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ABSTRACT Diagnosing brain tumors using magnetic resonance imaging (MRI) presents significant
challenges due to the complexities of segmentation and the variability in tumor characteristics. To address
the limitations inherent in traditional methods, this research employs an advanced deep learning approach,
integrating ResNet50 for feature extraction and Generative Adversarial Networks (GANs) for data
augmentation. A comprehensive evaluation of ten transfer learning algorithms, including GoogLeNet and
VGG-16, was conducted for the classification of brain tumors. Model performance was assessed using
precision, recall, and F1-score metrics, complemented by additional metrics such as Hamming loss and
the Matthews correlation coefficient to provide a more comprehensive insight. To ensure transparency in
image predictions, Explainable Al techniques, specifically Local Interpretable Model-Agnostic Explanations
(LIME), were utilized. The study involved the analysis of 7023 MRI images, with TumorGANet being trained
on a dataset encompassing gliomas, meningiomas, non-tumorous cases, and pituitary tumors. The results
demonstrate the exceptional performance of proposed model named TumorGANet, achieving an accuracy
of 99.53%, precision and recall rates of 100%, F1 scores of 99%, and a Hamming loss of 0.2%.

INDEX TERMS Brain imaging, brain tumor, transfer learning, generative adversarial network,
explainable Al

I. INTRODUCTION

Magnetic resonance imaging (MRI) serves as an indis-
pensable tool in comprehending brain anatomy within
clinical investigations. This non-invasive technique generates
detailed brain images through powerful magnetic fields and
radio waves, offering high-resolution insights into brain
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structure and function. The clarity, contrast, and precise
differentiation of soft tissues in MRI scans facilitate accurate
disease diagnosis. Precise segmentation of both pathological
and healthy tissues within the MRI is crucial for pathology
comprehension, studying progression, treatment planning,
and identifying optimal surgical approaches [1]. Automated
segmentation techniques play a pivotal role by enabling
volumetric analysis of pathological MRI signals and offering
varying levels of automation to delineate tissue boundaries.
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Brain tumors (BT) signify unchecked cell growth, with
malignant tumors representing active cancerous cells and
benign ones being structurally similar but non-cancerous.
Common benign tumors include meningioma and glioma,
whereas astrocytomas and glioblastomas are malignant high-
grade tumors [2]. Brain and central nervous system (CNS)
cancer is a prominent cause of mortality. Based on prior
research, it is projected that approximately 18,990 individuals
(11,020 males and 7,970 females) will be affected by CNS
cancer [3]. In 2020, the global death toll from primary
malignant brain and CNS tumors amounted to 251,329
individuals. The American Cancer Society article predicts
that there will be approximately 3490 new instances of brain
and CNS cancer in 2023. Out of these cases, 1900 are
expected to be men, and 1590 are expected to be females.
Prompt identification and precise categorization are essential
but also highly demanding [4]. The field of neurology is
constantly working towards advancements in this area.

Accurate segmentation of both pathological and healthy
brain tissues from MRI scans, along with their associ-
ated sub-regions, is essential for devising effective cancer
treatment strategies and advancing cancer research [5].
A BT MRI provides crucial details to physicians, including
the tumor’s location, size, shape, irregularities, and intra-
tumoral structure, aiding qualitative or quantitative analysis.
This information assists in determining the tumor’s growth
stage and evaluating the effectiveness of treatments [6].
However, it’s important to note that substantial volumes of
data are necessary to train machine learning (ML) or deep
learning (DL) models for medical image analysis. Image
segmentation, which involves isolating regions of interest,
remains a pivotal yet time-consuming task in various medical
image processing techniques due to the abundance of data
in each image. Radiologists typically consider multiple MRI
techniques simultaneously for BT image segmentation [7].
Traditional survival prediction methods heavily rely on the
manual extraction of a few characteristics from MRI data,
which is labor-intensive, time-consuming, and subjective,
posing a challenge for automated analysis [8].

