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ABSTRACT Automatic speech recognition (ASR) plays a pivotal role in our daily lives, offering utility not
only for interacting with machines but also for facilitating communication for individuals with partial or
profound hearing impairments. The process involves receiving the speech signal in analog form, followed
by various signal processing algorithms to make it compatible with devices of limited capacities, such
as cochlear implants (CIs). Unfortunately, these implants, equipped with a finite number of electrodes,
often result in speech distortion during synthesis. Despite efforts by researchers to enhance received speech
quality using various state-of-the-art signal processing techniques, challenges persist, especially in scenarios
involving multiple sources of speech, environmental noise, and other adverse conditions. The advent of
new artificial intelligence (AI) methods has ushered in cutting-edge strategies to address the limitations
and difficulties associated with traditional signal processing techniques dedicated to CIs. This review aims
to comprehensively cover advancements in CI-based ASR and speech enhancement, among other related
aspects. The primary objective is to provide a thorough overview of metrics and datasets, exploring the
capabilities of AI algorithms in this biomedical field, and summarizing and commenting on the best results
obtained. Additionally, the review will delve into potential applications and suggest future directions to
bridge existing research gaps in this domain.

INDEX TERMS Automatic speech recognition, cochlear implant, deep learning, profound hearing loss,
speech enhancement, machine learning.

I. INTRODUCTION
In the symphony of modern technology, automatic speech
recognition (ASR) emerges as a primary player, orchestrating
a seamless interaction between humans and machines. This
transformative technology has quietly become an integral part
of our daily lives, influencing how we communicate, access
information, and even navigate the intricacies of health-
care. The significance of ASR extends beyond its role in
facilitating human-computer interaction; it permeates diverse
applications such as voice assistants and virtual agents,

The associate editor coordinating the review of this manuscript and

approving it for publication was Liangtian Wan .

speech-to-text conversion, identity verification, and holds
particular promise in the realm of biomedical research [1],
[2]. ASR bridges the gap between spoken language and
digital communication, enabling the conversion of spoken
words into written text with remarkable accuracy. The
pervasiveness of ASR technology is evident in the devices we
use daily—smartphones, smart speakers, and voice-activated
virtual assistants—all seamlessly responding to our spoken
commands and queries. The convenience it brings to our lives
is undeniable, offering a hands-free and efficient mode of
interaction that has become second nature.

ASR is pivotal in authentication systems, safeguarding the
security and privacy of sensitive information. The integrity
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of audio speech can be verified through techniques-based
ASR such as adversarial attack detection [3], steganalysis [4],
[5], [6], speech biometrics [7], and more. Beyond the
realm of communication, ASR finds itself at the heart of
various applications, each playing a unique role in different
domains. Speaker recognition, a facet of ASR, is not merely
confined to enhancing security measures. It has evolved
into a versatile tool employed in healthcare, where the
identification of individuals through their unique vocal
signatures holds promise for personalized patient care. This
is particularly relevant in scenarios where quick and secure
authentication is crucial, such as accessingmedical records or
authorizing medical procedures. Event recognition, another
dimension of ASR, is a game-changer in sectors ranging from
security to healthcare. In the former, ASR algorithms analyze
audio data to automatically detect and categorize specific
events, reinforcing surveillance capabilities. In healthcare,
event recognition becomes a powerful tool for monitoring
and early detection of health-related events, recognizing
speech from noisy environment [8], understanding person
with dysarthria severity [9], and more. In the context of
cardiac health, ASR can aid in identifying anomalies in
heart sounds, potentially enabling early intervention and
preventive measures [10]. Source separation, the ability to
discern and isolate individual sound sources from complex
audio signals, is a boon in fields like entertainment and
music production. However, its significance extends into
the realm of biomedical research, where ASR plays a
pivotal role in decoding the intricate language of physio-
logical signals. In the context of cochlear implants (CIs),
source separation becomes a critical component in enhanc-
ing the auditory experience for individuals with hearing
impairments.

The CIs, designed to restore hearing in individuals with
severe hearing loss or deafness, rely on ASR for optimizing
their functionality. ASR contributes significantly to the
improvement of speech perception in CI users by enhancing
the processing and interpretation of auditory signals. CIs
work by converting sound waves into electrical signals that
stimulate the auditory nerve, bypassing damaged parts of
the inner ear. ASR complements this process by aiding
in the recognition and translation of spoken language.
The technology plays a crucial role in optimizing speech
understanding for CI users by refining the interpretation
of varied speech patterns, tones, and nuances. Moreover,
ASR in the context of CIs extends beyond basic speech
recognition. It contributes to the recognition of environmental
sounds, facilitating a more immersive auditory experience
for individuals with hearing impairments. This is particularly
significant in enhancing the quality of life for CI recipients,
allowing them to navigate and engage with their surroundings
more effectively.

A. RELATED WORK
Many reviews have been written in the context of CI. For
example, [11] discussed the advantages offered by machine

learning (ML) to cochlear implantation, such as analyzing
data to personalize treatment strategies. It enhances accuracy
in speech processing optimization, surgical anatomy location
prediction, and electrode placement discrimination. Besides,
it delves into its applications, including optimizing cochlear
implant fitting, predicting patient threshold levels, and
automating image-guided CI surgery. The review discusses
some novel opportunities for research, emphasizing the
need for high-quality data inputs and addressing concerns
about algorithm transparency in clinical decision-making for
improved patient care. Similarly, the review by Manero et al.
[12] details some benefits of employing artificial intelligent
(AI) in enhancing CI technology, involving adaptive sound
processing, acoustic scene classification, and auditory scene
analysis. The authors discuss AI-driven advancements aiming
to optimize sound signals, adapt to diverse environments, and
improve speech perception for individuals with hearing loss,
ultimately enhancing their overall quality of life.

Additionally, the review [13] explores three main top-
ics: direct-speech neuroprosthesis, which involves decoding
speech from the sensorimotor cortex using AI, including the
synthesis of produced speech from brain activity; a top-down
exploration of pediatric cochlear implantation using ML,
delving into its applications in pediatric cochlear implanta-
tion; and the potential of AI to solve the hearing-in-noise
problem, examining its capabilities in addressing challenges
related to hearing in noisy environments. Moreover, the
review [14] critically examines the current landscape of tele-
audiology practices, highlighting both their constraints and
potential opportunities. Specifically, it explores intervention
and rehabilitation efforts for CIs, focusing on remote
programming and the concept of self-fitting CIs. Recently,
a review by Henry et al. in 2023 [15] conducts a com-
prehensive review of noise reduction algorithms employed
in CIs. Maintaining a general classification based on the
number of microphones used—single or multiple channels—
the analysis extends to incorporate recent studies showcasing
a growing interest in ML techniques. The review culminates
with an exploration of potential research avenues that hold
promise for future advancements in the field. Table 1 offers
a comparative analysis of the proposed review in contrast to
other discussed AI-based CI reviews and surveys.

B. STATISTICS ON INVESTIGATED PAPERS
Recently, there has been a surge in publications related
to AI-based CI. The review methodology entails defining
the search strategy and study selection criteria. Criteria for
inclusion, such as keyword relevance and impact, shape the
quality assessment protocol. A comprehensive search was
conducted on databases such as Scopus and Web of Science.
Keywords were extracted for theme clustering, resulting
in a formulated query to gather advanced AI-based CI
studies. The research query retrieves references from papers
containing the keywords ‘‘Cochlear implant’’ or ‘‘Hearing
loss’’ and ‘‘Artificial intelligence’’ in their abstracts, titles,
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TABLE 1. Comparison of this review against other existing AI-based CI reviews and surveys. Tick marks (✓) indicate that a particular field has been
considered, while cross marks (✗) indicate that a field has been left unaddressed. The symbol (★) indicates that the most critical concerns of a field have
not been addressed.

or authors’ keywords. It subsequently refines these papers,
focusing on those that also include ‘‘Machine learning,’’
‘‘Deep learning,’’ or ‘‘Reinforcement learning.’’ Figure 1
illustrates the most frequently used keywords by the authors
in the titles, abstracts, and keywords of the selected papers.

FIGURE 1. Top keywords in AI-based CI research field.

Figure 2 illustrates the distribution of these papers by
type and publication year, encompassing articles, conference
papers, and reviews. Additionally, it showcases the percent-
age of publications from before 2015 to 2023, with a total
count of 99 papers. Notably, the peak in publications within
this field is observed in 2023 (Figure 2 (a)), underscoring
the heightened interest among researchers. Furthermore, the
predominant publication type is research articles, followed by
conference papers (Figure 2 (b)).

C. MOTIVATION AND CONTRIBUTION
The motivation behind conducting a comprehensive review
on CIs stems from the imperative to critically assess and
consolidate the current state of AI applications in this crucial
field. CIs have revolutionized auditory rehabilitation for
individuals with hearing impairment, and integrating ML and
deep learning (DL) techniques holds immense potential for
further advancements. This review seeks to fill a significant
gap in the existing literature by providing a detailed analysis
of recent AI-based CI frameworks.

The primary objective is to present a nuanced under-
standing of the landscape, categorizing frameworks based
on ML and DL methodologies, available datasets, and
key metrics. By addressing this gap, the review aims

to offer valuable insights for researchers, clinicians, and
technologists involved in the development and improvement
of CI technologies. Furthermore, the exploration of advanced
DL algorithms, such as transformers and reinforcement
learning (RL), in the context of CIs, underscores the potential
for transformative breakthroughs. Ultimately, this research
review aspires to contribute to the enhancement of CI
technologies, fostering innovation and improving the quality
of life for individuals with hearing impairment. The principal
contributions of this paper can be succinctly outlined as
follows:

• Detailing the assessment metrics associated with AI and
CIs, and elucidating the extensively utilized datasets,
whether publicly accessible or generated, employed to
validate AI-based ASR for CI methodologies.

• The implementation of CI, along with a comprehensive
elucidation of the taxonomy encompassing ML and DL-
based CIs, is thoroughly expounded upon. Additionally,
recommended frameworks for AI-based CI are thor-
oughly discussed and succinctly summarized in tables
for enhanced clarity.

• Providing detailed insights into the applications of
ML and DL within the domain of CI, encompassing
functions such as denoising and speech enhancement,
segmentation, thresholding, imaging, as well as CI
localization, along with various other functionalities.

