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ABSTRACT Energy efficiency has become a significant challenge for manufacturing companies. Although
it is possible to improve efficiency by applying new and more efficient machines, decision makers tend to
look for less expensive alternatives. Furthermore, the current reality of manufacturing companies, brought
about by Industry 4.0, requires more flexibility of production systems and increase the complexity off
machine rescheduling without compromising sustainable requirements. This study contributes to the subject
by applying machine learning techniques in a job shop to reduce the makespan and estimate the total energy
consumption. First, an artificial neural network (ANN) was trained to estimate the total electrical energy
consumption in the system. A new input variable for the network was defined to assist in energy estimation.
This variable is called the Priority Factor (PF) and helps capture the different patterns in the job shop. Second,
as the ANN was trained, a Genetic Algorithm (GA) was used to reduce the makespan. Therefore, it is possible
to reduce the makespan and know in advance the total electricity consumption in production. This solution
supports a more sustainable manufacturing process, and is completely developed in a digital manufacturing
environment.

INDEX TERMS Arttificial neural network, digital manufacturing, energy estimation, genetic algorithm,
industry 4.0, job shop.

I. INTRODUCTION
Manufacturing companies that rely on classic production

the individual economic competitiveness of manufacturers,
but also the sustainability of the industrial sector in gen-

systems have business models oriented toward manufacturing
high-quality, low-cost products. However, there is a change in
market behavior, where strategies focusing only on the low
cost of the product have been losing market, leaving to be
as effective as in the past [1]. This has led to the emergence
of new business strategies over the past few decades, which
seek to enable companies to maintain and even increase their
levels of competitiveness by migrating from a cost-based
perspective to strategies aimed at providing services and
increasing the efficiency of their processes. In this context,
discussions have been conducted on the topics Product-
Service System [2] and Industry 4.0 [3], [4].

Industry 4.0 aims to use new hardware technologies and
information and communication systems to improve not only
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eral [4]. The industrial sector is estimated to account for
36% of the total energy consumed worldwide [5]. Therefore,
several studies have focused on developing techniques and
models that increase the energy efficiency of manufacturing
systems. Three main factors explain the growing interest in
the topic: the increase in the cost of energy tariffs, the increase
in the number of environmental regulations, which are more
restrictive, and the behavioral change of consumers, who are
looking for products and ecologically correct services [6].

It is expected that with the adoption of Cyber-Physical
Systems (CPS), proposed by advanced manufacturing, data
on production cycles will be available in real time, thus
allowing the expansion of the use of machine learning
techniques for better decision making in manufacturing. Such
actions may be aimed at improving the sustainability aspects
of the system’s entry, such as the consumption of electricity
and raw materials, reduction of the output aspects, such as the
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emission of pollutants and waste, and even a mixed approach
that contemplates both aspects [7].

Enhancing environmental sustainability and cutting energy
expenses have emerged as key considerations in manufactur-
ing decision-making. Manufacturers are increasingly seeking
innovative solutions to enhance their energy efficiency and
promote sustainability [4], [8]. This work identified the main
themes that aim to maximize their potential in reducing
energy consumption, natural resources, and the pollutant
emissions. In addition, the authors pointed out that the
study of new techniques to facilitate decision making in
manufacturing, whether online or offline with the production
system, urgently needs the development of new research.
In today’s manufacturing landscape, prioritizing productivity
at the cost of excessive energy consumption is no longer
tenable. However, with the advent of efficient scheduling
technologies, we can maintain peak productivity levels
while simultaneously curbing energy expenditure [9], [10].
Furthermore, it is imperative to pay greater attention to energy
management within a factory, particularly in job shops [10].

Based on the context presented, this work contributes to
the subject by applying machine learning techniques (ANN
and GA) to minimize the makespan and estimate electrical
energy consumption. A new variable, the priority factor
(PF), was created, contributing to the literature on job shop
systems. The machine learning tools used are embedded in
a digital manufacturing solution, which is one of the pillars
of Industry 4.0. An initial investigation of this work was
presented in [11].

The remainder of this paper is organized as follows.
Section II presents a literature review. In Section III,
we present the problem description and formulation of
energy estimation and scheduling. Section IV presents
computational results and an analysis of the proposed
approach. Finally, in Section V, conclusions and future work
are presented.

II. LITERATURE REVIEW

The following is a literature review related to the research
problem presented and the existing knowledge on the subject.
The review was divided by subject for a better understanding.

A. SUSTAINABILITY IN MANUFACTURING

Sustainability has become an increasingly important require-
ment in manufacturing systems. This is evident when
observing a greater focus on issues such as the reduction
of non-renewable resources, the emergence of new and
more restrictive environmental legislation, and an increase
in electricity tariffs, among others. Several efforts have
been made to search for more sustainable manufacturing
systems [7], [12], [13].

Industrial activity, more specifically manufacturing sys-
tems, is among the main factors responsible for the actions
that generate impacts on the environment. As pointed out
by [14], these impacts range from the consumption of
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renewable and non-renewable material resources, such as
water, metals, and fossil fuels, as well as the consumption
of large amounts of electricity. The resource consumption
mentioned was classified by [7] as an input aspect of
manufacturing. However, the authors also highlighted the
output aspects of the manufacturing system, such as carbon
emissions and waste.