A. MOTIVATION

Image processing and transfer learning (TL) approaches are
commonly employed in BT detection research to enhance
the accuracy of the model. The primary obstacles in this
domain encompass the diverse array of tumor classifications,
the spatial arrangement of the tumors, and the skewed or
restricted dataset. Tumors can vary in size and location
inside the brain. This poses a challenge for the model
in accurately categorizing tumor types. Several datasets in
this domain exhibit constraints or disparities, leading to
biased learning outcomes. These issues are apparent in our
work. Several investigations [9], [10], [11], [12] documented
a lack of precision in their models. The datasets [13],
[14], [15] utilized in certain research studies were either
restricted in size or exhibited substantial disparities in class
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distribution. This has the potential to impact the model’s
performance. Some instances faced difficulties in achieving
satisfactory accuracy, even while employing a less complex
three-group model [16]. Strategies for tackling challenges
like differences in tumor sizes and locations are not addressed
by Khairandish et al., [17]. Moreover, the specific features
utilized by their models to produce predictions are not dis-
cernible. Nevertheless, S.Babu et al., [18] conducted applied
the layer-wise relevance propagation (LRP) technique and
included heatmaps to enhance the interpretability of the
model. Although employing this approach, their precision
is inferior in comparison to our model. In addition, they
omitted the pre-processing of the data and instead priori-
tized a more targeted training approach based on specific
classes.

Tackling these problems could result in the development
of more resilient and precise MRI BT detection systems. The
objective of our research is to address these deficiencies. The
objective is to enhance the detection of BT in MRI scans
by constructing a model that takes into account tumor sizes,
locations, and unbalanced datasets, while simultaneously
preserving model transparency.

B. CONTRIBUTION OF THIS STUDY

A novel strategy has been embraced to segment and
classify brain tumors (BT), aiming to develop an MRI-based
tumor classification model. The objective is to employ
a variety of methods to classify BT using deep learning
(DL) models. Transfer learning (TL) stands out as an
advantageous approach compared to Convolutional Neural
Networks (CNNs) alone due to its ability to leverage learned
features from one task and apply them to another. The overall
contributions of our study are given below.

o Developed a DL approach for BT classification using
MRI, leveraging ten pre-trained TL CNN networks,
including GoogleNet, DenseNet-121, and VGG-16.

« Utilized ResNet-50 for feature extraction and GANs
for data augmentation to enhance model capability and
performance.

o Implemented GANs-based augmentation to diversify
MRI datasets, mitigate imbalances, and improve model
generalization and classification accuracy.

o Conducted a four-class classification and assessed
results using standard benchmark measures, with the
proposed framework outperforming existing models.

o Employed Explainable AI using LIME to ensure
transparency and accountability, highlighting focused
features or locations in image predictions.

o Introduced a novel approach by combining VGG-16
with GANs-based data augmentation, enhancing feature
representation and providing comprehensive insights for
accurate BT diagnosis.

The subsequent sections of the paper are partitioned
and structured in the following manner: Section II cov-
ers a literature review, Section III describes the Dataset,
Section IV outlines the Model Architecture, Section V
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presents the proposed Method, and Section VI showcases
the experimental results and a comparison with other recent
state-of-the-art methods. Section VII provides an Ablation
Study. Section VIII provides features to explain ability
analysis. Experimentation with prior research is presented
in Section IX, and Section X provides the discussion about
our proposed model. Section XI has the conclusion of this
research and suggestions for future research.

Il. RELATED WORKS

A. ML-BASED APPROACHES TO IDENTIFY BT

Chen et al. [13] created an image-processing system
based on support vector machines (SVM) to recognize
BT. Woldeyohannes et al. [14] also created a classifier
model using SVM that used a combination of feature
extraction and reduction techniques to classify MRI images
as either normal or tumorous. Upgraded K-means clustering
techniques were employed during the segmentation phase,
specifically on BT images. Saeed et al. [15] developed
a system that utilizes 4D image light field techniques to
differentiate cancer-affected regions from non-tumor areas.
Their methodology included a hybrid K-Nearest Neighbor
(k-NN) technique in conjunction with Laplace transform,
Fast Fourier transform, and four-dimensional MRI scans.The
utilization of ML for BT classification from MRI encounters
difficulties such as restrictions in interpretability and the
requirement for diverse, high-quality labeled data to address
overfitting and assure generalizability.

