi-theoretical
and semi-empirical formula derived by Fu Minghuan et al.
[9]. through the analysis of experimental data. This formula
accurately reflects the general laws of hydraulic jump
lengths. Subsequently, the formula is embedded into the
Physics-Informed Neural Network (PINNs[2]), allowing the
network to consider the constraints of physical laws while
learning from the data, thereby improving the model’s
prediction accuracy and generalization ability. The results
indicate that when predicting hydraulic jump lengths using
this method, the MAE and RMSE obtained on the training
set are 2.1109(cm) and 2.8932(cm), respectively, while
on the test set, they are 3.3864(cm) and 4.4627(cm),

FIGURE 16. The Confusion Matrix of observed and simulated hydraulic
jump length using PINNs[1] for training (a) and testing (b) period.

FIGURE 17. The scatterplot of observed and simulated hydraulic jump
length using PINNs[2] for training (a) and testing (b) period.

respectively. Figure 14 and Figure 16 reveal that the linear
relationship of the data on the training and test sets shows
correlation coefficients of 0.95 and 0.88, demonstrating high
linearity in data fitting. Further analysis suggests that the
second formula performs better in approximating the real
situation of hydraulic jumps. In terms of classification ability,
the confusion matrix shown in Figure 15 and Figure 17
demonstrates that the second method has similar outstanding
classification performance compared to the first method.

These findings highlight the effectiveness of both PINN
methods in predicting hydraulic jump lengths and provide
valuable references for future engineering applications.

After analyzing the four models and two algorithms, the
results show that the models using two different algorithms
for PINN outperform other models in predicting the lengths
of both complete and incomplete hydraulic jumps. Compared
to the regression task in reference [13], we have achieved
similarly good results in our regression predictions. However,
compared to the classification task in reference [53], our
results in classification tasks are significantly better. These
findings demonstrate that our model maintains a high level
of effectiveness and accuracy when employing a multi-task
learning strategy. Moreover, comparing the data, although
the performance of the Transformer model is relatively
average, Convolutional Neural Networks (CNNs), Deep
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FIGURE 18. The Confusion Matrix of observed and simulated hydraulic
jump length using PINNs[2] for training (a) and testing (b) period.

Neural Networks (DNNs), and Physics-Informed Neural
Networks (PINNs) all demonstrate their potential for multi-
tasking.More importantly, the PINNs[1] and PINNs[2] models
achieved R2 values of 0.8638 and 0.8818, respectively, in the
test phase, both higher than those of the CNN and DNN
models. This indicates that physics-informed neural networks
have significant potential in handling complex fluid dynamics
problems. Additionally, in terms of MAE and RMSEmetrics,
PINNs[1] and PINNs[2] also exhibited excellent performance,
indicating lower prediction errors. Notably, the PINNs[2]

model achieved the lowest values in the test phase, with an
MAE of 3.3864(cm) and an RMSE of 4.4627(cm).

IV. CONCLUSION
This study explores the application of four neural network
models—DNNs, CNNs, Transformers, and PINNs—and
two PINN knowledge integration algorithms in predicting
characteristics of hydraulic jumps. The proposed AI models
were trained and tested using the Froude numbers, the
roughness heights, the initial depth of hydraulic jump,
the sequent depth of hydraulic jump data to perform
multi-task predictions of hydraulic jump length and its
development stages. By employing a multi-task learning
framework, the study not only reduces the total number
of parameters compared to training two separate models
but also improves training efficiency. Furthermore, shared
feature representations enhance the model’s generalization
capability across different tasks. After thoroughly comparing
the four models, the results indicate that PINNs models,
by directly incorporating physical knowledge, enhance the
physical interpretability and accuracy of the models. This
approach considers the constraints of physical laws, effec-
tively improving the prediction accuracy and generalization
capability of the models. This method is particularly suitable
for scenarios with limited or low-quality data, as it relies
on known physical principles to guide the learning process,
reducing the dependence on large-scale data. From the
training set to the test set, the significant performance
drop of the Transformer model suggests an overfitting
problem, as the model performs well on the training data
but fails to generalize to new, unseen data effectively. The

negative R2 during the test phase indicates a substantial
discrepancy between the model’s predictions and the actual
values. In contrast, the Physics-Informed Neural Network
(PINN) models, especially PINNs[2], demonstrated superior
performance compared to traditional neural networks and
the Transformer model. The PINNs[2] model achieved an
accuracy of 0.9677 and a recall of 0.9674 in the test
phase, improving the accuracy and recall by approximately
2−3% over the CNN and DNNmodels. These results further
validate the advantage of physics-informed neural networks
over traditional deep learning models in the task of predicting
hydraulic jump lengths. They highlight the effectiveness of
incorporating physics-based constraints into neural networks
for modeling complex fluid dynamics problems, such as
hydraulic jumps.