B. ENERGY EFFICIENCY IN PRODUCTION LINES

Creating a sustainable manufacturing system, particularly the
design of a new production line, requires a prior assessment of
the estimated energy consumption of the processes [15]. For
this, it is necessary to use techniques and tools to estimate
energy consumption. In this context, the use of simulation
tools stands out, which enable the investigation of cause-
and-effect relationships, in addition to allowing a deeper
understanding of the dynamics of the system [16]. However,
the current literature focuses on estimating the consumption
of manufacturing systems already in production, whose goal
is to improve energy efficiency and assist in planning the
existing system. To assist the line design stage, [17] presented
the Methods Energy-Measurement (MEM) methodology,
which assists planners and decision makers in terms of energy
consumption. This method makes it possible to estimate
the potential energy consumption of production lines and
manufacturing cells with greater complexity. This method
allows for the analysis of energy costs and also of CO;
emission levels.

The work presented in [ 18] proposed a systematic approach
to programming operations during the machining process in
two stages. First, the aim was to determine the best machining
center configuration parameters for each item produced.
The quality of the finish is considered as a constraint in
modeling, whose function of multiple objectives is to reduce
the energy consumption and increase the productivity of the
system. The variables considered for the first stage were
the rotation speed, cutting speed, depth of cut, and width
of cut. Owing to the non-linearity between the controlled
variables and objectives of the problem, ANN were used
to calculate the indicators related to the selected input
parameters. Heuristics were then applied to find the best
input parameters, and finally, the best manufacturing settings
for each part were recorded on each machine. The second
stage uses the best results obtained in the first stage to
identify the combination that maximizes the objective output
function. Again, the objective function is normalized by
considering the parameters of energy consumption and total
manufacturing time. From this, heuristics are applied to select
the machine in which each part will be manufactured, thereby
reducing the manufacturing time and improving the system’s
energy efficiency.

Another work of great importance related to the reduction
in energy consumption during the planning of operations in
manufacturing systems was presented in [19]. The authors
proposed a mathematical modeling for programming the
operations of a single-machine system, aiming to reduce
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electricity costs, considering the continuous variation of
the energy price throughout the day. Although the initial
objective of this study was to reduce production costs,
it was observed that the model allows for a reduction in
consumption during peak periods, thus contributing to the
reduction of negative impacts due to the high demand of the
distribution system.

Reference [20] presented a method for managing energy
performance based on the distribution of responsibilities and
at clear definition of a baseline, which allows a quick view of
the system status and decision-making at the tactical level.
This work indicates that research linked to the creation of
metrics for assessing energy performance usually focuses on
strategic or operational levels, with the tactical level rarely
mentioned. However, the tactical level is responsible for
linking the other two. According to the authors, the number
of indicators applied at the tactical level, should be greater
than the number of strategic level indicators and less than
operational-level indicators, forming a pyramidal structure.
However, the investigation indicated that the current literature
scenario follows a double-pyramid structure. This interaction
between the different levels is also highlighted in [21], where
the authors point out the existence of non-trivial aspects
between the levels, suggesting that the best results can be
achieved when analyzing the levels together.

C. PRODUCTION SCHEDULING

In general, it is observed that scientific studies related to
energy efficiency can be grouped into two main fronts [22],
[23]. First, there are studies on reducing energy consumption
through technological improvements in equipment or pro-
duction processes. The second seeks to improve the energy
efficiency through adjustments in the management param-
eters, which directly or indirectly influence the efficiency
of the system. The first may require high investments to
obtain efficiency, therefore, decision makers tend to move
to the second option, seeking to improve the use of existing
equipment based on the best planning and programming of
the operations performed, which also has the potential to
reduce consumption [22].

In this context production planning and programming are
the stages. The works presented in [7] and [24] review the
main models described in the literature linked to production
planning and scheduling, which seek to improve the sustain-
ability aspect of manufacturing systems. In particular, [24]
proposed linking these models to classic activities performed
during production planning.

In the work of [24], the authors observed that approx-
imately 57% of the identified studies were focused on
allocation and sequencing. However, it was also possible to
observe the lack of studies related to the increase of energy
efficiency in systems characterized as job shop type, since,
according to the authors, it is the type of manufacturing
system that best represents the reality of the industry.
The perception that job shop systems have not been well
investigated with the aim of reducing energy consumption
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was also shared by [25]. The following section presents this
type of system and discusses the main studies that address
energy efficiency identified in the literature.

The application of machine learning and optimization
algorithms in production scheduling continues to advance,
providing more sophisticated solutions to complex schedul-
ing problems. Recent studies have demonstrated significant
progress in this domain. The work of [26] introduced
a novel Q-learning based variable neighborhood iterative
search algorithm for solving disassembly line scheduling
problems, showcasing the potential of reinforcement learning
techniques in optimizing production processes. Similarly,
[27] proposed an ensemble artificial bee colony algorithm
combined with Q-learning for bi-objective disassembly line
scheduling, emphasizing the efficacy of hybrid optimization
methods in handling multi-objective scheduling challenges.
Furthermore, [28] presented an improved artificial bee colony
algorithm with Q-learning to address permutation flow-shop
scheduling problems, highlighting enhancements in algorith-
mic performance for complex scheduling scenarios. These
studies provide valuable insights and methodologies that
complement and extend the findings of the present research,
which utilizes ANN and genetic algorithms GA to estimate
energy consumption and optimize makespan in job shop
environments. The integration of advanced machine learning
techniques and hybrid algorithms, as evidenced in these
recent works, underscores the importance of continually
evolving approaches to achieve higher efficiency and sustain-
ability in production systems [26], [27], [28].

D. ENERGY EFFICIENCY IN JOB SHOP

A classic job shop manufacturing system was proposed in the
1960s [29]. It is a problem with a high degree of difficulty in
solving it and, is classified as NP-hard [30], [31]. However,
because it represents the reality of most companies, especially
small and medium-sized companies [25], the job shop has
become a widely adopted model in the manufacturing indus-
try. This type of problem has also become very popular in
the scientific community, where several investigations using
heuristics and optimization methods have been applied [29].