B. DL-BASED APPROACHES TO IDENTIFY BT

Utilizing DL to prioritize the reduction of time complexity in
this field. Rahman et al. [16] introduced a DL-based method
for BT categorization. To mitigate overfitting, the researchers
used dropout regularizer and batch normalization techniques.
Additionally, they proposed a parallel deep CNN (PDCNN)
architecture, which enables the simultaneous extraction of
both local and global information. Khairandish et al. [17]
introduced a methodology employing a hybrid CNN and
SVM algorithm for distinguishing between benign and
malignant BT in images. However, the study’s limitation lies
in its neglect of precise tumor localization within the brain.
Therefore, there is a need for further enhancements to address
this limitation. Babu et al. [18] introduced an abnormal-
to-normal translation generative adversarial network. Their
approach aimed to convert medical images containing
lesions into corresponding images where the lesions are
“removed.” Asif et al. [19] developed a CNN-based DL
method for identifying BT from MRI scans. Enhancing
the system’s performance can be achieved through the
utilization of larger datasets and the exploration of additional
deep-learning techniques. Wang et al. [20] introduced a
novel cross-level connected U-shaped networking model
(CLCU-Net) designed for precise segmentation of BT from
MRI data. Nevertheless, the model exhibits several limi-
tations. Notably, the experiments were conducted utilizing
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two-dimensional images instead of three-dimensional MRIs,
disregarding the inter-slice relationships in the data. A new
3D FCN approach was showcased for tumor cell segmen-
tation in MRI images. However, additional investigation
is needed to assess the efficacy of different normalization
functions, such as batch normalization with variable batch
sizes, layer and group normalization, and instance and local
response normalization [21]. Shehab et al. [22] proposed
an automated technique for segmenting brain images to
address the gradient problem in DNNs. The methodologies
presented showed significant improvements in accuracy
compared to DNNs, potentially expediting the training
process. Rehman et al. [23]introduced the BrainSeg-Net
model, employing an encoder-decoder architecture featuring
a feature enhancer (FE) block for effective feature extraction.
Human segmentation processes are often laborious and error-
prone. Al-Saffar et al. [24] devised an automated approach
to identify and classify different phases of brain gliomas.
Deshpande et al. [25] employed a super-resolution technique
that amalgamates CNN methods to enhance accuracy in
classifying BT. Various image segmentation algorithms were
briefly outlined by Pooja et al. [26]. DL for MRI-based BT
classification demands a lot of computer power and data,
rendering it unsuitable for real-time clinical use.

C. TL-BASED APPROACHES TO IDENTIFY BT

TL uses pre-trained models to classify BT using MRI faster
than typical ML and DL methods by reducing the need
for labeled data and processing resources. Shah et al. [27]
devised a robust EfficientNet-BO model aimed at identifying
BT in MRI images. Although their research concentrated
on exploring five different convolutional models and TL
methods, further investigation is warranted. Mahmud et al.
[28] conducted a comparison between a CNN architecture
and ResNet-50, VGG16, and Inception-v3 models. They
found that the CNN architecture outperformed the other
models. Srikanth et al. [29] created a 16-layer VGG-16 deep
neural network to classify BT MR images into many cate-
gories. Process automation streamlines diagnosis operations
with Samee et al., [30]’s GN-AlexNet model for BT tri-
classification. When testing on imbalanced datasets, model
performance may be biased and minority class predictions
inaccurate. Gupta et al.’s [31] Modified InceptionResNetV2
pre-trained framework for BT detection and radiomics
feature-based tumor (RFT) classification is simpler and
faster, improving computing efficiency and diagnosis time.
However, model accuracy and generalization may be limited
compared to more complicated systems. Alqazzaz et al. [32]
utilized a SegNet model tailored for MRI modalities within
three-dimensional datasets, enabling autonomous segmen-
tation of BT and their sub-tumor components. However,
a notable drawback is the extensive time requirement during
the training phase, which can be considered a limitation.
Table 1 provides an overview of the diverse methods utilized
for classifying BT.
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TABLE 1. Summary of the several approaches used to categorize BT.