• Delving into the existing gaps in AI-driven CI, offering
insights, and proposing novel ideas to address these
gaps. Additionally, exploring potential avenues for
future research to deepen comprehension and provide
valuable guidance for subsequent investigations.

The subsequent sections are organized as follows:
Section II delves into the background in speech processing,
outlining datasets and metrics. Section III discusses the
methodology employed for CI based on AI. Section IV
presents the medical applications and impact of applying
AI on CI. Section V offers a comprehensive discussion on
research gaps, future directions, and perspectives. Finally,
Section VI concludes the paper with implications and future
research directions.
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FIGURE 2. Bibliometrics analysis of the papers included in this review. (a) Papers distribution over the last years.
(b) Percentage breakdown of paper types included in this review.

II. BACKGROUND IN SPEECH PROCESSING FOR CIs
A. SPEECH PROCESSING FOR CIs
CIs are electronic devices that can be implanted in one or
both ears to restore some level of hearing for individuals with
partial or severe deafness. CIs comprise an external part with
amicrophone and speech processor and an internal part with a
receiver-stimulator and electrode array, as shown in Figure 3.
They convert sounds into electrical signals, stimulating the
auditory nerve to enable sound perception in individuals with
profound hearing loss [16].

FIGURE 3. Illustration of a CI depicting the components situated
externally and internally within the device [16].

The incoming sound is divided into multiple frequency
channels using bandpass filters and then processed by enve-
lope detectors. Non-linear compressors adjust the dynamic
range of the envelope for each patient. The compressed
envelope amplitudes are then utilized to modulate a fixed-rate
biphasic carrier signal. A current source converts voltage

into pulse trains of current, which are delivered to electrodes
placed along the cochlea in a non-overlapping manner.
This stimulation method is called continuous interleaved
sampling (CIS). Another coding strategy, known as advanced
combination encoder (ACE), uses a greater number of
channels and dynamically selects the ‘‘n-of-m’’ bands with
the largest envelope amplitudes (prior to compression). Only
the corresponding ‘‘n’’ electrodes are stimulated. A popular
device widely used for CIs, such as the cochlear nucleus,
typically has 22 channels.

The sound processor, which usually contains a micro-
phone, battery, and other components, can be worn either
behind-the-ear (BTE) or off-the-ear (OTE). A headpiece
holds a transmitter coil, positioned externally above the ear,
while internally, a receiver coil, stimulator, and electrode
array are implanted. The SP includes a digital signal
processor (DSP) with memory units (maps) that store patient-
specific information. An audiologist configures these maps
during the fitting process, adjusting thresholds for each
electrode, including T-Levels (the softest current levels
audible to the CI user) and C/M-Levels (current levels
perceived as comfortably loud), as well as the stimulation
rate or programming strategy. Data (pulse amplitude, pulse
duration, pulse gap, etc.) and power are sent through the
skull via a radio frequency signal from the transmitter
coil to the receiver coil. The stimulator decodes the
received bitstream and converts it into electric currents
to be delivered to the cochlear electrodes. High-frequency
signals stimulate electrodes near the base of the cochlea,
while low-frequency signals stimulate electrodes near the
apex.

The CI stimulates the auditory nerve afferents, which
connect to the central auditory pathways. However, compared
to individuals with normal hearing (NH), CI users face
more difficulties in speech perception, particularly in noisy
environments. Hearing loss can be caused by various factors,
including natural aging, genetic predisposition, exposure to
loud sounds, and medical treatments. Damage to the hair
cells in the inner ear often leads to a reduced dynamic
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TABLE 2. List of publicly available datasets used for CIs applications.

range of hearing, as well as decreased frequency selectivity
and discriminative ability in speech processing. To evaluate
the effectiveness of CIs in speech perception amid noise,
listening tests involving both normal hearing individuals and
CI users are commonly conducted. These tests typically
employ a combination of speech utterances from a recognized
speech corpus and background noises like speech-weighted
noise and babble. Alternatively, vocoder simulations can
be utilized alongside speech intelligibility metrics. While
sentence-based tests are frequently employed, other stimuli
such as vowels, consonants, and phonemes are also used.
As a result, noise reduction techniques are increasingly
employed to enhance the performance of CIs in challenging
environments [15].

B. DATASETS
Researchers have utilized numerous datasets to validate their
proposed schemes, comprising both widely recognized pub-
licly available sets and locally generated ones. These datasets
fall into two categories: speech or images. Table 2 provides
a summary of these datasets, detailing their characteristics,

citing studies that have utilized them, and indicating their
availability through links or references.

C. METRICS
Multiple evaluation metrics are utilized during the training
and validation of any DL models, including AI-based CI.
These metrics, integral to the confusion matrix, are widely
known and applicable across various data types such as

1https://www.phonetik.uni-muenchen.de/Bas/BasPD1eng.html
2https://www.kaggle.com/mfekadu/darpa-timit-acousticphonetic-

continuous-speech
3https://research. googleblog.com/2017/08/launching-speech-

commands-dataset.html
4https://www.merl.com/research/highlights/deep-clustering
5https://librivox.org/
6https://claritychallenge.org/clarity_CEC1_doc/docs/cec1_data
7https://www.kaggle.com/datasets/chrisfilo/demand
8https://www.openslr.org/18/
9https://zenodo.org/records/3532214
10https://sigsep.github.io/datasets/musdb.html
11http://headctstudy.qure.ai/dataset
12https://zenodo.org/records/7092661
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FIGURE 4. Taxonomy of the employed AI techniques for CI.

speech or images. They include Accuracy (Acc), Sensitivity
(Sen), Recall (Rec), Specificity (Spe), Precision (Pre), F1
score (F1), and receiver operating characteristic curve
(ROC). Moreover, different metrics play roles in prediction
tasks. For instance, intersection over union (IoU) assesses
overlap, and mean absolute error (MAE) quantifies absolute
differences. For a comprehensive understanding of the
metrics discussed, including their equations, refer to the
details provided in [5], [38]. Other metrics that are widely
used for CI are summarized in Table 3.

III. TAXONOMY OF CI-BASED AI TECHNIQUES
Several artificial intelligence techniques have been employed
to enhance the efficacy of CIs. While some rely on 1D data,
others process information in a 2D image format. Figure 4
summarizes all AI algorithms utilized, alongside the fea-
tures employed and hybrid AI methodologies. Additionally,
Table 4 provides a summary of DL-based techniques utilized
in CI hearing devices.

A. CI-BASED AI IMPLEMENTATION
CI programming involves adjusting device settings to opti-
mize sound perception for individual users. This includes
setting stimulation levels, electrode configurations, and sig-
nal processing parameters to enhance speech understanding
and auditory experiences based on patient feedback and
objective measures. In 2010, Govaerts et al. [40] described
the development of an intelligent agent, called fitting to
outcomes expert (FOX), for optimizing CI programming,
as illustrated in Figure 5. The agent analyzes map settings
and psychoacoustic test results to recommend and execute
modifications to improve outcomes. The tool focuses on
an outcome-driven approach, reducing fitting time and
improving the quality of fitting. It introduces principles of
AI into the CI fitting process. The study proposed objective

measures and group electrode settings as strategies to reduce
fitting time.

FIGURE 5. The fundamental operating concept of the FOX involves
inputting an initial program and multiple psychoacoustic test outcomes.
FOX processes this information and generates fitting suggestions as its
output. When integrated with proprietary outcome and CI fitting software,
the shaded boxes represent its functionality, while the unfilled boxes
represent its standalone capability [40]. Audiqueen is a dataset with A
and E (A&E) phoneme discrimination.

Similarly, in [41], [42], [43], [44], and [45], all have
employed FOX for programming CI. Vaerenberg et al. [41]
discusses the use of FOX for programming CI sound pro-
cessors in new users. FOX modifies maps based on specific
outcome measures using heuristic logic and deterministic
rules. The study showed positive results and optimized
performance after three months of programming, with good
speech audiometry and loudness scaling outcomes. The paper
highlights the importance of individualized programming
parameters and the need for outcome-based adjustments
rather than relying solely on comfort. In [42], computer-
assisted CI fitting using FOX assessed its impact on speech
understanding. Results from 25 recipients showed that 84%
benefited from suggested map changes, significantly improv-
ing speech understanding thanks to the learning capacity
of FOX. This approach offers standardized, systematic CI
fitting, enhancing auditory performance.
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TABLE 3. An overview of the metrics employed for evaluating CI methods.

The COCH gene, referred to as the Cochlin gene,
is responsible for encoding the cochlin protein situated
on chromosome 14 in humans, primarily expressed in
the inner ear. Cochlin predominantly functions within the
cochlea, a spiral-shaped structure involved in the process of
hearing, contributing to its structural integrity and proper
operation. Wathour et al. in [43] discuss the use of AI in
CI fitting through two case studies. The first case involves
a 75-year-old lady who received a left ear implant due
to gradual and severe hearing loss in both ears without a
clear cause. In the second case, a 72-year-old man with
a COCH gene mutation causing profound hearing loss in
both ears underwent a right ear implant to assess whether
CI programming using the AI software FOX application
could improve CI performance. The results showed that AI-
assisted fitting led to improvements in auditory outcomes for
adult CI recipients who had previously undergone manual
fitting. The AI suggestions helped improve word recognition
scores and loudness scaling curves. Similarly, Waltzman and
Kelsall [44] incorporate AI in programming CIs, aiming
to assess the performance and standardization of AI-based
programming on fifty-five adult CI recipients. The results
showed that the AI-based FOX system performed better for
some patients, while others had similar results; however, the
majority preferred the FOX system.