According to [32], the programming of operations in job
shop systems, over the last few decades has been widely
studied from the perspective of the system’s productivity.
However, as pointed out by [24] and [25], little attention has
been paid to system analysis from the perspective of energy
efficiency.

The authors [33] compared different energy policies for
using machines in a job shop manufacturing system. From
the definition of the energy states and the link between the
operating states of the machines, four strategies were defined
and compared in this study.

In [34], an investigation into the impacts of the energy
policy adopted by the Chinese government was conducted.
In this work, the authors carried out a study on the effects
of power supply interruptions on the planning of job shop
systems, where the total energy cost was considered in
addition to the total energy consumption and delays in
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delivery times. The energy cost variable was added to the
study as companies tend to adopt their own diesel generators
to maintain their plans and delivery times.

In a study by [35], the authors presented a model whose
main objective was to identify opportunities for shutting
down machines during long periods of idleness. The model
called Genetic Algorithm Electricity Saving in job Shop
(GAEJP) was based on the NSGA-II model [36], in which
two complementary steps were added to reduce energy
consumption. In the first stage, the model seeks to increase
the idle windows of machines without compromising the total
production delay time. During idle windows, the feasibility
of completely shutting down the equipment is evaluated, re-
connecting it only when there is a new demand, without
compromising the production schedule previously defined by
the NSGA-II algorithm. In the second stage, the solutions
obtained during the first stage are selected following the
criteria of non-dominance and elitism, generating families
of solutions that allow observing the Pareto frontier for the
problem.

Manufacturing companies have different sources of
production interruptions, such as machine failures, order
cancellations, and delivery delays. In some cases, the
initial schedule of activities can absorb these interruptions
when less significant, without affecting the total production
time. However, there are cases in which planning actions
are required to quickly re-establish the original schedule,
minimizing the effects of interruptions. In this sense, [37]
suggested a new technique to reschedule the activities of job
shop systems after interruptions, which aims to minimize
the energy consumption for the resumption of the original
schedule from the variation of the machines’ operating
speeds. The variation in machine speed directly affects
the energy consumption and inversely affects the operating
time [21], [37], [38]. The authors proposed algorithms for
identifying the time needed the time needed to resume the
system, using this time as a restriction for generating a new
schedule. The new programming of the affected operations
was performed by combining the GA and Local Search (LS)
heuristics. The objective function of the problem considered
the parameters of Total Completion Time (TCT) and Total
Energy Consumption (TEC), weighted by a sensitivity
coefficient, which allows the evaluation of the behavior of the
trade-off between production time and energy consumption.

E. ARTIFICIAL NEURAL NETWORKS APPLIED TO ENERGY
ANALYSIS

Artificial Neural Networks have been widely used for
energy analysis, particularly for analyses related to the
industrial sector. The applications are diverse, ranging from
the classification of energy patterns of the operating states of
the machines [39] to the control of the amount of energy used
for the chemical processing of materials [40], to reaching the
demand management of the facilities [41], [42]. In this sense,
483 publications aimed at predicting energy consumption
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were reviewed by [43], where the authors observed that an
artificial neural network is the main model used in this type
of approach, representing approximately 40% of the analyzed
publications. In [6], the authors broadened the research
horizon and identified other applications in the literature.

The study of electricity demand plays an important role
in planning distribution networks and energy generation
systems as because it improves efficiency and avoid problems
such as blackouts or sudden power outages [44].

The study in [45] applied an ANN to forecast the energy
demand in the US industrial sector. This study also applied
the model conduct future projections, considering the period
between 2013 and 2030. The authors observed that the energy
demand in the industrial sector was significantly affected by
the price of energy. From the proposed model, it is possible
to estimate a 16% increase in energy demand in the US
industrial sector by 2030.

The work developed by [6] also identified applications of
ANN to predict the consumption of industrial plants, trans-
port and commercial buildings. According to the authors,
these studies seek to compare the energy prediction with
the actual consumption values of the installation to identify
deviations of greater significance.

In [46], the authors used an ANN for short-term analysis,
considering 15-minute intervals, when forecasting the load
of a commercial complex of three office buildings. Initially,
the authors evaluated the performance of different machine
learning techniques and selected the artificial neural network
to obtain the best results. An analysis of the most relevant
available variables was then carried out and segregated into
three groups: environmental, time indicators, and operational
conditions.

Ill. PROBLEM DESCRIPTION AND FORMULATION

From the point of view of energy analysis, the model
proposed in this work fits the level of the production line
because it seeks to assist during the programming phase of
the machines but does not consider issues related to the way
of executing the processes, types of machines, and installation
layouts.

For the modeling and simulation of the research problem,
the Plant Simulation® software, developed by Siemens
PLMSoftware Inc., was used to model and simulate the
research problem. It is a discrete event simulation software
aimed at creating digital models of logistics systems (e.g.,
production lines), allowing the exploration of the character-
istics of the systems and improving their performance [47].
In addition, the software has tools for combinatorial improve-
ment (e.g., genetic algorithms), ANN, energy analysis.

Job shop systems process N different jobs on M machines.
Unlike flow shop systems, where all jobs follow the same
route through machines, job shop systems allow different
routes for each job processed [48]. In addition, [49] suggests
classifying job shop systems as static or dynamic based on
the type of decision rule adopted for the execution of each
operation. In static systems, the priority of jobs is defined
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in advance and is the same for all machines (e.g., the first
one to arrive is the first to be processed). However, dynamic
systems have the flexibility to define different priorities for
each machine.