In addition, by comparing these different types of models
in the prediction of the steady and unsteady stages of
hydraulic jumps, it is evident that Physics-Informed Neural
Networks (PINNs) maymore accurately capture and simulate
the variations in hydraulic jump lengths due to their high
precision and efficiency in handling complex physical
processes. Such comparisons not only help us understand the
applicability of each model to specific physical problems but
also promote the complementarity and integration between
data-driven and physics-driven methods. Applying these
models in real-time monitoring systems can enhance the
management and control of hydraulic structures, providing
timely predictions and alerts.

Despite the promising results, our study has several
limitations:

1. Data Quality and Quantity: The dataset used in this
study, although comprehensive, may not cover all possible
scenarios and conditions of hydraulic jumps. The limited data
quantity and variability might restrict the generalizability of
the models.

2. Simplified Physical Models: While PINNs incorporate
physical laws, the simplifications and assumptions inherent in
these models might not capture all the nuances of real-world
hydraulic jumps. Further refinement of these physical models
is necessary for more accurate simulations.

3. Integration with Real-time Systems: Although we
discuss the potential application of these models in real-time
monitoring systems, practical implementation and validation
in real-world conditions are yet to be explored.

As deep learning algorithms continue to develop and
improve, their applications in hydraulic jump research will
become more extensive and in-depth. Future research should
focus on error analysis, comparison with traditional methods,
real-time applications, scalability, and integration with other
models to further enhance the effectiveness and practicality of
these models in hydraulic engineering. Moreover, hydraulic
jump research will provide new application scenarios and
challenges for the development of deep learning, fostering
the intersection of artificial intelligence technology and
hydraulic engineering. This interdisciplinary research not
only advances technological progress in the field of hydraulic

VOLUME 12, 2024 122899



Z. Xu et al.: Performance Comparison of Prediction of Hydraulic Jump Length

engineering but also opens new directions and application
prospects for the development of deep learning technology.

APPENDIX
ABBREVIATION LIST

Physics-Informed Neural Networks (PINNs).
Deep Neural Networks (DNNs).
Convolutional Neural Networks (CNNs).
support vector machines (SVM).
Reynolds-averaged Navier-Stokes (RANS).
Mean Square Error (RMSE).
the Coefficient of Determination (R2).
Mean Absolute Error (MAE).
TP (True Positives).
FP (False Positives).
FN (False Negatives).

REFERENCES
[1] W. H. Hager, Energy Dissipators and Hydraulic Jump. Dordrecht,

The Netherlands: Kluwer, 1992.
[2] M. Aamir, Z. Ahmad, M. Pandey, M. A. Khan, A. Aldrees, and A.

Mohamed, ‘‘The effect of rough rigid apron on scour downstream of sluice
gates,’’Water, vol. 14, no. 14, p. 2223, Jul. 2022, doi: 10.3390/w14142223.

[3] H. Hamidifar and M. Nasrabadi, ‘‘Scour downstream of a rough rigid
apron,’’World Appl. Sci. J., vol. 14, no. 8, pp. 1169–1178, 2011.

[4] S. Farzin and M. V. Anaraki, ‘‘Optimal construction of an open channel
by considering different conditions and uncertainty: Application of
evolutionary methods,’’ Eng. Optim., vol. 53, no. 7, pp. 1173–1191,
Jul. 2021.

[5] T. R. Al-Husseini, A. H. Ghawi, and A. H. Ali, ‘‘Performance of hydraulic
jump rapid mixing for enhancement of turbidity removal from synthetic
wastewater: A comparative study,’’ J. Water Process Eng., vol. 30,
Aug. 2019, Art. no. 100590.