B. ML-BASED METHODS
ML is a subfield of AI that focuses on developing algorithms
and statistical models that enable computer systems to
improve their performance in a specific task by learning
features from input data. The research in [46] focuses on
algorithm-based hearing and speech therapy rehabilitation
after cochlear implantation, particularly for older individuals.
They propose the development of an ML-based application
that offers personalized hearing therapy tailored to the
patient’s needs, such as select exercises, adjust difficulty
levels, and analyze patient difficulties. It operates indepen-
dently, reducing the reliance on local speech therapists, cost-
effective, and accessible alternative to traditional therapy,
improving outcomes and quality of life for CI recipients.
In addition, Torresen et al. [47] discusses the use of ML
techniques to streamline the adjustment process for CIs.
The goal is to predict optimal adjustment values for new
patients based on data from previous patients. By analyzing
data from 158 former patients, the study shows that while
fully automatic adjustments are not possible, ML can provide
a good starting point for manual adjustment. The research
also identifies the most important electrodes to measure for
predicting levels of other electrodes. This approach has the
potential to reduce programming time, benefit patients, and
improve speech recognition scores, particularly for young
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children and patients with post-lingual deafness. Henry et al.
in their [48] investigates the importance of acoustic features
in optimizing intelligibility for CIs in noisy environments.
The study employs ML algorithms and extracts acoustic
features from speech and noise mixtures to train a deep neural
networks (DNN). The results, using various metrics, reveal
that frequency domain features, particularly Gammatone
features, perform best for normal hearing, while Mel
spectrogram features exhibit the best overall performance for
hearing impairment. The study suggests a stronger correlation
between STOI and NCM in predicting intelligibility for
hearing-impaired listeners. The findings can aid in designing
adaptive intelligibility enhancement systems for CIs based on
noise characteristics.

Moreover, the research in [49] focuses on imputingmissing
values in CI candidate audiometric data. This study assessed
the performance of various imputation algorithms using a
dataset of 7,451 audiograms from CI patients. The results
showed that the quantity of missing data affected the impu-
tation performance, with greater amounts leading to poorer
results. The distribution of sparsity in the audiometric data
was found to be non-uniform, with inter-octave frequencies
being less commonly tested. The multiple imputation by
chained equations (MICE) method, safely imputed up to
six missing data points in an 11-frequency audiogram, con-
sistently outperformed other models. This study highlights
the importance of imputation techniques in maximizing
datasets in hearing healthcare research. Xu et al. in [50]
explores the objective discrimination of bimodal speech
using frequency following responsess (FFRs). The study
investigates the neural encoding of fundamental frequency
(f0), called also pitch [51], and temporal fine structure
cues (TFSC) in simulated bimodal speech conditions. The
results show that increasing acoustic bandwidth enhances
the neural representation of f0 and TFSC components in the
non-implanted ear. Moreover, ML algorithms successfully
classify and discriminate FFRs based on spectral differences
between vowels. The findings suggest that the enhancement
of f0 and TFSC neural encoding with increasing bandwidth
is predictive of perceptual bimodal benefit in speech-in-
noise tasks. FFRs may serve as a useful tool for objectively
assessing individual variability in bimodal hearing. The
research conducted by Crowson et al. [52] aimed to predict
postoperative CI performance using supervised ML. The
authors used neural networks and decision tree-based ensem-
ble algorithms on a dataset of 1,604 adults who received
CIs. They included 282 text and numerical variables related
to demographics, audiometric data, and patient-reported
outcomes. The results showed that the neural network model
achieved a 1-year postoperative performance prediction
root mean square error (RMSE) of 0.57 and classification
accuracy of 95.4%. When both text and numerical variables
were used, the RMSE was 25.0% and classification accuracy
was 73.3%. The study identified influential variables such
as preoperative sentence-test performance, age at surgery,

and specific questionnaire responses. The findings suggest
that supervised ML can predict CI performance and provide
insights into factors affecting outcomes. In the same context
of prediction, Mikulskis et al. [53] focuse on predicting the
attachment of broad-spectrum pathogens to coating materials
for biomedical devices as illustrated in Figure 6. The authors
employ ML methods to generate quantitative predictions for
pathogen attachment to a large library of polymers. This
approach aims to accelerate the discovery of materials that
resist bacterial biofilm formation, reducing the rate of infec-
tions associated with medical devices. The study highlights
the need for new materials that prevent bacterial colonization
and biofilm development, particularly in the context of
antibiotic resistance. The results demonstrate the potential of
ML in designing polymers with low pathogen attachment,
offering promising candidate materials for implantable and
indwelling medical devices. Similarly, Alohali et al. [54]
focuses on using ML algorithms to predict the post-operative
electrode impedances in CI patients. The study used a
dataset of 80 pediatric patients and considered factors such
as patient age and intraoperative electrode impedance. The
results showed that the best algorithm varied by channel, with
Bayesian linear regression and neural networks providing
the best results for 75% of the channels. The accuracy level
ranged between 83% and 100% in half of the channels
one year after surgery. Additionally, the patient’s age alone
showed good prediction results for 50% of the channels at
six months or one year after surgery, suggesting it could be a
predictor of electrode impedance.

FIGURE 6. Diagram illustrating the procedures utilized in the production
of microarrays, analysis of pathogens, data modeling, and forecasting the
attachment of pathogens to novel polymers [53].

C. CNN-BASED METHODS
Convolutional neural networks (CNNs) are a class of DL
algorithms widely used in computer vision tasks. Their archi-
tecture includes convolutional layers that automatically learn
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hierarchical features from input data. The core convolution
for 2D data operation is defined by the equation:

S(i, j) = (I ∗ K )(i, j) =

∑
m

∑
n

I (m, n) · K (i− m, j− n)

(1)

Here, I represents the input 2D data,K is the convolutional
kernel, and S is the output feature map. CNNs excel
at recognizing spatial patterns, making them essential in
image recognition, object detection, and other visual tasks.
Additionally, there exist 1D CNNs, which are effective
for sequential data analysis, such as in natural language
processing or time series applications. CNN is widely
used for the interdisciplinary nature of CI, which involves
aspects of neurobiology, signal processing, and medical
technology. For example, the proposed work [55] introduces
a novel pathological voice identification system using signal
processing and DL. It employs CI models with bandpass
and optimized gammatone filters to mimic human cochlear
vibration patterns. The system processes speech samples and
utilizes a CNN for final pathological voice identification.
Results show discrimination of pathological voices with
F1 scores of 77.6% (bandpass) and 78.7% (gammatone).
The paper addresses voice pathology causes, compares filter
models, and proposes a non-invasive, objective assessment
system. It contributes to the field with a comprehen-
sive performance analysis, achieving high accuracy and
demonstrating effectiveness compared to related works.
Addtionally, in the scheme proposed by Wang [17], the fully
convolutional neural networks (FCN) model is evaluated
for enhancing speech intelligibility in mismatched training
and testing conditions. Using 2,560 Mandarin utterances and
100 noise types, the study compares FCN with traditional
MMSE and deep denoising auto-encoder (DDAE) models.
Two sets of experiments are conducted for normal and
vocoded speech. The FCN model demonstrates superior
performance, maintaining clearer speech structures, espe-
cially in mid-low frequency regions crucial for intelligibility.
Objective evaluations using STOI scores and a listening
test confirm FCN’s effectiveness under challenging SNR
conditions, outperforming MMSE and DDAE. The study
suggests FCN as a promising choice for electric and acoustic
stimulation (EAS) speech processors.

Moving on, the research paper in [56] presents a novel
approach to optimize stimulus energy for CIs. A CNN
was developed as a surrogate model for a biophysical
auditory nerve fiber model, significantly reducing simulation
time while maintaining high accuracy. The CNN was then
used in conjunction with an evolutionary algorithm [57]
to optimize the shape of the stimulus waveform, resulting
in energy-efficient waveforms and potential improvements
in CI technology. Traditional computational models of the
cochlea, which represent it as a transmission line, are
computationally expensive due to their cascaded architecture
and the inclusion of non-linearities. As a result, they are
not suitable for real-time applications such as hearing aids,

robotics, and ASR. For the aforementioned conditions, the
study in [58] presents a hybrid approach, called CoNNear,13

which combines CNNs, capable of performing end-to-
end waveform predictions in real-time, with computational
neuroscience to create a real-time model of human cochlear
mechanics and filter tuning. The CNN filter weights were
trained using simulated basilar-membrane (BM) displace-
ments from cochlear channels, and the model’s performance
was evaluated using basic acoustic stimuli. The CoNNear
model is designed to capture the tuning, level-dependence,
and longitudinal coupling characteristics of human cochlear
processing. It converts acoustic speech stimuli into BM
displacement waveforms across 201 cochlear filters. Its com-
putational efficiency and ability to capture human cochlear
characteristics make it suitable for developing human-like
machine-hearing applications.

The research paper in [26] explores the utilization of a
CNN in simulating speech processing with CIs. The study
investigates the effect of channel interaction, a phenomenon
that degrades spectral resolution in CI delivered speech,
on learning in neural networks. By modifying speech
spectrograms to approximate CI delivered signals, the CNN
is trained to classify them. The findings suggest that early
in training, the presence of channel interaction negatively
impacts performance. This indicates that the spectral degra-
dation caused by channel interaction conflicts with perceptual
expectations acquired from high-resolution speech. The study
highlights the potential for reducing channel interaction
to enhance learning and improve speech processing in CI
users, particularly those who have adapted to high-resolution
speech.

Schuerch et al. [35] focus on the objectification of intra-
cochlear electrocochleography (ECochG) using AlexNet,
CNN architecture, to automate and standardize the assess-
ment and analysis of cochlear microphonic (CM) signals
in ECochG recordings for clinical practice and research.
The authors compared three different methods: correlation
analysis, Hotelling’s T2 test, and DL, to detect CM signals.
The DL algorithm performed the best, followed closely by
Hotelling’s T2 test, while the correlation method slightly
underperformed. The automated methods achieved excellent
discrimination performance in detecting CM signals with
an accuracy up to 92%, providing fast, accurate, and
examiner-independent evaluation of ECochG measurements.

Moreover, Arias-Vergara et al. [21] presents a method-
ology for speech processing using CNNs. The study aims
to improve the representation learning capabilities of CNNs
by combining multiple time-frequency representations of
speech signals. The proposed approach involves generat-
ing multi-channel spectrograms by combining continuous
wavelet transform, Mel-spectrograms, and Gammatone spec-
trograms. These spectrograms are utilized as input data for the
CNN models. The effectiveness of the approach is evaluated
in two applications: automatic detection of speech deficits in

13https://github.com/HearingTechnology/CoNNear_periphery
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CI users and phoneme class recognition. The results demon-
strate the advantages of using multi-channel spectrograms
with CNNs, showcasing improved performance in speech
analysis tasks. The convolutional recurrent neural network
with gated recurrent units (CGRU) architecture is utilized,
as illustrated in Figure 7. The input sequences consist of
3D-channel inputs created by combining Mel-spectrograms,
Cochleagrams, and continuous wavelet transform (CWT)
with Morlet wavelets. Convolution is applied solely on the
frequency axis in order to preserve the time information. The
resulting feature maps are subsequently fed into a 2-stacked
bidirectional gated recurrent units (GRU). A softmax function
is employed to predict the phoneme label for each speech
segment in the input signal.