The work can be divided into two main stages. First,
a simulation model was created based on the identified
research gap, allowing the collection of experimental data
for training. It is worth mentioning that the data used in this
first stage were generated randomly; that is, the simulated
sequencing did not commit to minimizing or maximizing
any variable in the system but was allowed to accelerate
the information collection process. In the second stage,
the trained ANN was used to estimate the consumption
of different GA-generated machine schedules (recall). The
algorithm was used to minimize the makespan such that
the sequencing of the operations was the closest to a real
scenario. Finally, the energy consumption estimated by
the ANN was compared with the value simulated by the
software. The job shop model and ANN and GA tools were
integrated into the Plant Simulation® software, which is at
digital manufacturing package from Siemens. This brings the
advantage that the proposed solution is ready to produce a
digital twin of the process [50]. Creating digital twins is one
of the pillars of Industry 4.0.

A. GENERAL DESCRIPTION OF THE MODEL

First, it is necessary to insert buffers before the entry of each
machine to modeling a job shop system. This is because
the priority of execution of each job must be analyzed
before its processing, in addition to the possible accumulation
of activities awaiting the availability of the machine for
execution. The simulation model used in this study is
illustrated in Fig. 1. At the beginning of the simulation, all
the jobs were available for execution. Thus, at time t = 0,
jobs are allocated to the respective input buffers for each
machine during the execution of the first operation. When
the operation is completed, the job is forwarded to another
machine responsible for performing the next operation. When
the last operation is performed, the job is completed and
forwarded to the system exit (drain).

According to the classification of job shop systems pointed
out in [49], the model used is classified as a dynamic type.
This is because the jobs have different execution priorities
for each machine in the system. Thus, even if different jobs
are waiting to be processed in the input buffers, only the
one with the highest priority defined for the given time
will be processed. This priority is defined from the input
vector, whose representation adopted in this work is the same
as that proposed in [51], and is called Permutation with
Repetition.

In the adopted representation, each job occurs the same
number of times as the number of operations required for its
execution. Thus, when evaluating the input vector from the
first to the last position, the k-th occurrence of a job refers
to its kth operation. In practice, this representation allows
decoding in a Gantt chart, allocating each operation to its
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FIGURE 1. Simulation model of the job shop.

respective machine. Fig. 2 illustrates an example of decoding
the input vector and resulting programming.

B. GENERAL CONFIGURATION OF THE SYSTEM

This work adopts the classic FT10 problem proposed by [52]
as a basis for developing a simulation and energy consump-
tion estimation model. The FT10 problem architecture was
selected because it is commonly used in the study of job
shop systems, in addition to considering a high number of
machines in the system (10 machines), when compared to real
systems.

Machine sequencing of the operations required for each
job and their respective processing times were randomly
generated. The sequencing and processing times for each
operation are summarized in Table 1. Here, the values pre-
sented in parentheses represent the processing time for each
O, j operation, and the values outside parentheses indicate the
machine on which the operation will be performed.

After defining the sequencing aspects and processing times
for operations, the next step is to define the electrical power
consumed by each machine. Therefore, it is necessary to
define the energy policy applied to the production system,
which indicates the possible energy states of the machines.
Considering that this work adopts energy policy number two,
presented by [32], the behavior of the machines is given by

1) At the initial instant (¢ = 0), all machines are off;

2) Then, the machines are turned on individually when the

first operation requires the use of the machine;

3) At the end of the operation, the machine is placed

on standby, consuming less energy. If the operation
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TABLE 1. Sequencing and times of operations for each job.

Machine (Processing Times)

Jobs
Oi1 Oi2 Oi3 Oi4 Ois Ois Oi7 Ois Oio Oi 10
J1 4(95) 1(69)  5(13)  3(92) 2(85) 6(50) 7(31) 9(90) 8(65) 10(4)
Jo 5(82) 1(9) 4093) 227 325 < 7(69)  10(45) 9(91) (95) 6(7)
J3 4(4) 2(88)  5(67) 1(1) 3(93) 8(2) 6(13) 7(99) 10(92) 9(42)
Jq 5(77)  4(90) 1(13)  2(10)  3(42) 7(9) 6(75) 8(16) 10(15) 9(47)
J5 3(77) 146) 2(24) 4(34) 5(36) 9(30) 8(41) 10091) 7(73) 6(28)
T 251) 3(97) 5(6) 431 1(63) 607 9(23) 725 10(70) _ 8(56)
J7 2(89) 3(84) 4(82) 5(336) 1(79) 8(4) 9(89) 7(20) 10(71) 6(25)
Js 199)  5(92) 4095) 285 3090) 939 10(92) 8(69) 6(24) 7(48)
Jg 120)  3(79) 2(14) 5(10) 446) 8(10) 6(72) 7(62) 9(6) 10(96)
J1o 3(81) 5(54) 4(3) 196)  2(63) 6(53) 8(39) 9(90) 7(36) 1009)

Highest Priority Lowest Priority

Input vector B AEC CACBTCHB

| 1st occurrence of Job A...

Sequencing of operations

M, M, M, M,

Processing times 1

[ 2 1 3 - -

| for 3 units of time, results |

a1 L
C A
v, EERRVEEE i c
[ ™, | - o
. e

FIGURE 2. Example of decoding input vector.

performed was the machine’s last plan, it was switched
off.

Based on the described energy policy, machines can have
three energy states: off, operating and on standby. In the
off state, there is no electricity consumption. The operating
state has the highest energy consumption when the machine
performs an operation. Finally, the standby state refers to the
low-power state, where the machine is not processing any
jobs but is energized and ready to start a new operation.

A method similar to that used in defining the processing
times was used to determine the power consumed by each
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machine during the operating state. Random values were
generated evenly in the range [15,50] kW.