Reference Approaches  Model Used Dataset Used Accuracy (%) Explainability
Oksuz et al., (2022) [33] ML SVM and KNN classifiers Figshare BT dataset - 2017 97.25 No
Tahia et al., (2021) [34] CNN Kaggle BT MRI Dataset-2021 92 No
Hashemzehi et al., (2020) [35] CNN-NADE Kaggle BT Classification (MRI)-2021 95 No
Lamrani et al., (2022) [36] CNN Kaggle BT MRI Dataset-2021 96 No
Kadry et al., (2019) [37] DL Hybrid DL-based Model ISLES-2015 and BRATS-2015 96 No
Ismael et al., (2019) [38] Residual networks Figshare BT dataset-2017 97 No
Nayak et al., (2022) [39] Deep autoencoder approach Kaggle BT MRI Dataset-2021 97 No
Kokkalla et al., (2021) [40] Deep inception residual network  Kaggle BT MRI Dataset-2021 97.69 No
Kesav et al., (2022) [41] RCNN-based model Kaggle BT MRI Dataset-2021 98.21 No
Ali et al., (2022) [42] CNN with VGG-19 encoder BRATS-2020 83.01 No
Hong et al., (2022) [43] 3D FRN-ResNet Clinical MDD sMRI images dataset 86.78 No
Krishnasamy, N. et al., (2023) [44] FCNs + ResNet Kaggle BT MRI Dataset-2021 93.90 No
Zhaid U. et al., (2022) [45] ResNet-101 BraTS-2018 94.40 No
Ullah N et al., (2022) [46] Inceptionresnetv2 Kaggle BT Classification (MRI)-2020  98.91 No
Tummala et al., (2022) [47] ImageNet-based ViT Figshare Brain MRI Dataset-2021 98.70 No
Cinar et al., (2022) [48] TL UNet + DenseNet-121 BRATS-2019 95 No
Gaikwad, S. et al., (2023) [49] EfficientNetV2B1 Kaggle BT MRI Dataset-2021 97.4 No
Srikanth et al., (2021) [29] 16-layers VGG-16 deep NN OECD Statistical Yearbook dataset 98 No
Ullah N et al., (2024) [50] DeepEBTDNet Kaggle BT Detection MRI-2021 98.96 Yes
Haque, R., et al., (2024) [51] NeuroNet19 Kaggle BT MRI Dataset-2021 99.30 Yes
Ullah N et al., (2022) [52] TumorResNet Kaggle BT Detection (Br35H)-2020 99.33 No
Raza et al., (2022) [53] DeepTumorNet Kaggle BT Detection (Br35H)-2020 99.33 No

(c) Pituitary tumor (d) No tumor

FIGURE 1. Sample images from each class.

IIl. DATASET

This study utilized the BT MRI dataset. The Kaggle website
now includes the first publicly available collection of brain
MRI images. This dataset comprises 7023 MRI images,
of which 1311 images go under the testing category and
5712 images come under the training category. The four
classes in this dataset are glioma, meningioma, pituitary,
and no tumor. Before being delivered to the model, these
MRI images undergo pre-processing. The dataset consists of
training and testing samples for various types of cancers. The
numerous tumor types, such as glioma tumor, meningioma
tumor, no tumor, and pituitary tumor, are given in the ‘““Name
of Tumor” column. The ‘“Training” column indicates the
number of training samples that are available for each type
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TABLE 2. Number of MRI images in training and testing datasets.

Name of Tumor Training  Testing  Total
Glioma tumor 1321 300 1621
Meningioma tumor 1339 306 1645
Pituitary tumor 1457 300 1757
No tumor 1595 405 2000
Total 5712 1311 7023

of tumor, with 1321 samples for gliomas, 1339 samples for
meningiomas, 1595 samples for no tumor, and 1457 samples
for pituitary tumors. Similar to that, “Testing” indicates
the number of testing samples for each type of tumor, with
300 samples for gliomas, 306 for meningiomas, 405 for no
tumors, and 300 for pituitary tumors. Images from each class
are shown in Figure 1. Table 2 provides Number of the
MRI pictures of the training and testing datasets for glioma,
meningioma, pituitary, and no tumor.

IV. PROPOSED MODEL ARCHITECTURE (TumorGANet)
Figure 2 illustrates the data flow diagram of the proposed
TumorGANet model. We employ ResNet-50 as a means of
extracting features. Subsequently, we utilize GANs for data
augmentation. Finally, we apply 10 distinct transfer learning
algorithms to classify BT. Figure 3 presents the architecture
of the proposed model, including detailed information about
each part.