This paper [22] introduces a novel method for auto-
matically detecting speech disorders in CI users using a
multi-channel CNN. The model processes 2-channel input
comprising Mel-scaled and Gammatone filter bank spectro-
grams derived from speech signals. Testing on 107 CI users
and 94 healthy controls demonstrates improved performance
with 2-channel spectrograms. The study addresses a gap in
acoustic analysis of CI user speech, proposing a DL approach
with potential applications beyond CI users. Experimental
results indicate the effectiveness of the proposed CNN-based
method, offering promise for speech disorder detection and
potential extensions to other pathologies or paralinguistic
aspects that employ mel-frequency cepstral coefficients
(MFCCs) and gammatone frequency cepstral coefficient s
(GFCCs) features.

For 2D CNN, the following work [59] introduces image
guided cochlear implant programming (IGCIP), enhancing
CI outcomes using image processing. IGCIP segments
intra-cochlear anatomy in computed tomography (CT)
images, aiding electrode localization for programming. The
scheme addresses challenges in automating this process due
to varied image acquisition protocols. The proposed solution
employs a DL-based approach, utilizing CNNs to detect the
presence and location of inner ears in head CT volumes.
The CNNs is trained on a dataset with 95.97% classification
accuracy. Results indicate potential for automatic labeling
of CT images, with a focus on further 3D algorithm
development. However, in [56] presents a machine-learning
approach to optimize stimulus energy for CIs. A CNN was
developed as a surrogate model for a biophysical auditory
nerve fiber model, significantly reducing simulation time
while maintaining high accuracy. The CNN was then used
in conjunction with an evolutionary algorithm to optimize
the shape of the stimulus waveform, resulting in energy-
efficient waveforms. The proposed surrogate model offers
an efficient replacement for the original model, allowing for
larger-scale experiments and potential improvements in CI
technology.

The work proposed by [60] introduces sliding window
based CNN (SlideCNN), a novel DL approach for auditory
spatial scene recognition with limited annotated data. The
proposed method converts auditory spatial scenes into

spectrogram images and utilizes a SlideCNN for image
classification. Compared to existing models, SlideCNN
achieves a significant improvement in prediction accuracy,
with a 12% increase. By leveraging limited annotated sam-
ples, SlideCNN demonstrates an 85% accuracy in detecting
real-life indoor and outdoor scenes. The results have practical
implications for analyzing auditory scenes with limited
annotated data, benefiting individuals with hearing aids and
CIs.

This paper [61] focuses on advancing laser bone ablation
in microsurgery using 4D optical coherence tomography
(OCT). The challenge lies in automatic control without
external tracking systems. The paper introduces a 2.5D
scene flow estimation method using CNN for OCT images,
enhancing laser ablation control. A two-stage approach
involves lateral scene flow computation followed by depth
flow estimation. Training is semi-supervised, combining
ground truth error and reconstruction error. The method
achieves a MEE of (4.7 ± 3.5) voxel, enabling markerless
tracking for image guidance and automated laser ablation
control in minimally invasive cochlear implantation.

D. GAN-BASED METHODS
A GAN is a type of AI model consisting of two neural
networks, a generator, and a discriminator, engaged in a
competitive learning process as presented in Figure 8.

The generator aims to create realistic data, such as images,
while the discriminator tries to differentiate between real
and generated samples. This adversarial training dynamic
leads to the refinement of the generator’s output, generating
increasingly authentic data. The objective is for the gen-
erator to produce data that is indistinguishable from real
samples. The training process is represented by the minimax
game framework, with the GAN objective function given
by:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1 − D(G(z)))] (2)

In theGANobjective function,Ex∼pdata(x) andEz∼pz(z) indi-
cate the expected values over real data samples x and noise
samples z, respectively.G generates samples,D discriminates
between real and generated samples, pdata and pz are the
distributions of real data and noise, respectively. Using GAN,
the research in [70] proposes a DL-basedmethod for reducing
metal artifacts in post-operative CT imaging. The method
utilizes a 3D-GAN trained on a large number of pre-operative
images with simulated metal artifacts. The GAN generates
artifact-free images by reducing the metal artifacts. The
effectiveness of the method is evaluated quantitatively and
qualitatively, showing promising results compared to classi-
cal artifact reduction algorithms. The approach overcomes
the challenges of post-operative assessment of cochlear
implantation caused by metal artifacts, and it does not require
registration of pre and post-operative images. The 3D-GAN
improves spatial consistency and is applicable to various
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FIGURE 7. CGRU architecture, focusing on input sequences composed of 3D-channel data generated from Mel-spectrograms, Cochleagrams, and
CWT using Morlet wavelets [21].

FIGURE 8. Illustrative depiction of a standard GAN.

types of artifacts. In addition, Wang et al. in theirs paper [64],
proposes a 3D metal artifact reduction algorithm for post-
operative high-resolution CT imaging. The algorithm is based
on a GAN that uses simulated physically realistic CT metal
artifacts created by CI electrodes. The generated images
are used to train the network for artifact reduction. The
metal artifact reduction-GAN based method as described
in [64], utilizes a three-step process for reducing metal
artifacts. Firstly, a simulation is performed to replicate CI
positioning. Secondly, a physical simulation of CI metal
artifacts is conducted. Lastly, a 3D GAN is trained using
both simulated and preoperative datasets. The generator
component of the GAN generates an image that has reduced
metal artifacts, while the discriminator network is responsible
for determining whether the input image contains metal
artifacts or not. The method was evaluated on clinical
CT images of CI postoperative cases and outperformed
other general metal artifact reduction approaches. The paper
introduces a novel approach that combines the physical
simulation of metal artifacts with 3D-GAN, providing a
promising solution for improving the visual assessment of
post-operative imaging in CT.

Similarly, for CI metal artifacts reduction also, a con-
ditional generative adversarial networks (cGAN) were pro-
posed by Wang et al. [65]. The approach involves training
a cGAN to learn mapping from artifact-affected CTs to
artifact-free CTs. During inference, the cGAN generated
CT images with removed artifacts. Additionally, a band-
wise normalization method was proposed as a preprocessing

step to improve the performance of cGAN. The method
was evaluated on post-implantation CTs recipients, and
the quality of the artifact-corrected images was quan-
titatively assessed using P2PE. The results demonstrate
promising artifact reduction, outperforming the previously
proposed techniques. The authors evaluates the quality of
artifact-corrected images using a quantitative metric based
on segmentations of intracochlear anatomical structures.
Specifically, the segmentation results obtained from a
previously published method were compared between real
preimplantation CTs and artifact-corrected CTs generated by
the proposed method. The ASE was used as a metric to assess
the accuracy of the segmentation. The paper reports that the
proposed method achieves an ASE of 0.18 mm, which is
approximately half of the error obtained with a previously
proposed technique.

E. RNN/LSTM-BASED METHODS
RNNs are a class of artificial neural networks designed
for sequential data processing. They maintain hidden state
information that is updated at each time step, allowing them
to capture temporal dependencies. The hidden state at time t ,
denoted as ht , is computed based on the input xt , the previous
hidden state ht−1, and model parameters W and U , with
b representing the bias term. The equations governing the
hidden state update are given by:

ht = σ (Wxt + Uht−1 + b) (3)
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TABLE 4. Summary of some proposed methods based on differents DL techniques. When comparing the work with numerous existing schemes, only the
best-performing one will be highlighted.

where, σ is an activation function, typically the hyperbolic
tangent or rectified linear unit (ReLU). Several speech
processing techniques that utilize CI are based on RNNs.

CI users struggle with music perception, and many
studies have shown that enhancing music vocals improves
their enjoyment. The study described by Gajȩcki. et al.
[71] explores source separation algorithms to remix pop
songs by emphasizing the lead-singing voice. Deep con-
volutional auto-encoders (DCAE), deep recurrent neural
networks (DRNN), multilayer perceptrons (MLP), and non-
negative matrix factorization (NMF) were evaluated through

14https://github.com/AngeLouCN/Min_Max_Similarity

perceptual experiments involving CI recipients and normal
hearing subjects. The results show that a MLP and DRNN
perform well, providing minimal distortions and artifacts that
are not perceived by CI users. The paper also highlights the
benefits of the implementation of a MLP for real-time audio
source separation to enhance music for CI users due to their
reduced computation time. In addition, The study described
in [27] proposes a speech separation framework for CI users
using TasNet and RNN-EVD. TasNet, a non-causal multiple-
input multiple-output (MIMO)-based method, is employed as
the speech separation module. RNN-EVD, which combines
RNNs with EVD, is utilized to preserve spatial cues. The
framework aims to effectively separate speech and reduce
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ILD errors. The RNN-EVD network is trained using 1ILD
as the objective, and an additional SNR term is added to
the loss function for convergence. The experimental results
demonstrate the effectiveness of the proposed framework in
preserving ILD cues for CI users in various hearing scenarios.

The long short termmemory (LSTM), an enhanced version
of the RNN, addresses limitations observed in RNNs under
specific conditions [5], [72]. Unlike RNN, LSTM excels in
preserving past information, making it suitable for tasks with
long-term dependencies. Comprising LSTM units forming
layers, each unit regulates information flow through input,
output, and forget gates, allowing for prolonged retention of
crucial information. The forward pass equations (4) illustrate
this process [5]. The symbols Li and Lj denote input and
output, while Af , Ai, and Aj represent activation vectors for
forget, input, and output gates. Vc is the cell state vector, and
σ for the sigmoid activation function and ⊙ for element-wise
multiplication. This LSTM structure with weight matricesW
and U and bias vector b is outlined by [73].