As discussed in [53], the total energy of a machine
can be broken down using Eq. 1. In this equation, the
Epoc value represents the fraction of energy required to
perform physical processing of the job, that is, during the
operating state. On the other hand, the Ej.,y;, energy fraction,
represents all other peripheral devices on the machine, which
remain on even when the machine is in the standby state
(e.g., cooling pumps, ventilation systems, and lighting).
The authors pointed out that even during periods of idle
equipment, machines can consume more than 50% of their
maximum power. However, as this value is not a rule
and may vary depending on the type of equipment and/or
manufacturer, the values adopted in this study were randomly
defined between 40% and 60% of the total power for each
machine. This results in the values listed in Table 2.

Etotal = Epruc + Eperiph (1)

TABLE 2. Power consumed by the machines.

Power consumption in each state

Machine
Off [kW]  Standby [KW]  Operating [kW]
My 0.00 15.49 28.06
M> 0.00 20.39 40.68
M3 0.00 21.03 43.08
My 0.00 14.86 30.23
M5 0.00 12.69 25.04
Ms 0.00 7.16 16.34
M7 0.00 17.32 34.41
Mg 0.00 10.60 18.17
My 0.00 17.82 42.89
Mo 0.00 18.26 41.94

C. TRAINING SET FOR ESTIMATING THE ENERGY
CONSUMPTION

The main function of the ANN in this study was to estimate
the total energy consumption of a job shop system based on an
input vector for sequencing activities. As illustrated in Fig. 2
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the length of the input vector directly depends on the number
of jobs selected and the number of operations required by
each job. Thus, it is necessary to define a criterion that allows
the number of ANN input variables to be fixed for different
job combinations. It is necessary to seek generalization of the
model, without having to model a new network for each new
input vector.

To overcome this problem, the criterion adopted was
to link the number of ANN entries to the number of
machines in the system. This strategy allows the approach
of the proposed model to the typical configurations of
manufacturing companies, where the number of machines
is usually fixed in the system, varying the configuration of
the production order. Five groups of variables were selected,
as discussed in the following subsections.

1) PRIORITY FACTOR
The first set of variables is related to the priority of the
machine to enter operation. As previously discussed and
illustrated in Fig. 2, the input vector can be interpreted as a list
of execution priorities, where the operations to the left of the
vector have a higher priority than those located on the right.
Thus, if a machine is allocated to perform the first
operation of all jobs (e.g., raw material inspection), it will
have a higher priority factor than a machine used only in the
final step of the process (e.g., packer ). Thus, the priority
factor for each machine (PFm) can be defined as the sum
of the inverse values of priority index i of the operations
performed by machine m.

PRy =3 3%+ @)
l

where i is the priority index, which corresponds to the
position of the operation within the input vector, A is
the choice factor and receives a value equal to 1 when the
operation of position i is performed by machine m and O,
when not.

Fig. 3 exemplifies the calculation of the priority factor for
machine 2. Thus, a priority factor FPm must be calculated for
each machine present in the system.

Priority(i) Input
1

Machine
M;
M;
My
Mg PF, =
My
M, 6
My
M3
M3

O 0 N O B WN
@ O @O >0 0> o
N
I R
+
N| =
+
Y
]
=Y
o)}
~

FIGURE 3. Example of calculating the priority factor.
The algorithm 1 presents the calculation of PF.

2) STARTING TIME
The second set of variables refers to the instant at which the
first operation of each machine begins (S7m). The starting
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Algorithm 1 Algorithm for Calculating the Priority
Factor

Input: Input Vector C

Input: Machine Scheduling Matrix S

Output: Set of Priority Factors PF

/* Initiating the Priority Factor */
1 FP < 0;
/* Initiating the operation pointer */
2 op < 0;
/+ Search the input vector C */
3 foreach i < ] until C.length do
/* Identifies the job of position i */

4 job < CIil;

/* Identifies the machine associated to
position i x/

5 machine < S[job, op];

/* Increase the value of Priority Factor =/

1
6 FP[machine]| < FP[machine] + —;
i

/* Updates current job operation */
7 opljob] < opljob] + 1;

time can be determined using the semi-active programming
algorithm illustrated in [S1]. Semi-active schedules are those
in which no operations can be anticipated without changing
the sequencing of a machine [48].

In Algorithm 2, the vector containing the starting time of
each machine, S7m, is initialized to an infinite value. At each
iteration, it was checked whether the machine started the
current operation at an instant less than the one registered.
If this is true, the position of the vector for the machine used
in the current operation is updated.

3) ENDING TIME

Analogously to the set of variables in the starting time, the
instant of termination of operations, ET,,, is also calculated
by the algorithm. However, the vector initialization is done
with a null value for all positions. After that, the operation’s
instant completion is verified at each iteration. The value is
updated if the observed value is higher than that recorded
in ET,,.

4) MACHINE LOAD
The fourth set of variables refers to the total processing time,
ML,,, predicted for each machine. This value can be extracted
from the table of processing times, as illustrated in Fig. 2,
by following the steps described below.
1) Identify the jobs present in the production order;
2) From the table of processing times, the lines related to
jobs not identified in the previous step are removed;
3) Finally, we add the values by columns and assign the
total to the respective variable ML,,. If there were
unused machines, at null value was assigned.