[6] A. Witt, J. Gulliver, and L. Shen, ‘‘Simulating air entrainment and
vortex dynamics in a hydraulic jump,’’ Int. J. Multiphase Flow, vol. 72,
pp. 165–180, Jun. 2015.

[7] H. M. A. Ahmed, M. El Gendy, A. M. H. Mirdan, A. A. M. Ali,
and F. S. F. A. Haleem, ‘‘Effect of corrugated beds on characteristics
of submerged hydraulic jump,’’ Ain Shams Eng. J., vol. 5, no. 4,
pp. 1033–1042, Dec. 2014.

[8] C. G. Wu, Hydraulics (One Volumes), vol. 279. Beijing, China:
Higher Education Press, 2016.

[9] F. Minghuan and Z. Zhichang, ‘‘Calculation of jump length of free
hydraulic jump on a roughened bed in a stilling basin,’’ J. Hydraul. Eng.,
no. 6, pp. 69–75, 2016, doi: 10.16198/j.cnki.1009-640x.2016.06.010.

[10] J. N. Bradley and A. J. Peterka, ‘‘The hydraulic design of stilling basins:
Hydraulic jump on a horizontal apron (Basin 1),’’ J. Hydraulic Division,
vol. 83, no. 5, pp. 1–19, 1957.

[11] S. Nikmehr and Y. Aminpour, ‘‘Numerical simulation of hydraulic jump
over rough beds,’’ Periodica Polytechnica Civil Eng., vol. 64, no. 2,
pp. 396–407, 2020.

[12] D. Velioglu, N. D. Tokyay, and A. I. Dincer, ‘‘A numerical and
experimental study on the characteristics of hydraulic jumps on rough
beds,’’ in Proc. 36th IAHR World Congr., vol. 28, 2015, pp. 1–9.

[13] P. Khosravinia, H. Sanikhani, and C. Abdi, ‘‘Predicting hydraulic jump
length on rough beds using data-driven models,’’ J. Rehabil. Civil Eng.,
vol. 6, no. 2, pp. 139–153, 2018.

[14] Y. Liu, X. Zhang, H. Yu, Y. Sun, C. Sun, Z. Li, and X. Li, ‘‘Hydraulic model
of partial dam break based on sluice gate flow,’’ Ocean Eng., vol. 295,
Mar. 2024, Art. no. 116974.

[15] K. Roushangar and F. Homayounfar, ‘‘Prediction characteristics of free and
submerged hydraulic jumps on horizontal and sloping beds using SVM
method,’’ KSCE J. Civil Eng., vol. 23, no. 11, pp. 4696–4709, Nov. 2019.

[16] S. Baharvand, A. Jozaghi, R. Fatahi-Alkouhi, S. Karimzadeh, R. Nasiri,
and B. Lashkar-Ara, ‘‘Comparative study on the machine learning and
regression-based approaches to predict the hydraulic jump sequent depth
ratio,’’ Iranian J. Sci. Technol., Trans. Civil Eng., vol. 45, no. 4,
pp. 2719–2732, Dec. 2021.

[17] J. Donnelly, S. Abolfathi, J. Pearson, O. Chatrabgoun, and A. Daneshkhah,
‘‘Gaussian process emulation of spatio-temporal outputs of a 2D inland
flood model,’’Water Res., vol. 225, Oct. 2022, Art. no. 119100.

[18] F. N. Chianeh, M. V. Anaraki, F. Mahmoudian, and S. Farzin, ‘‘A new
methodology for the prediction of optimal conditions for dyes’ elec-
trochemical removal; Application of copula function, machine learning,
deep learning, and multi-objective optimization,’’ Process Saf. Environ.
Protection, vol. 182, pp. 298–313, Feb. 2024.

[19] J. J. Hopfield and D. W. Tank, ‘‘‘Neural’ computation of decisions
in optimization problems,’’ Biol. Cybern., vol. 52, no. 3, pp. 141–152,
Jul. 1985.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning rep-
resentations by back-propagating errors,’’ Nature, vol. 323, no. 6088,
pp. 533–536, Oct. 1986.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based
learning applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[22] G. E. Hinton, S. Osindero, and Y.-W. Teh, ‘‘A fast learning algorithm
for deep belief nets,’’ Neural Comput., vol. 18, no. 7, pp. 1527–1554,
Jul. 2006.