Af = σ (Wf ∗ Li + Uf ∗ Lj−1 + bf ),

Ai = σ (Wi ∗ Li + Ui ∗ Lj−1 + bi),

Lj = Aj ⊙ tanh(Vc),

Aj = σ (W0 ∗ Li + U0 ∗ Lj−1 + bj),

Vc = Af ∗ Vc−1 + Ai ∗ cell_state(Wc ∗ Li + Uc ∗ Lj−1 + bc).

(4)

Recently, several schemes for CI and utilizing LSTM
have been proposed in the literature. The study described
by Lu. et al. in 2020 [66] introduces a speech training
system designed for individuals with hearing impairments,
such as those with CIs, as well as individuals with dysphonia,
utilizing automated lip-reading recognition. The system
combines CNN and RNN to compare mouth shapes and
train speech skills. It includes a speech training database,
automatic lip-reading using a hybrid neural network, match-
ing lip shapes with sign language vocabulary, and drawing
comparison data. The system enables hearing-impaired
individuals to analyze and improve their vocal lip shapes
independently. It also supports the use of medical devices for
correct pronunciation. Experimental results demonstrate the
system’s effectiveness in correcting lip shape and enhancing
speech ability. The proposed model utilizes ResNet50,
MobileNet, and LSTM networks for accurate lip-reading
recognition. Later on, the scientific paper published by
Chu et al. in 2021 [74] proposes a causal DL framework for
classifying phonemes in CIs to enhance speech intelligibility.
The authors trained LSTM networks using features extracted
at the time-frequency resolution of a CI processor. They
compared CI-inspired features (log STFT power spectrum,
log ACE power spectrum, and log-mel-filterbank) with
traditional ASR features. The results showed that CI-
inspired features outperformed traditional features, providing
slightly higher levels of performance. The author claimed
that, this study is the first to introduce a classification

framework with the potential to categorize phonetic units
in real-time in a CI, offering possibilities for improving
speech recognition in reverberant environments for CI users.
In 2023, Huang et al. proposed in [75], a DL-based sound
coding strategy for CIs, called ElectrodeNet. By leveraging
DNN, CNN, and LSTM, ElectrodeNet replaces conventional
envelope detection in the ACE strategy. Objective evaluations
using measures like STOI and NCM demonstrate strong
correlations between ElectrodeNet and ACE. Additionally,
subjective tests with normal-hearing listeners confirm the
effectiveness of ElectrodeNet in sentence recognition for
vocoded Mandarin speech. The study extends ElectrodeNet
with ElectrodeNet-CS, incorporating channel selection (CS)
through a modified DNN network. ElectrodeNet-CS pro-
duces N-of-M compatible electrode patterns and performs
comparably or slightly better than ACE in terms of STOI and
sentence recognition. This research showcases the feasibility
and potential of deep learning in CI coding strategies, paving
the way for future advancements in AI-powered CI systems.
Similarly, the research presented by Jeyalakshmi et al. [67]
focuses on predicting CI scores for children aged 5 to 10 using
a reconfigured LSTM network as illustrated in Figure 9. The
proposed architecture aims to enhance language development
skills in children with auditory deprivation, this could be
achieved by guiding CI programming through the analysis
of cross-modal data obtained from previously programmed
patients. The research utilizes visual cross-modal plasticity
and visual evoked potential to discover patterns in the data
that can predict outcomes for future patients. The proposed
methodology involves the use of LSTM network and ESCSO
to identify optimal weights. The results demonstrate the
superiority of the ESCSO-based LSTM technique over other
methods.

FIGURE 9. The design of the LSTM architecture suggested by
Jeyalakshmi et al. [67].

In Figure 9, ‘‘oz,’’ ‘‘cz,’’ ‘‘t5,’’ and ‘‘t6’’ refer to specific
electrode placements or positions on the scalp in the inter-
national 10-20 system for electroencephalography (EEG)
or event-related potential (ERP) recordings. These positions
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represent specific areas on the scalp where electrodes are
attached to measure electrical activity in the brain. The
amplitude represents the intensity or strength of the electrical
signal detected at a particular point on the scalp, reflecting
the neural activity in the corresponding brain region. The
parameters ‘‘N75,’’ ‘‘P100,’’ and ‘‘N145’’ refer to specific
components or peaks of ERPs obtained fromEEG recordings.
ERPs are electrical responses recorded from the brain in
response to specific stimuli or events, and they reflect the
neural processing associated with those stimuli. Besides, I/P
represent inputs, O/P for output, andW represent Weights.

F. AE-BASED METHODS
An autoencoder (AE) is a type of neural network designed
for unsupervised learning, tasked with encoding input data
into a compressed representation and decoding it back to the
original form. Examples include variational autoencoderss
(VAEs), which balance data compression with genera-
tive modeling, convolutional autoencoders (CAEs), which
employ convolutional layers for efficient feature learning
and reconstruction, and sparse AEs, which induce sparsity,
promoting selectivity in feature representation, among others.
The encoding equation typically involves amapping function,
such as h = f (x), where h is the encoded representation and
x is the input. The decoding equation is the reconstruction
of the input, often expressed as r = g(h), where r is the
reconstructed output and g is the decoding function. AEs find
applications in data compression, denoising, feature learning,
and more. Recently, many research papers for CI have been
proposed that are based on AE.

As a point of the case, the scientific paper [18] delves
into the pivotal objective of enhancing speech perception for
CI users in noisy conditions, recognizing the critical role of
noise reduction (NR) in this pursuit. The proposed method,
named DDAE-NR, has been proven effective in restoring
clean speech. The study focuses on evaluating the DDAE-
based NR using envelope-based vocoded speech, mimicking
CI devices. The procedure of DDAE-based NR can be split
into two main stages: training and testing. During the training
phase, a collection of pairs of noisy and clean speech signals
is prepared. These signals are initially transformed into the
frequency domain using an fast Fourier transform (FFT). The
logarithmic amplitudes of the noisy and clean speech spectra
are then used as inputs and outputs, respectively, for the
DDAE model.

Key findings underscore the superior intelligibility of
DDAE-based NR in vocoded speech compared to state-of-
the-art (SOTA) conventional methods, indicating its potential
implementation in CI speech processors. However, the study
acknowledges the use of noise-vocoded speech simulation
for evaluation and emphasizes the need for further validation
with real CI recipients in clinical settings, addressing
potential inconsistencies in the transition to actual CI devices.

A zero-delay deep autoencoder (DAE) is proposed in [23]
for compressing and transmitting electrical stimulation pat-
terns generated by CIs. The goal is to conserve battery power

in wireless transmission while maintaining low latency,
which is crucial for speech perception in CI users. The DAE
architecture is optimized using Bayesian optimization and
the STOI. The results show that the proposed DAE achieves
equal or superior speech understanding compared to audio
codecs, with reference vocoder STOI scores at 13.5 kbit/s.
This approach offers a promising solution for efficient and
real-time compression of CI stimulation patterns, addressing
the constraints of low latency and battery power consumption.
Moreover, The research in [62] focuses on achieving accurate
segmentation of the vestibule in CT images, a crucial step for
clinical diagnosis of congenital ear malformations and CIs.
The challenges addressed include the small size and irregular
shape of the vestibule, making segmentation difficult, and the
limited availability of labelled samples due to high labour
costs. To overcome these challenges, the proposed method
introduces a vestibule segmentation network within a basic
encoder-decoder framework. Key innovations include the
incorporation of a residual channel attention (Res-CA) block
for channel attention, a global context-aware pyramid feature
extraction (GCPFE) module for global context information,
an, active contour with elastic loss (ACE-Loss) function for
detailed boundary learning, and a deep supervision (DS)
mechanism to enhance network robustness. The network
architecture utilizes ResNet34 as the backbone with skip
connections for multi-level feature fusion. Results showcases
a high performance, and are supported by comprehensive
comparisons, ablation studies, and visualized segmentation
outcomes. The study also acknowledges limitations, such as
reliance on professional annotations.

In addition, the study presented in [76] aims to enhance
the accuracy and robustness of intra cochlear anatomy (ICA)
segmentation, a vital component in preoperative decisions,
insertion planning, and postoperative adjustments for CI
procedures. The ICA includes structures such as scala
tympani (ST), scala vestibul (SV), and the active region (AR).
The researchers employed two segmentation methods, active
shape model (ASM) and DL based on 3D U-Net AE, and
combined them to achieve improved accuracy and robustness.
A two-level training strategy involved pretraining on clinical
CTs using ASM and fine-tuning on specimens’ CTs with
ground truth. Results demonstrated that DL methods outper-
formedASM in accuracy.While a trade-off between accuracy
and robustness was observed, the combined DL and ASM
approach showed improvements in both aspects. The study
concludes that the proposed DL and ASMmethod effectively
balances accuracy and robustness for ICA segmentation,
highlighting the potential of DL-based methods, especially
when integrated with ASM, to enhance CI procedures.

The proposed min-max similarity (MMS) methodol-
ogy in [63] represents a groundbreaking approach to
semi-supervised segmentation networks, particularly in the
context of medical applications such as endoscopy surgical
tool segmentation andCI surgery.MMS is introduced through
dual-view training with contrastive learning, utilizing classi-
fiers and projectors to create negative, positive, and negative
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FIGURE 10. Encoder-decoder network used in the pixel-wise classification model [77].

pairs. The inclusion of pixel-wise contrastive loss ensures the
consistency of unlabeled predictions. In the evaluation phase,
MMS was tested on four public endoscopy surgical tool
segmentation datasets and a manually annotated CI surgery
dataset. The results demonstrate its superiority over state-
of-the-art semi-supervised and fully supervised segmentation
algorithms, both quantitatively and qualitatively. Notably,
MMS exhibited successful recognition of unknown surgical
tools, providing reliable predictions, and achieved real-time
video segmentation with an impressive inference speed of
about 40 frames per second. This signifies the potential of
MMS as a highly effective and efficient tool in medical image
segmentation, showcasing its applicability in real-world
surgical scenarios.