5) NUMBER OF JOBS
Finally, the fifth nuance used in the model refers to the
restricted count of job J present in the input vector (NumJobs).
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Algorithm 2 Algorithm for Calculating STm and ET,,

Input: Input Vector C
Input: Machine Scheduling Matrix S
Input: Processing Time Matrix 7'

Output: Set of starting times ST
Output: Set of ending times ET

1 ST < o0;
2 ET < 0;
3 foreach i < I until C.length do
/* Identifies the current operation */
4 Jjob < CIil;
5 op < nextoperation[job];
6 machine < S[job, op];
7 t < T[job, machine];
8 if (Machineuse[machine] > jobuse[job]) then
/* Identifies the beginning of current
operation x/
9 operations(job, op] <— Machineuse[machine];
/* Icrease the use of machine x/
10 Machineuse[machine] < Machineuse[machine] + t;
1 Jjobuse[job] <— Machineuse[machine];
12 else
/* Identifies the beginning of current
operation %/
13 operations[job, op] < jobuse[job];
/* Increase the makespan of a Jjob */
14 Jjobuse[job] < jobuse[job] + t;
15 Machineuse[machine] < jobuse[job];
/* Updates the value of ST(m) %/
16 if (Machineuse[machine] — t) < ST [machine]) then
17 L ST [machine] <— Machineuse[machine] — t;
/* Updates the value of de ET(m) */
18 if (Machineuse[machine]) > ST [machine]) then
19 L ST [machine] <— Machineuse[machinel;
/* Increase the job operation */
20 op <—op+1;
21 nextoperation|job] <— op;

That is, the number of different jobs is processed in the
current production order.

D. COLLECTING DATA FOR TRAINING THE MODEL

To generate the training set for this work, three new
methods were implemented in the SimTalk 2 programming
language, native to the Plant Simulation software, and aimed
at expanding the tool’s resources [54]. The new methods
were performed at each acquisition round, and the training
examples were recorded in an auxiliary table.

The first method is responsible for the random generation
of production orders. In this method, the number of jobs
or products in the production order to be processed was
first determined. The jobs from each position defined by
the first draw are then drawn. The drawing of the types of
jobs performed out recursively, where a job could not be
selected more than once within the same production order.
The composition of the training bench with jobs of different
sizes and configurations, sought to generalize the model to
the configuration of the adopted system, thereby providing
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flexibility for the production of different combinations. In the
second method, the algorithms described in the previous
section were implemented to extract nuances from the
configuration of the randomly selected production order.
Finally, the third method was used to read the energy
analysis module. The total electrical energy consumed by the
simulated system was obtained and recorded, making up the
training set.

By constructing a simulation model and creating the
aforementioned methods, each simulation round resulted in
only one example for training the network. In this manner,
the training set was generated by repeatedly running the
simulation model.

IV. EXPERIMENTAL RESULTS

A. ANN ARCHITECTURE

The experimental data collection began with the generation
of the ANN training set. Several simulations were performed
by considering different production orders. The production
orders were randomly defined, and the number of jobs
was drawn to compose the order and then the types of
jobs, as shown in Table 1. Fig. 4 illustrates the process of
generating the training set, where each cycle represents a
simulation round that results in a lesson for the training bench.

Draw the amount of Jobs

Begining »

Draw the type of jobs

Generate the input vector

Simulate the input vector

FIGURE 4. Training data set generation cycle.

Because the proposed model uses simulated data, the user
can determine the number of samples for training. In this
study, the number of samples was determined empirically,
and the analysis started with a training bank containing
1000 lessons, with the hypothesis that it would be oversized.

From the generation of the initial training bank, a Multi-
Layer-Perceptron (MLP) ANN was used in this study. The
training set was divided into two partitions, the first consisting
of 70% of the lessons for training and the second consisting
of the remaining 30%;, used in the validation of the ANN. The
default values of the simulation software were maintained
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TABLE 3. Summary of results for each ANN configuration.

Number of neurons

Experiment Hidden layer 1  Hidden layer 2 RE Time (Min:Sec)

1 2 0 0.548% 01:48.61

2 4 0 0.439% 03:04.00

3 6 0 0.433% 04:31.20

4 8 0 0.413% 04:22.13

5 2 2 0.312% 02:02.14

6 2 4 0.250% 02:08.35

7 2 6 0.303% 02:20.89

8 2 8 0.261% 02:30.59

TABLE 4. ANN performance for different moment coefficients.

Experiment a=0 «a=02 a=04 «aoa=06 a=08 a=1 a=12 a=14 a=16 a=18 a=2
1 0.250%  0.240% 0.235%  0.230% 0.241%  0.249%  0.620% 0.257% 0.626%  0317%  0.402%
2 0.250%  0.240% 0.235%  0.230% 0.348%  0.249%  0.873% 0.259% 0.626%  0317%  0.402%
3 0.250%  0.240% 0.235%  0.452% 0.253%  0.239%  0.334% 0.239% 0.609%  0.251%  0.402%
4 0.250%  0.240% 0.235%  0.276% 0.264%  0.249%  0.873% 0.259% 0.626%  0.251%  0.402%
5 0.250%  0.240% 0.258%  0.425% 0.348%  0.249%  0.620% 0.239% 0.223%  0.206%  0.271%
6 0.250%  0.240% 0.258%  0.230% 0.253%  0.249%  0.873% 0.259% 0.609%  0.206%  0.402%
Average 0.250%  0.240% 0.243%  0.307% 0.285%  0.247%  0.699% 0.252% 0.553%  0.258%  0.380%
Maximum  0.250%  0.240% 0.258%  0.452% 0.348%  0.249%  0.873% 0.259% 0.626%  0317%  0.402%
Minimum  0250%  0.240% 0.235%  0.230% 0.241%  0.239%  0.334% 0.239% 0.223%  0.206%  0.271%

for the activation function, activation magnitude, restart, and
learning rate parameters. Finally, the moment coefficient
is adjusted to zero. In summary, the ANN configuration
parameters were:

1) Activation function: Hyperbolic Tangent

2) Activation magnitude: 0.9

3) Restarting: 1%

4) Learning rate: 0.2 ~ 2

5) Momentum («): 0

Considering the scenario presented in the previous para-
graph, the first experiments performed to identify the number
of neurons for configuring the ANN. Eight experiments were
performed by alternating the number of neurons and layers of
the ANN. The training evolution graph was used to evaluate
the response of each configuration, and the average validation
error value was calculated using Eq. 3.