A. PSEUDO-CODE FOR PROPOSED MODEL (TumoGANet)
Below is the pseudo-code for the whole TumorGANet
architecture.

V. METHODS

Figure 5 illustrates the working procedure of the provided
methodology. The technique comprises four primary stages:
Data preprocessing, Feature extraction using the ResNet-50
model, Data augmentation using GANs, and implementation
of the applied transfer learning algorithms. The specificities
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FIGURE 2. Data flow diagram of proposed TumorGANet model.

of each of these phases are outlined in the following
subsections.

A. DATA PREPROCESSING
Let’s examine a set of BT MRI images Z, consisting of j
images.

Z:{Zl,Zz,...,Zl',...,Zj}, (1)

The variable Z; represents the i input image, whereas
j represents the total number of images. Preprocessing
makes raw data understandable. It also reduces distortions
and improves image attributes, speeding up processing.
The pre-processing stage receives the brain picture Z;, and
its appraisal is crucial. Pre-processing ensures uniformity.
Additionally, the image exhibits irregular lighting. Uneven
lighting may be caused by filament deterioration or sick
apertures. MRI intensity levels often change. The acquisition
circumstance greatly affects MRI scan intensity. The acqui-
sition scenario affects MRI intensity. Normalization ensures
comparability. Adjusting image size improves efficiency
and reduces memory usage. Below are some preprocessing
methods we used in this work. There were several stages
to preprocessing brain MRI pictures. The operations include
scaling, shearing, zooming, and horizontal flipping. Figure 4,
shows a preprocessed image by applying preprocessing
techniques to each image.

1) IMAGE RESIZING
Resizing images is essential for several purposes, including
maintaining constant input sizes, improving computational
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efficiency, reducing overfitting, augmenting the dataset,
addressing memory limitations, facilitating transfer learning,
and enhancing inference speed. Resizing images appropri-
ately enhances the ability of neural networks to acquire
significant features and patterns. The images have been
resized from 512x 512 pixels to 224 x224 pixels.

Let, (Woriginal, Horiginai) represent the dimensions of the
original image, and (W, Hyey) represent the dimensions of
the new image.

The scaling factor for width (SF),) and height (SF},) can be
determined using the following formula:

Wnew Hl’l(ﬁW

SFy = —,
Horiginal

SFy, =
Woriginal

2
The new coordinates (Xpew, Ynew) for a point (x, y) in the
original image can be derived using the following formula:

Xpew =X X SFyy,  Ynew =y X SF, 3)

2) IMAGE SCALING

It transforms the outcome of mathematical calculations into
a visually representable form and is frequently employed
to modify picture attributes such as brightness, contrast,
and other features in jobs related to image processing and
computer vision. We have employed a value of 1.00 for
parameter a to regulate brightness and a value of 0 for
parameter b to control contrast. Image pixels are scaled
down here. Original 8-bit color graphics have pixel values
from O to 255. Divide all pixel values by 255 to get a 0-1
range. Normalizing pixel values for training speeds neural
network convergence and maintains gradient consistency.

VOLUME 12, 2024



A. Nag et al.: TumorGANet: A TL and GAN-Based Data Augmentation Model for BT Classification

IEEE Access

TumorGANet

Image Preprocessing

Feature Extraction

Brain MRI Images

Stage 1

Glioma  Meningioma

Tmage Resizing
(24x224)

Perform Image Scaling
(rescale=1./255)

Batch Norm

A

Stage3

Stage 4

3x3,
Convolution.256
3x3.
Convolution.512
Global Average
Pooling

A
b4
!
g
K
3
s
£
H
V|

Pitutary ~ No Tumor
N Cony2 x
Perform Image Shearing -

| Convd x Conv5.x

(shear_range=0.2)
Perform Image Zooming

(zoom_range=0.2)
Perform Horizontal flip

Processed
Image

Discriminator

\
'
1
1
'
1
'
'
'
'
'
'
'
'
'
,

! |
 — —
E Test Train :
| Data Data :
! :