[23] X.Guo,W. Li, and F. Iorio, ‘‘Convolutional neural networks for steady flow
approximation,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2016, pp. 481–490.

[24] S. Ye, Z. Zhang, X. Song, Y.Wang, Y. Chen, and C. Huang, ‘‘A flow feature
detection method for modeling pressure distribution around a cylinder in
non-uniform flows by using a convolutional neural network,’’ Sci. Rep.,
vol. 10, no. 1, p. 4459, Mar. 2020.

[25] J. Donnelly, A. Daneshkhah, and S. Abolfathi, ‘‘Forecasting global climate
drivers using Gaussian processes and convolutional autoencoders,’’ Eng.
Appl. Artif. Intell., vol. 128, Feb. 2024, Art. no. 107536.

[26] J. Ling, A. Kurzawski, and J. Templeton, ‘‘Reynolds averaged turbulence
modelling using deep neural networks with embedded invariance,’’ J. Fluid
Mech., vol. 807, pp. 155–166, Nov. 2016.

[27] M. Nadda, S. K. Shah, S. Roy, and A. Yadav, ‘‘CFD-based deep neural
networks (DNN) model for predicting the hydrodynamics of fluidized
beds,’’ Digit. Chem. Eng., vol. 8, Sep. 2023, Art. no. 100113.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ 2017,
arXiv:1706.03762.

[29] J. Jiang, G. Li, Y. Jiang, L. Zhang, and X. Deng, ‘‘TransCFD: A
transformer-based decoder for flow field prediction,’’ Eng. Appl. Artif.
Intell., vol. 123, Aug. 2023, Art. no. 106340.

[30] B. Xu, Y. Zhou, and X. Bian, ‘‘Self-supervised learning based on
transformer for flow reconstruction and prediction,’’ Phys. Fluids, vol. 36,
no. 2, 2024.

[31] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,’’ J. Comput.
Phys., vol. 378, pp. 686–707, Feb. 2019.

[32] H. Eivazi, M. Tahani, P. Schlatter, and R. Vinuesa, ‘‘Physics-informed
neural networks for solving Reynolds-averagedNavier–Stokes equations,’’
Phys. Fluids, vol. 34, no. 7, 2022.

[33] J. Donnelly, S. Abolfathi, and A. Daneshkhah, ‘‘A physics-informed neural
network surrogate model for tidal simulations,’’ inProc. ECCOMAS, 2023,
pp. 836–844.

[34] J. Donnelly, A. Daneshkhah, and S. Abolfathi, ‘‘Physics-informed neural
networks as surrogate models of hydrodynamic simulators,’’ Sci. Total
Environ., vol. 912, Feb. 2024, Art. no. 168814.

[35] W. H. Hager, R. Bremen, and N. Kawagoshi, ‘‘Classical hydraulic jump:
Length of roller,’’ J. Hydraulic Res., vol. 28, no. 5, pp. 591–608, Sep. 1990.

[36] E. A. Elevatorski, Hydraulic Energy Dissipators. New York, NY, USA:
McGraw-Hill, 1959.

[37] W. H. Hager and R. Bremen, ‘‘Classical hydraulic jump: Sequent depths,’’
J. Hydraulic Res., vol. 27, no. 5, pp. 565–585, Sep. 1989.

[38] Z. Qingke and S. Chuanlin, ‘‘Experimental study on turbulence charac-
teristics of flow downstream of low froude number hydraulic jump,’’ J.
Hydraul. Eng., no. 5, pp. 1–8, 1986.

[39] R. Bremen and W. H. Hager, ‘‘T-jump in abruptly expanding channel,’’ J.
Hydraul. Res., vol. 31, no. 1, pp. 61–78, 1993.

[40] F. G. Carollo, V. Ferro, and V. Pampalone, ‘‘Hydraulic jumps on rough
beds,’’ J. Hydraulic Eng., vol. 133, no. 9, pp. 989–999, Sep. 2007.

122900 VOLUME 12, 2024

http://dx.doi.org/10.3390/w14142223
http://dx.doi.org/10.16198/j.cnki.1009-640x.2016.06.010


Z. Xu et al.: Performance Comparison of Prediction of Hydraulic Jump Length

[41] M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah,
and W. Tebbutt, ‘‘A differentiable programming system to bridge machine
learning and scientific computing,’’ 2019, arXiv:1907.07587.