1
RE = -
n

n
> D=9 000, 3)
i1 Vi
where y; represents the actual output value of the training set,
o; the output value estimated by ANN and n the total number
of lessons in the training set.

Table 3 summarizes the experimental results. The last
column shows the total processing time required to train
the network for 500 iterations. This number of iterations
was adopted to allow the comparison between the differ-
ent configurations where, after carrying out preliminary
experiments, it was observed that this quantity would be
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sufficient for the convergence of the results of the different
configurations experienced. It was observed that the total
processing time was strongly influenced by the number of
neurons employed in the first hidden layer of the ANN. The
increase from 2 to 8 neurons in experiments 1 and 4 resulted
in an increase in the total processing time of more than
2 minutes, while the same increase in the second layer for
experiments 5 and 8 resulted in an increase of approximately
30 seconds.

Based on the results presented in Table 3, the ANN
configuration used in experiment 6 was chosen because
it had the lowest average error and training time, which
were very close to the lowest time found among the other
configurations. This resulted in an ANN with the following

configuration:
1) Input layer: 41 neurons

2) Hidden layer 1: 2 neurons

3) Hidden layer 2: 4 neurons

4) Output layer: 1 neuron

After defining the configuration of the ANN, a study on the
influence of the momentum coefficient (o) was conducted.
Starting from the adopted configuration, the parameter value
was changed between 0 and 2, with a step equal to 0.2.
Six experiments were performed for each value of o and
the minimum, average, and maximum values of the average
training error were identified. Table 4 presents the results.

For the experiments carried out, it was observed that
the minimum training error occurred when the value of
a = 1,8 is applied. However, if the moment coefficient
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TABLE 5. Estimation of energy consumption for production orders after heuristic algorithm.

. . Ener Estimated Estimation
Experiment Drawn jobs Makespan Simulate dg()ll(Wh) Energy (kWh) error (%)

1 J2 J3 Js 12:23:00 1387.31 1388.49 0.08%
2 Jo J1io J5 10:16:00 987.83 998.77 1.11%
3 Jq J1 J2 10:57:00 1029.48 1036.43 0.67%
4 J2 J7 J3 10:46:00 1188.15 1194.45 0.53%
5 J7 J1 J5 10:30:00 1209.99 1210.40 0.03%
6 Jo Js Js Js 12:50:00 1537.88 1535.57 -0.15%
7 Jy Jo J1 J3 12:50:00 1537.88 1535.57 -0.15%
8 J7 J1io Je Js 12:44:00 1532.92 1527.83 -0.33%
9 J3 J2 Js J1 11:35:00 1501.45 1508.17 0.45%
10 Js J1io Jo Je 13:14:00 1558.43 1557.58 -0.05%
11 Js J2 Jo J5 J3 12:43:00 1679.40 1687.66 0.49%
12 J3 J1io Jo Js Js 11:52:00 1700.58 1707.75 0.42%
13 J6 J2 J1o Js J3 13:53:00 1981.55 1986.99 0.27%
14 Jo J3 J1 J7 J1o 13:29:00 1717.57 1730.25 0.74%
15 J1o Js J5 Jo J1 13:27:00 1878.47 1887.84 0.50%
16 J7 J1 J3 Jo J1io Js 13:30:00 2104.45 2119.61 0.72%
17 J1o Js Jo J1 Js J3 15:45:00 2236.63 2246.44 0.44%
18 J3 Js J6 J1 Ja Jo 13:08:00 2061.71 2075.45 0.67%
19 J1o Je Js Jo Jg J1 14:29:00 2146.13 2154.96 0.41%
20 Jo Js J1 Js Js J1io 14:42:00 2097.98 2109.38 0.54%
21 J2 J1io J3 Je Jq Js Jo 15:06:00 2083.76 2109.28 1.22%
22 Jo Jg Jy Js J1 J1io J3 15:47:00 2559.81 2567.73 0.31%
23 Jq J1io J7 Jo Js J1 Js 15:46:00 2362.53 2371.83 0.39%
24 Ja Jo J3 J1 Jo Je Js 15:52:00 2393.07 2409.56 0.69%
25 J1 J3 Jq J7 Jo Js J5 15:24:00 2350.66 2366.75 0.68%
26 Jq Js J3 Jo J1 Js J2 Js 16:48:00 2749.67 2758.15 0.31%
27 Je J1 J2 J7 Jg J5 J1o Jo 17:12:00 2776.92 2780.66 0.13%
28 Js Jq J3 Je J7 J1 J2 Jo 17:32:00 2777.85 2782.30 0.16%
29 J1 J10 J3 Js J5 Ja Jo Je 16:43:00 2806.67 2811.00 0.15%
30 Jo Ja J1o J2 Je Jg J7 J3 17:40:00 2738.47 274291 0.16%
31 Jo Js Js J1io J3 Js J7 J2 J1 19:33:00 3169.64 3170.53 0.03%
32 J1 J1o Js Js Jo J3 J7 J2 Jg 18:19:00 3133.70 3131.78 -0.06%
33 J1o J3 J1 Js Jg J5 J7 J2 Ja 18:09:00 3007.87 3012.94 0.17%
34 Jy J7 Jo Je Jg J1 Js Jio J2 17:45:00 3061.37 3061.13 -0.01%
35 J1o Jo J1 J3 Js Jg Je Ja J2 18:54:00 2975.12 2980.64 0.19%
36 J7 J1io Js J1 J2 Je Jg J3 Jo Jq 19:01:00 3289.43 3294.54 0.16%
37 Jy Jg Js J7 J3 J2 Jo J1 Je  J1io 19:32:00 3329.11 3330.81 0.05%
38 Jo Je Jg Js J1o J3 Ja J2 J1 J7 19:43:00 3267.04 3271.74 0.14%
39 Ja J1 J5 Ja J6 J3 J7 Jo Js Jio 18:44:00 3448.97 3451.87 0.08%
40 Ja J3 J2 Js J1o J3 Jo J7 Js J1 20:31:00 3293.91 3297.02 0.09%