Generator

Random Noice

Back Propagation

Convl (224, 224, 64)
Conv2 (224, 224, 64)
MaxPool (112, 112, 64)
Convl (112, 112, 128)
Conv2 (112, 112, 128)
MaxPool (56, 56, 128)
Convl (56, 56, 256)

Conv2 (56, 56, 256)

(1024)

dense (1024)
dropout (1024)

MaxPool (28, 28, 256)
dense_1

Conv3 (56, 56, 256)

Convl (28, 28, 512)

Conv2 (28, 28, 512)

Convl (14, 14, 512)
Conv2 (14, 14, 512)

MaxPool (14, 14, 512)
Conv3 (14, 14, 512)
MaxPool (7, 7, 512)

Conv3 (28, 28, 512)

Prediction of brain
tumour

I T

Transfer learning algorithms

FIGURE 3. Stepwise proposed methodology of this paper.

The mathematical equation for picture scaling, specifically
for standardizing pixel values in the context of image
processing, can be stated as follows:

OriginalPixelValue
255

NormalizedPixelValue = “4)
The OriginalPixelValue refers to the numerical value
assigned to a pixel in an image before the process of
normalization. The maximum pixel value for an 8-bit color
graphic is 255. The Normalizedpixelvalue refers to the pixel
value that has been scaled to fit within the range of 0 to 1.
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To modify the brightness, the converted pixel value can be
determined using the formula, where parameter a controls the
brightness and parameter b controls the contrast.

TransformedPixelValue = a x OriginalPixelValue + b (5)

The value of a is set to /.00 for adjusting the bright-
ness, while the value of b is set to O for control-
ling the contrast. This scaling approach ensures pixel
values are within a standard range. This helps neural
networks converge during training and maintain gradient
constancy.
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Image Resizing

Input Image

FIGURE 4. Step-wise reprocessing steps are shown for preparing final
training images of our proposed model.

3) IMAGE ZOOMING
Following the scaling operation, we zoomed the image
to enhance its visual quality. Image zoom transformation
randomly zooms in or out. The zoom range option controls
zooming. Images can be zoomed 20% with a zoom range of
0.2. Training on diverse dimensions and perspectives of the
same items strengthens the model.

The zoom transformation, which randomly zooms in or out
of an image, has the following mathematical formula:

ZoomedPixelValue
= OriginalPixelValue
X (1 4+ ZoomRange x (RandomValue — 0.5)), 6)

The OriginalPixelValue refers to the value of a pixel in an
image before any zooming or magnification. The ZoomRange
refers to the designated range for random zooming, such as
0.2 for a 20% ZoomRange. The RandomValue is a stochastic
variable that is uniformly distributed between 0 and 1. This
formula utilizing a random zoom factor resales pixel values
to zoom in (values greater than 1) and out (values less than
1). Randomness during training improves the model’s ability
to handle diverse dimensions and viewpoints of the same
concept, increasing diversity.

We then use a horizontal flip. This option turns photos hor-
izontally randomly when set to true. It means certain photos
will be horizontally mirrored during training, which might
boost dataset diversity. In tasks where object orientation
doesn’t matter, this augmentation is common. A horizontal
flip transformation randomly mirrors an image using the
following formula:

FlippedPixelValue(i, j)
= OriginalPixelValue(i, Width — 1 — j), @)

Here, OriginalPixelValue(i, j) represents the pixel value
at (i,j) in the original image. The FlippedPixelValue(i, j)
represents the pixel value at (i, Width — 1 — j) after
horizontal flipping. To flip the image horizontally, this
formula reverses pixel values along the width axis. Randomly
creating horizontally mirrored images during training can
enhance dataset diversity for tasks where object orientation
is not crucial. Figure 4 depicted the image after undergoing a
series of sequential processing processes.