[42] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, ‘‘Physics-
informed neural networks (PINNs) for fluid mechanics: A review,’’ Acta
Mechanica Sinica, vol. 37, no. 12, pp. 1727–1738, Dec. 2021.

[43] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and
L. Yang, ‘‘Physics-informed machine learning,’’ Nature Rev. Phys., vol. 3,
no. 6, pp. 422–440, May 2021.

[44] A. Daw, A. Karpatne,W.Watkins, J. Read, and V. Kumar, ‘‘Physics-guided
neural networks (PGNN): An application in lake temperature modeling,’’
2017, arXiv:1710.11431.

[45] M. Elhamod, J. Bu, C. Singh, M. Redell, A. Ghosh, V. Podolskiy,
W.-C. Lee, and A. Karpatne, ‘‘CoPhy-PGNN: Learning physics-guided
neural networks with competing loss functions for solving eigenvalue
problems,’’ ACM Trans. Intell. Syst. Technol., vol. 13, no. 6, pp. 1–23,
Dec. 2022.

[46] Y. Zhang, Y. Liu, X. Li, S. Jiang, K. Dixit, X. Zhang, and X. Ji, ‘‘PgNN:
Physics-guided neural network for Fourier ptychographic microscopy,’’
2019, arXiv:1909.08869.

[47] D. Bertels and P. Willems, ‘‘Physics-informed machine learning method
for modelling transport of a conservative pollutant in surface water
systems,’’ J. Hydrol., vol. 619, Apr. 2023, Art. no. 129354.

[48] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, ‘‘DeepXDE: A deep
learning library for solving differential equations,’’ SIAM Rev., vol. 63,
no. 1, pp. 208–228, Jan. 2021.

[49] L. Yang, D. Zhang, and G. E. Karniadakis, ‘‘Physics-informed generative
adversarial networks for stochastic differential equations,’’ SIAM J. Sci.
Comput., vol. 42, no. 1, pp. A292–A317, Jan. 2020.

[50] G. Pang, L. Lu, and G. E. Karniadakis, ‘‘FPINNs: Fractional physics-
informed neural networks,’’ SIAM J. Sci. Comput., vol. 41, no. 4,
pp. A2603–A2626, Jan. 2019.

[51] S. Wang, X. Yu, and P. Perdikaris, ‘‘When and why PINNs fail to train: A
neural tangent kernel perspective,’’ J. Comput. Phys., vol. 449, Jan. 2022,
Art. no. 110768.

[52] S. Wang, Y. Teng, and P. Perdikaris, ‘‘Understanding and mitigating
gradient flow pathologies in physics-informed neural networks,’’ SIAM J.
Sci. Comput., vol. 43, no. 5, pp. A3055–A3081, Jan. 2021.

[53] G.Mahtabi, B. Chaplot, H. M. Azamathulla, andM. Pal, ‘‘Classification of
hydraulic jump in rough beds,’’Water, vol. 12, no. 8, p. 2249, Aug. 2020.

ZIYUAN XU received the B.S. degree in envi-
ronmental engineering from Sichuan University
of Science and Engineering, Zigong, China.
He is currently pursuing the master’s degree with
Qinghai University. His research interests include
hydraulics and river dynamics, physics-informed
neural networks, and the application of artificial
intelligence in the water field.

ZIRUI LIU received the bachelor’s degree in
electrical engineering and automation and the
master’s degree in radio physics from Mudanjiang
Teachers College, Mudanjiang, China, in 2016 and
2024, respectively.

Since 2018, he has been the Head of teaching
with Hunan Nod Education Technology Company
Ltd. His research interests include computer
vision, image processing, and deep learning.

YINGZI PENG received the bachelor’s and mas-
ter’s degrees in chemical engineering and tech-
nology from Central South University, Changsha,
China, in 2012 and 2015, respectively.

From 2015 to 2016, she worked as a Quality
System Engineer at Hunan Yunifang Cosmetics
Company Ltd. Since 2018, she has been the
Founder of the company, she nodded in Hunan
Education TechnologyCompany Ltd. Her research
interests include deep learning and artificial
intelligence.

VOLUME 12, 2024 122901