Similarly, The primary aim of the study in [77] is to devise
an automated method for the segmentation and measurement
of the human cochlea in ultra-high-resolution (UHR) CT-
images. The objective is to explore variations in cochlear
size to enhance outcomes in cochlear surgery through
personalized implant planning. Initially, the input scans
undergo a two-step process using a detection module and
a pixel-wise classification module for cochlea localization
and segmentation, respectively using an AE as illustrated
in Figure 10. The detection module reduces the search area
for the classification module, improving algorithm speed and
reducing false positives. Both modules are trained on image
patches, allowing for a larger training set size by generating
multiple examples from each scan. The segmented cochlear
structure then proceeds to a final module that combines DL
and thinning algorithms to extract patient-specific anatomical
measurements. DL is employed in each step to leverage its
ability to learn directly from input data, providing automatic

results without the need for user-adjustable parameters during
testing.

G. RL-BASED METHODS
Deep reinforcement learning (DRL) is a subfield of ML
that enable agents to learn and make decisions in complex
environments. It involves training an agent to interact with
an environment, learn from the outcomes of its actions,
and optimize its behavior over time [78]. In traditional RL,
agents learn by trial and error, receiving feedback in the
form of rewards or penalties for their actions. However,
DRL incorporates DNN, make it capable of learning complex
patterns and representations from raw data. This allows
DRL agents to handle high-dimensional input spaces, such
as images or sensor data, and make more sophisticated
decisions. Figure 11 illustrate the priciple of RL.

FIGURE 11. RL principle.

The paper presented by Radutoiu et al. [34] presents a
novel method for accurately localizing ROIs in the inner ear
using DRL. The proposedmethod addresses the challenges of
robust ROI extraction in full head CT scans, which is crucial
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FIGURE 12. Taxonomy of AI-based applications for CIs and their benefits.

for CI surgery. The approach utilizes communicative multi-
agent RL and landmarks specifically designed to extract
orientation parameters. The method achieves an average
estimated error of 1.07 mm for landmark localization. The
extracted ROIs demonstrate an IoU of 0.84 and a dice
similarity coefficient of 0.91, conducted over 140 full head
CT scans, showing promising results for automatic ROI
extraction in medical imaging. In addition, Lopez et al.
presents in [79] a pipeline for characterizing facial and
cochlear nerves in CT scans using DRL. Key landmarks
around these nerves are located using a communicative
multi-agent DRL model. The pipeline includes automated
measurement of the cochlear nerve canal diameter, extraction
and segmentation of the cochlear nerve cross-section, and
path selection for the facial nerve characterization. The
pipeline was developed and evaluated using 119 clinical
CT images. The results show accurate characterizations
of the nerves in the cochlear region, providing reliable
measurements for computer-aided diagnosis and surgery
planning. The proposed approach demonstrates the potential
of DRL for landmark detection in challenging medical
imaging tasks.

IV. APPLICATIONS OF DL-BASED MEDICAL CI
This section explores the application of deep learning in the
field of cochlear implants, encompassing tasks such as speech

denoising and enhancement, segmentation for precise iden-
tification and analysis of cochlear structures, thresholding,
imaging, localization of CI, and more. Figure 12 provides a
comprehensive overview ofAI-based applications for CIs and
theirs associated benefits. Furthermore, Table 5 summarizes
various applications based on AI techniques, highlighting
their performance, and pros and cons.

A. SPEECH DENOISING AND ENHANCEMENT
The integration of ML, and DL has proven invaluable in the
field of CIs. Researchers have harnessed these technologies
to tackle numerous challenges and enhance speech perception
for individuals with hearing impairments. Thework [19], [80]
employed DDAE approach to reduce unwanted background
noise in speech signals. However, Lai et al. in [80] devised
a NR system that employed a noise classifier and DDAE,
specifically tailored for Mandarin-speaking CI recipients.
The proposed schemes [24], [28], [81] aim to perform end-
to-end speech denoising, with the goal of enhancing speech
intelligibility in noisy environments. Gajecki et al. [24], [28]
employed DNN to develop the Deep ACE method, while
Healy et al. in [81] utilized DNN to separate speech from
background noise. These examples underscore the broad
spectrum of applications of AI, particularly DL techniques,
in addressing challenges related to noise reduction and
enhancing speech intelligibility in CIs applications.
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TABLE 5. Summary of the performance and limitations of specific DL applications dedicated to CIs. In cases where multiple tests are conducted, only the
best performance is reported.

Moreover, Kang et al. [30] used DL-based speech
enhancement algorithms to optimize speech perception for
CI recipients. Their approach achieved a balance between
noise suppression and speech distortion by experimenting
with different loss functions. Hu and Loizou [82] developed
environment-specific noise suppression algorithms for CIs
using ML techniques. They improved the processed sound by
classifying and selecting envelope amplitudes based on the
SNR in each channel. Banerjee et al. [83] employed online
unsupervised algorithms to learn features from the speech
of individuals with severe-to-profound hearing loss, aiming
to enhance the audibility of speech through modified signal
processing. Li et al. [84] developed an improved NR system
for CIs using DL, specifically DDAE, and knowledge transfer
technology. Their goal was to enhance speech intelligibility in
noisy conditions. Fischer et al. [31] utilized DL-based virtual
sensing of head-mounted microphones to improve speech
signals in cocktail party scenarios for individuals with hearing
loss, resulting in enhanced speech quality and intelligibility,

particularly in noisy environments. These studies exemplify
the versatility of AI and DL in addressing various challenges
associated with CIs, including NR, speech enhancement,
and improved speech perception. Furthermore, the paper by
Chu et al. [25] explores the application of ML algorithms
to mitigate the effects of reverberation and noise in CIs,
to improve speech intelligibility for individuals with severe
hearing loss.

B. IMAGING
DL methods have revolutionized CI applications by lever-
aging imaging data for enhanced analysis and optimization.
Hussain et al. [89] employed image analysis tools, such
as the oticon medical nautilus software, to automatically
detect landmarks and extract clinically relevant parame-
ters from cochlear CT images. This approach provides
valuable insights into cochlear morphology, facilitating the

15https://github.com/APGDHZ/DeepACE2.0
16nautilus_info@oticonmedical.com available upon reasonable request
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development of less traumatic electrode arrays for cochlear
implantation. Zhang et al. [59] focused on automatically
detecting the presence and location of inner ears in head CT
images, aiming to assist in image-guided CI programming
for patients with profound hearing loss. Regodic et al.
[90] introduced an algorithm that utilizes a CNN for
automatic fiducial marker detection and localization in CT
images, enhancing registration accuracy, reducing human
errors, and shortening intervention time in computer-assisted
surgeries. Margeta et al. [85] presented Nautilus, a web-based
research platform that employs AI and image processing
techniques for automated cochlear image analysis. This
platform enables accurate delineation of cochlear structures,
detection of electrode locations, and personalized pre- and
post-operative metrics, facilitating clinical exploration in
cochlear implantation studies. Li et al. [91] proposed the
integration of DL techniques into a clinical µCT system
to optimize imaging performance, improve reconstruction
accuracy, and enhance diagnostic capabilities in temporal
bone imaging and other clinical applications. Wang et al. [70]
addressed the reduction of metal artifacts in post-operative
CI CT imaging using a 3D GAN, enabling better analysis
of electrode positions and assessment of CI insertion. These
advancements highlight the significant role of DL, ML, and
AI in leveraging imaging data for improved CI analysis,
design, and surgical procedures.

In addition to the previous advancements, DL and AI
have been applied to various aspects of CI applications using
imaging data. Chen et al. [62] utilize AI for accurate vestibule
segmentation in CT images, which plays a crucial role in
the clinical diagnosis of congenital ear malformations and
CI procedures. Kugler et al. [92] employ AI techniques to
accurately estimate instrument pose from X-ray images in
temporal bone surgery, enabling high-precision navigation
and facilitating minimally invasive procedures.Waldeck et al.
[93] develop an ultra-fast algorithm that utilizes auto-
mated cochlear image registration to detect misalignment in
CIs, significantly reducing the time required for diagnosis
compared to traditional multiplanar reconstruction analysis.
Finally, Chen et al. [94] focus on creating a three-dimensional
finite element model of the brain based on magnetic
resonance imaging (MRI) data to analyze and optimize the
current flow path induced by CIs. This application of AI
contributes to the improvement of implant design in the
future. These innovative approaches demonstrate the diverse
applications of DL, ML, and AI in CI research, ranging from
scene understanding to precise segmentation, instrument
pose estimation, misalignment detection, and implant design
optimization.

C. SEGMENTATION
DL, ML, and AI have revolutionized CI segmentation,
enabling precise identification and analysis of cochlear
structures in various imaging modalities. Li et al. [87]
applied a UNETR model to automatically segment cochlear
structures in temporal bone CT images, enhancing surgical

planning and cochlear implantation outcomes. Reda et al.
[95] developed an automatic segmentation method for
intra-cochlear anatomy in post-implantation CT scans, facil-
itating the customization of sound processing strategies for
individual CI recipients. Moudgalya et al. [96] employed a
modified V-Net CNN to segment cochlear compartments in
µCT images, enabling precise quantification of local drug
delivery for potential treatment of sensorineural hearing loss.
Wang et al. [97] focused on metal artifact reduction and
intra-cochlear anatomy segmentation in CT images using
a multi-resolution multi-task deep network, benefiting CI
recipients. Heutink et al. [77] developed a DL framework for
the automatic segmentation and analysis of cochlear struc-
tures in ultra-high-resolution CT images, providing accurate
measurements for personalized implant planning in cochlear
surgery. Zhang et al. [88] utilized a 3D U-Net DL method
to achieve accurate segmentation of intra-cochlear anatomy
in head CT images, facilitating optimal programming of CIs
and improving hearing outcomes. These studies highlight
the significant impact of DL, ML, and AI in advancing CI
segmentation, ultimately leading to improved patient care and
treatment outcomes.