evaluates the mean, than the lowest value obtained is 1500 Energy

o = 0,2. However, for « = 0, all the experiments rﬁ

performed in this configuration showed zero discrepancy for Iy { ]

the collected values. Thus, because it had the lowest mean 3000 - ’ Y I ; % 1

error value identified, the momentum coefficient adopted for tl\‘ ?,r," ‘“:»,;-;45

the network was o = 0, 2. 2001 d '... ]

B. ENERGY ESTIMATION FOR DIFFERENT SIZE
PRODUCTION ORDERS

As presented earlier, the ANN training set was generated
randomly. This means that the input vectors would hardly
meet the criteria of lower energy consumption or makespan.
Therefore, these combinations would certainly only be
applied to the programming of a real production system after
first going through an improvement step in sequencing the
operations carried out by each machine.

Finally, the GA heuristic is applied to the model. Produc-
tion orders containing different quantities and types of jobs
were generated and submitted to the heuristic, to reduce the
makespan. A total of 40 experiments were carried out, where
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FIGURE 5. Comparison between target value and ANN output.

the quantity per production order varied from 3 to 10 jobs.
The types of jobs in each order were randomly drawn.
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FIGURE 7. Histogram of ANN estimation error.

After executing the heuristic, an input vector with a
reduced makespan sequencing was obtained. The simulation
model was then adjusted to perform sequencing. The
makespan and the total electrical energy consumed during the
execution of each sequencing vector were recorded. Finally,
the ANN estimates the total energy consumed based on the
extraction of the nuances of the vectors. The values obtained
for each experiment are presented in Table 5.

For each experiment, the column estimation error (%)
shows the relative error between the total energy obtained
through the simulation and that estimated by the ANN.
It is observed that the errors are relatively low, where the
maximum value obtained was 1.22%, which occurred in
experiment 21. The graph in Fig. 5 shows a comparison
between the values of the simulated energy (target value)
and the estimated energy (ANN output) for each experiment.
It is possible to observe the non-linear characteristics of the
system and the low estimation errors, as shown in Fig. 6.
Fig. 7 shows a histogram of the estimation error for the
experiments carried out, where it is possible to observe that
the distribution is very close to zero.

For all metrics, it was possible to observe the accuracy
of the estimation model for the 40 experiments performed.
In particular, the average relative error found during this
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validation step was close to the errors observed during the
training phase of the ANN (Table 4), demonstrating the good
generalization of the model.

V. CONCLUSION

This study presents an application of ANN as a support tool
for the estimation of electric energy consumption in job shop
production systems. Such an application makes it possible
to contribute to reducing the gap in the literature regarding
the study of these systems from an energy perspective,
describing a methodology for creating a support tool for
the decision-making process based on the decision-making
aspect of sustainability.

In particular, this study uses ANN to estimate the total
electricity consumption of a job shop system, considering
different combinations of production orders. In this way,
the proposed model can assist decision-makers in planning
production orders from a sustainable perspective where, for
example, aspects related to the required energy demand in a
given period can be previously evaluated.

Another significant contribution is the possibility of
replacing simulation tools to estimate energy consumption.
Based on the accuracy of the model, energy consumption
can be estimated from the ANN, which is easily used
in free software or open-source programming languages
available in the market, reducing costs with the acquisition
and maintenance of these types of tools.

The modeling carried out starts from the chromosomal
representation of permutation with repetition, where the
operations of the jobs that make up the system are added
to a priority vector, and decomposed by an algorithm for
sequencing the operations. During the development of the
presented model, it was observed that the length of this
vector is a critical point for modeling. Real job shop systems
have the flexibility to process different combinations of
jobs, implying different production orders that can have
varying lengths. Thus, the input vector can also have different
dimensions, making it impossible to use the same network
for different combinations of jobs. To overcome this issue,
modeling is performed from the perspective of machines
because, typically, the number of machines in a factory is
the same. Thus, the number of independent variables was
established based on the number of machines that comprise
the system. This restriction allows the number of variables in
the input vector to be fixed, and consequently, the number of
neurons in the ANN input layer, in such a way that the same
network can perform the estimation for different production
orders.

The work also involves the addition of a new variable called
Priority Factor, which introduces a nuance of processing
order to the ANN training. This variable is novel in the
literature and represents another important contribution of
this work.

As a suggestion for future work, this study could be
expanded based on the performance analysis of the proposed
ANN in view of different energy policies employed in the
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system, such as the shutdown of idle machines or the intro-
duction of transient energy stages during the energization
and de-energization of equipment. Another possible study
front is the use of different machine learning techniques, such
as extreme machine learning networks, networks with radial
base functions, and vector support machines.

Finally, this work directly contributes to the aspect of
sustainability in the context of Industry 4.0, as it proposes
the use of machine learning techniques in the manufacturing
decision-making process. Once trained, the proposed ANN
could act online and directly with the production planning
and scheduling system in such a way that the choice between
different schedules could be made based on energy efficiency.
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