D. THRESHOLDING
DL, ML, and AI have been instrumental in the field of
CIs, particularly in thresholding applications. Kuczapski and
Stanciu [98] developed a software tool that utilizes AI to
estimate and monitor the effective stimulation threshold
(EST) levels in CI recipients. By leveraging patient data,
audiograms, and fitting settings, this tool aids in the fitting
process and predicts changes in hearing levels, enhancing
personalized care. Botros et al. [99] introduced AutoNRT,
an automated system that combines ML and pattern recog-
nition to measure electrically evoked compound action
potential (ECAP) thresholds with the Nucleus Freedom CI.
This objective fitting system streamlines clinical procedures
and ensures precise and efficient threshold measurements.
Furthermore, Schuerch et al. [36] utilized a DL-based
algorithm to objectively evaluate and analyze ECochG
signals. This algorithm enables the assessment of ECochG
measurement repeatability, comparison with audiometric
thresholds, and identification of signal patterns and tonotopic
behavior in CI recipients. Through the integration of DL,
machine ML, and AI, these studies have significantly
advanced thresholding techniques in CI applications, leading
to improved fitting accuracy, streamlined procedures, and
objective evaluation of signal responses.

E. LOCALIZATION OF CI
DL methods have been instrumental in CI localization
applications, providing accurate and automated solutions.
Chi et al. [86] proposed a DL-based method for precise
localization of electrode contacts in CT images. Their
approach utilized cGANs to generate likelihood maps, which
were then processed to estimate the exact location of each
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contact. Radutoiu et al. [34] focused on the automatic
extraction of ROIs in full head CT scans of the inner
ear. By leveraging AI, they achieved high precision in
ROI localization, facilitating accurate surgical planning
for insertion. Noble and Dawant [100] and Zhao et al.
[101], [102], developed AI-based systems to automatically
identify and position electrode arrays in CT images. These
technologies enable large-scale analyses of the relationship
between electrode placement and hearing outcomes, leading
to potential advancements in implant design and surgical
techniques. Heutink et al. [77] employedDL for the automatic
segmentation and localization of the cochlea in ultra-high-
resolution CT images. This approach allows for precise
measurements that can be used in personalized planning,
reducing the risk of intracochlear trauma and optimizing
surgical outcomes. These studies showcase the significant
contributions of DL and AI in localization applications,
enabling accurate and efficient identification, positioning,
and analysis of electrode arrays and facilitating improved
surgical planning and outcomes.

F. OTHER
DL techniques have been employed in various CI appli-
cations, showcasing their potential to enhance hearing
outcomes and improve device performance. Bermejo et al.
[103] introduced a decision support system using a novel
probabilistic graphical model to optimize CI parameters
based on audiological tests and the current device status,
aiming to optimize the user’s hearing ability. Castaneda-Villa
and James [104] focused on the use of blind source separation
(BSS) and independent component analysis (ICA) to identify
auditory evoked potentials (AEPs) and isolate artifacts in
children with CIs, enabling improved assessment of auditory
function. Incerti et al. [105] investigated the impact of varying
cross-over frequency settings for EAS on binaural speech
perception, localization, and functional performance in adults
with CIs and residual hearing, providing valuable insights for
personalized device programming. Katthi et al. [106] devel-
oped a DL framework based on canonical correlation analysis
(CCA) to decode the auditory brain, establishing a strong
correlation between audio input and brain activity measured
through EEG recordings. This research has implications for
decoding human auditory attention and improving CIs by
leveraging the power of DL.

V. OPEN ISSUES AND FUTURE DIRECTIONS
While significant strides have been achieved in integrating AI
into CIs, numerous research lacunae persist, offering avenues
for further advancements in the field. Here are several
potential realms warranting exploration in future studies:

A. REAL-TIME SIGNAL PROCESSING AND PERSONALIZED
DESIGN
Investigating real-time adaptive signal processing methods
employing AI algorithms has the potential to enhance sound
processing for CI recipients, yielding enhanced speech

intelligibility outcomes. Enhancements in adaptability to
dynamic acoustic environments and real-time optimization
of stimulation parameters have the capacity to substantially
enhance CI performance. The authors have observed a gap in
the study and implementation of AI models tailored for CI
on real-time platforms like field programmable gate arrays
(FPGAs). Further research in this burgeoning area holds
promise for adapting a variety of existing AI models to
enhance real-time capabilities.

Besides, tailoring CIs to meet the unique needs of indi-
vidual users poses a significant challenge. Investigating AI-
driven methodologies leveraging personal data to personalize
device configurations based on factors like physiological,
auditory, and neural feedback during mobility can enhance
both individual outcomes and overall satisfaction.

B. PREDICTING THE LONG-TERM EFFECTS
Gaining insight into the enduring CIs is vital for enhanc-
ing patient selection, counseling, and device advancement.
Utilizing AI methods to shift through extensive datasets
can pinpoint the predictive elements influencing sustained
success. These factors may encompass pre-implantation
attributes, surgical approaches, and auditory rehabilitation.
Constructing predictive models using AI algorithms can
furnish valuable perspectives on long-term consequences,
thereby informing clinical judgments.

C. INCORPORATING MULTIPLE SENSORY AND
MODALITIES
CIs traditionally prioritize the reinstatement of auditory
experiences. Yet, enriching the perception and comprehen-
sion of sound can be achieved by integrating additional
sensory dimensions like vision and touch, resulting in a
multi-modal approach. Investigating AI-driven techniques
that amalgamate inputs from various senses to enhance
speech recognition, spatial sound perception, and overall
auditory understanding presents a promising direction for
future exploration. Besides, CIs in both ears, when paired
with AI algorithms, can enhance speech comprehension.
By analyzing sound patterns from both implants, AI adjusts
settings to optimize signal processing, improving overall
accuracy and clarity of speech perception for users with
bilateral implants, and enhancing their auditory experience
and communication abilities, as investigated in [107].
However, extensive research possibilities are required to
tailor solutions with CI hardware capabilities, by taking into
account computation cost, and AI model complexity.

D. EMPOWERING AI-BASED CI USING DTL
Deep transfer learning (DTL) is a highly efficient DL
technique enabling the transfer of knowledge from pre-
trained models, trained on millions of speech corpora
and/or images, to train smaller models with limited data
availability [108], [109]. This approach offers significant
advantages in producing lightweight AI models suitable for
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devices with limited computational resources, such as CIs.
Only a limited number of studies have explored the impact
of DTL on CI, as demonstrated in [84], which has received
relatively little attention from researchers. We anticipate
further exploration of this promising technique, particularly
through the utilization of various DTL sub-techniques, such
as domain adaptation, transductive methods like cross-
lingual transfer, cross-corpus transfer, zero-shot learning,
fine-tuning, among others [2].

E. ENSURING DATA PRIVACY THROUGH FL
Federated learning (FL) facilitates collaborative model train-
ing across decentralized devices by aggregating local updates
rather than centralizing data. This preserves user privacy
and enhances model performance, particularly beneficial
in healthcare applications [110]. Gathering comprehensive
datasets is challenging due to rare anomaly cases and
privacy concerns. FL addresses this by training models on
distributed, encrypted data from multiple sources, ensuring
privacy while maintaining efficacy. Researchers have yet to
fully explore FL-based model building for CI, neglecting
the potential to construct efficient AI models capable of
accommodating diverse classes. Further investigation into
this promising technique is warranted, with potential for
significant advancements in model robustness and versatility.
Moreover, this approach could lead to the development of
a pretrained model utilizing FL, which could be seamlessly
integrated with DTL.

F. TRANSFORMERS-BASED CI TECHNIQUES
Transformer-based techniques, such as connectionist tem-
poral classification (CTC), bidirectional encoder represen-
tations from transformer (BERT), and others, proved in
the literature that have the potential to greatly enhance the
functioning of ASR [111], [112], [113]. By leveraging the
self-attention mechanism, transformers can improve speech
intelligibility by effectively suppressing background noise
and modeling long-range dependencies. They can also aid in
acoustic scene analysis, separating and prioritizing important
auditory information in complex environments. Transformers
can build language models that enhance ASR systems,
improving speech comprehension for users. Additionally,
transformers enable personalized sound processing by adapt-
ing stimulation patterns and processing parameters based
on user-specific preferences. They facilitate multi-modal
integration, combining audio and visual inputs to enhance
speech recognition and sound localization. Furthermore,
transformers support long-term learning and adaptation,
continually optimizing CI performance over time. These
advancements offer promising prospects for improving
auditory experiences and overall quality of life for CI users.

G. EXPLORING CHAT-BOTS-BASED CI CAPABILITIES
Chat-bot techniques offer several opportunities to enhance
the functioning of CIs. They can provide real-time support,

troubleshooting, and personalized rehabilitation programs
for users, empowering them to address common issues and
improve their auditory skills. Chat-bots enable remote mon-
itoring, allowing users to share data and receive adjustments
to their device settings without in-person appointments. They
also offer emotional and psychological support, fostering a
sense of community and well-being. Chat-bots contribute
to data collection for research and development, aiding
in the improvement of CI technology and rehabilitation
protocols. Additionally, chat-bots employML to continuously
learn from user interactions, improving their responses and
understanding over time. These techniques have the potential
to enhance the overall user experience, outcomes, and
accessibility of CI services.

VI. CONCLUSION
This review has provided a comprehensive overview of the
advancements in AI algorithms for CIs applications and their
impact on ASR and speech enhancement. The integration of
AI methods has brought cutting-edge strategies to address
the limitations and challenges faced by traditional signal
processing techniques in the context of CIs. Moreover,
the application of AI in CI has led to the emergence of
new datasets and evaluation metrics, offering alternative
methods for validating proposed schemes without the need
for human surgical intervention and traditional tests. The
review highlighted the role of ASR in optimizing speech
perception and understanding for CI users, contributing
to the improvement of their quality of life. ASR not
only enhances basic speech recognition but also aids in
the recognition of environmental sounds, enabling a more
immersive auditory experience. Furthermore, ASR finds
applications in authentication systems, event recognition,
source separation, and speaker recognition, extending its
reach beyond communication. Various AI algorithms, belong
to ML and DL, have been explored in the context of
CIs, demonstrating promising results in speech synthesis
and noise reduction. These algorithms have shown the
potential to overcome challenges associated with multiple
sources of speech, environmental noise, and other complex
scenarios. The review has summarized and commented on
the best results obtained, providing valuable insights into
the capabilities of AI algorithms in this biomedical field.
Moving forward, the review suggests future directions to
bridge existing research gaps in the domain of AI algorithms
for CIs. It emphasizes the need for high-quality data
inputs, algorithm transparency, and collaboration between
researchers, clinicians, and industry experts. Addressing
these aspects will facilitate the development of more accurate
and efficient AI algorithms for CI, ultimately benefiting
individuals with hearing impairments. The integration of
advanced AI algorithms has the potential to revolutionize the
field of CIs, providing individuals with hearing impairments
to better communicate and engage with the world around
them. Continued research and development in this area hold
great promise for the future of CI technology.

119034 VOLUME 12, 2024



B. Essaid et al.: AI for CI: Review of Strategies, Challenges, and Perspectives

DATA AVAILABILITY
Data will be made available on request.

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

ACKNOWLEDGMENT
Open Access funding provided by the Qatar National Library.

REFERENCES
[1] M. B. Er, E. Isik, and I. Isik, ‘‘Parkinson’s detection based on combined

CNN and LSTM using enhanced speech signals with variational mode
decomposition,’’ Biomed. Signal Process. Control, vol. 70, Sep. 2021,
Art. no. 103006.

[2] H. Kheddar, Y. Himeur, S. Al-Maadeed, A. Amira, and F. Bensaali, ‘‘Deep
transfer learning for automatic speech recognition: Towards better gener-
alization,’’ Knowl.-Based Syst., vol. 277, Oct. 2023, Art. no. 110851.

[3] S. Hu, X. Shang, Z. Qin, M. Li, Q. Wang, and C. Wang, ‘‘Adversarial
examples for automatic speech recognition: Attacks and countermea-
sures,’’ IEEE Commun. Mag., vol. 57, no. 10, pp. 120–126, Oct. 2019.

[4] H. Kheddar and D. Megías, ‘‘High capacity speech steganography for
the G723.1 coder based on quantised line spectral pairs interpolation
and CNN auto-encoding,’’ Int. J. Speech Technol., vol. 52, no. 8,
pp. 9441–9459, Jun. 2022.

[5] H. Kheddar, M. Hemis, Y. Himeur, D. Megías, and A. Amira, ‘‘Deep
learning for steganalysis of diverse data types: A review of methods,
taxonomy, challenges and future directions,’’ Neurocomputing, vol. 581,
May 2024, Art. no. 127528.

[6] H. Kheddar, D. Megias, and M. Bouzid, ‘‘Fourier magnitude-based
steganography for hiding 2.4 kbpsMELP secret speech,’’ in Proc. Int.
Conf. Appl. Smart Syst. (ICASS), Nov. 2018, pp. 1–5.

[7] N. Singh, A. Agrawal, and R. A. Khan, ‘‘Voice biometric: A technology
for voice based authentication,’’ Adv. Sci., Eng. Med., vol. 10, no. 7,
pp. 754–759, Jul. 2018.

[8] N. Djeffal, D. Addou, H. Kheddar, and S. A. Selouani, ‘‘Noise-
robust speech recognition: A comparative analysis of LSTM and CNN
approaches,’’ in Proc. 2nd Int. Conf. Electron., Energy Meas. (ICEM),
Nov. 2023, pp. 1–6.

[9] A. Hamza, D. Addou, and H. Kheddar, ‘‘Machine learning approaches
for automated detection and classification of dysarthria severity,’’ in Proc.
2nd Int. Conf. Electron., Energy Meas. (ICEM), Nov. 2023, pp. 1–6.

[10] T.-E. Chen, S.-I. Yang, L.-T. Ho, K.-H. Tsai, Y.-H. Chen, Y.-F. Chang,
Y.-H. Lai, S.-S. Wang, Y. Tsao, and C.-C. Wu, ‘‘S1 and S2 heart sound
recognition using deep neural networks,’’ IEEE Trans. Biomed. Eng.,
vol. 64, no. 2, pp. 372–380, Feb. 2017.

[11] M. G. Crowson, V. Lin, J. M. Chen, and T. C. Chan, ‘‘Machine learning
and cochlear implantation—A structured review of opportunities and
challenges,’’ Otol. Neurotol., vol. 41, no. 1, pp. 36–45, 2020.

[12] A. Manero, K. E. Crawford, H. Prock-Gibbs, N. Shah, D. Gandhi, and
M. J. Coathup, ‘‘Improving disease prevention, diagnosis, and treatment
using novel bionic technologies,’’ Bioeng. Transl. Med., vol. 8, no. 1,
Jan. 2023, Art. no. e10359.

[13] B. S. Wilson, D. L. Tucci, D. A. Moses, E. F. Chang, N. M. Young,
F.-G. Zeng, N. A. Lesica, A.M. Bur, H. Kavookjian, C.Mussatto, J. Penn,
S. Goodwin, S. Kraft, G.Wang, J. M. Cohen, G. S. Ginsburg, G. Dawson,
and H. W. Francis, ‘‘Harnessing the power of artificial intelligence
in otolaryngology and the communication sciences,’’ J. Assoc. Res.
Otolaryngol., vol. 23, no. 3, pp. 319–349, Jun. 2022.

[14] K. L. D’Onofrio and F.-G. Zeng, ‘‘Tele-audiology: Current state
and future directions,’’ Frontiers Digit. Health, vol. 3, Jan. 2022,
Art. no. 788103.

[15] F. Henry, M. Glavin, and E. Jones, ‘‘Noise reduction in cochlear implant
signal processing: A review and recent developments,’’ IEEE Rev.
Biomed. Eng., vol. 16, pp. 319–331, 2023.

[16] O. Macherey and R. P. Carlyon, ‘‘Cochlear implants,’’ Current Biol.,
vol. 24, no. 18, pp. 878–884, 2014.

[17] N. Y. Wang, H. S. Wang, T.-W. Wang, S.-W. Fu, X. Lu, H.-M. Wang, and
Y. Tsao, ‘‘Improving the intelligibility of speech for simulated electric and
acoustic stimulation using fully convolutional neural networks,’’ IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 184–195, 2021.

[18] Y.-H. Lai, F. Chen, S.-S. Wang, X. Lu, Y. Tsao, and C.-H. Lee,
‘‘A deep denoising autoencoder approach to improving the intelligibility
of vocoded speech in cochlear implant simulation,’’ IEEE Trans. Biomed.
Eng., vol. 64, no. 7, pp. 1568–1578, Jul. 2017.

[19] S.-S. Wang, Y. Tsao, H. S. Wang, Y.-H. Lai, and L. P. Li, ‘‘A deep
learning based noise reduction approach to improve speech intelligibility
for cochlear implant recipients in the presence of competing speech
noise,’’ in Proc. Asia–Pacific Signal Inf. Process. Assoc. Annu. Summit
Conf. (APSIPA ASC), Dec. 2017, pp. 808–812.

[20] L. L. N. Wong, S. D. Soli, S. Liu, N. Han, and M.-W. Huang,
‘‘Development of the Mandarin hearing in noise test (MHINT),’’ Ear
Hearing, vol. 28, no. 2, pp. 70–74, 2007.

[21] T. Arias-Vergara, P. Klumpp, J. C. Vasquez-Correa, E. Nöth,
J. R. Orozco-Arroyave, and M. Schuster, ‘‘Multi-channel spectrograms
for speech processing applications using deep learning methods,’’ Pattern
Anal. Appl., vol. 24, no. 2, pp. 423–431, May 2021.

[22] T. Arias-Vergara, J. C. Vasquez-Correa, S. Gollwitzer,
J. R. Orozco-Arroyave, M. Schuster, and E. Nöth, ‘‘Multi-channel
convolutional neural networks for automatic detection of speech deficits
in cochlear implant users,’’ in Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications. Havana, Cuba: Springer,
Oct. 2019, pp. 679–687. Havana, Cuba

[23] R. Hinrichs, F. Ortmann, and J. Ostermann, ‘‘Vector-quantized zero-delay
deep autoencoders for the compression of electrical stimulation patterns
of cochlear implants using STOI,’’ in Proc. IEEE-EMBS Conf. Biomed.
Eng. Sci. (IECBES), Dec. 2022, pp. 165–170.

[24] T. Gajecki, Y. Zhang, and W. Nogueira, ‘‘A deep denoising sound coding
strategy for cochlear implants,’’ IEEE Trans. Biomed. Eng., vol. 70, no. 9,
pp. 2700–2709, Sep. 2023.

[25] K. Chu, C. Throckmorton, L. Collins, and B. Mainsah, ‘‘Using machine
learning to mitigate the effects of reverberation and noise in cochlear
implants,’’ in Proc. Meetings Acoust., 2018, Art. no. 050003.

[26] R. Grimm,M. Pettinato, S. Gillis, andW.Daelemans, ‘‘Simulating speech
processing with cochlear implants: How does channel interaction affect
learning in neural networks?’’ PLoS ONE, vol. 14, no. 2, Feb. 2019,
Art. no. e0212134.

[27] Z. Feng, Y. Tsao, and F. Chen, ‘‘Preservation of interaural level difference
cue in a deep learning-based speech separation system for bilateral and
bimodal cochlear implants users,’’ in Proc. Int. Workshop Acoustic Signal
Enhancement (IWAENC), Sep. 2022, pp. 1–5.

[28] T. Gajecki andW. Nogueira, ‘‘An end-to-end deep learning speech coding
and denoising strategy for cochlear implants,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2022, pp. 3109–3113.

[29] I. Hochmair-Desoyer, E. Schulz, L. Moser, and M. Schmidt, ‘‘The HSM
sentence test as a tool for evaluating the speech understanding in noise of
cochlear implant users,’’ Amer. J. Otol., vol. 18, no. 6, p. 83, 1997.

[30] Y. Kang, N. Zheng, and Q. Meng, ‘‘Deep learning-based speech
enhancement with a loss trading off the speech distortion and the
noise residue for cochlear implants,’’ Frontiers Med., vol. 8, Nov. 2021,
Art. no. 740123.

[31] T. Fischer, M. Caversaccio, and W. Wimmer, ‘‘Speech signal enhance-
ment in cocktail party scenarios by deep learning based virtual sensing
of head-mounted microphones,’’ Hearing Res., vol. 408, Sep. 2021,
Art. no. 108294.

[32] T. Fischer, M. Caversaccio, and W. Wimmer, ‘‘Multichannel acoustic
source and image dataset for the cocktail party effect in hearing aid and
implant users,’’ Sci. Data, vol. 7, no. 1, p. 440, Dec. 2020.
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