B. DATA AUGMENTATION USING GANs
After preposing, we extract features using pre-trained
ResNet-50 deep learning. We augmented the data with
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Algorithm 1 Pseudo-Code of TumorGANet
Start
Input: MRI brain images. Labels, Performance Metrics,
Best Model Insights.
Step 1: Read the original MRI brain images.
Step 2: Perform Image Processing.
o Perform Image Resizing
o Perform Image Scaling
e Perform Image Shearing
e Perform Image Zooming
Step 3: Feature Extraction using ResNet-50.
Step 4: Data Augmentation using GANSs.
o Initialization:
- Initialize generator, discriminator, and GANs with
suitable architectures.
- Compile discriminator and GANs with appropriate
settings.
e Training Loop:
- For each epoch in range (epochs):
¢ Train Discriminator:
> Sample half _batch real images and generate
half_batch fake images.
> Update discriminator parameters using binary
cross-entropy loss.
> Calculate d_loss as the average of losses for
real and fake images.
¢ Train Generator:
> Generate batch_size random noise samples.
> Update generator parameters using binary
cross-entropy loss with discriminator output.
> Calculate g_loss as the binary cross-entropy
loss between generated images and labels.
o After Training:
- Generate X_augmented by feeding random noise
through the trained generator.
Step 5: Split Dataset into Training and Test Sets.
Step 6: Apply Transfer Learning Algorithm.
Step 7: Prediction of BT.
Step 8: Evaluate Performance.
Step 9: Analyze the Best Model with Explainable Al
Output: Predicted Tumor
End

GANs. Next, we partition the data into training and
test sets. These data augmentation methods boost training
data diversity to improve neural network performance and
decrease overfitting. Randomly applying these modifications
to training photos helps the model become more resilient
and generalize to new data. GANs may be employed for
data augmentation by training the generator architecture to
generate novel pictures based on the input data [54]. The
produced images may be incorporated into the training set,
thereby enlarging the dataset and providing additional exam-
ples for the model to acquire knowledge from. Expanding

VOLUME 12, 2024



A. Nag et al.: TumorGANet: A TL and GAN-Based Data Augmentation Model for BT Classification

IEEE Access

Image Preprocessing

Feature Extraction .
Data augmentation

Intensit
Pre-trained [ *~"""- -
deep S v

Brain MRI Images — — — —
0 £
= £ £ &
E i~ [Eq] | &
w 2 5| |EQ| | =
£ 3 i) (87 g
4l |& = 3T z
9 ~| |2y |Ng|l| §
P EAP 2P AP 5
& £S a & ]
sl == [EXI[EZ]| =
ZQ) [eb| |25 [FE E
Sl |E2| |e5| |e2|]| E
£ S =2l |58 2
= w9 S35l 1ed| | €
58] 2] (S 5
£ 5} ] g
=l |~ &

learning Discriminator
ResNetS0

Model

Evaluation Results

/ Performance Analysis

\ ﬁiplicnled Transfer learning algorithms\

| Validation Loss | | Precision | 0 \
alidation Loss G i o | P | )

Testing Loss | 3

I Recall |

| | Xception

MobileNet

Identity best model ]

Jaccard Score | $

Training
Accuracy

I lnception-vl] I |

MobileNet-v2 | |

Classification Result

Prediction of brain tumour

Error Analysis

Cohen's Kappa
Validation
3 Accuracy

Matthews

|| VGG-19 |||

DenseNet-121 | |

Correlation
Coefficient

Ablation study

Test Accuracy
Analysis the model with the

'
1

1

1

!

1

1

: 1
Dole—
: i
: 1
i i

: : Accuracy : |
E : '
3 : !

¢ 1
'

Confusion 4
Matrix

v

1
|
'
I
1
'
1
'
1
1
'
1
1
1
'
1
1
'
'

J

[ vooro []]

Pituitary

ResNet-101 | |
4

\
\

N .

Explainable Al \

Meningioma

Local Interpretable
Model Agnostic
Explanations
(LIME)

=)

FIGURE 5. The overall workflow of this study.

the dataset can improve the model’s performance and reduce
overfitting by offering a wider range of training instances.
Another approach to using GANs for data augmentation
involves utilizing the generator network to generate pictures
resembling the test data, which can subsequently be used to
expand the test set. Implementing this approach can enhance
the model’s resilience and fortify it against fluctuations in the
test data. Additionally, there is a possibility to optimize the
generator network on a specific dataset, enabling the creation
of novel images that display comparable attributes [55].
This strategy is advantageous, particularly when dealing with
datasets that have restricted data availability. Furthermore,
it is crucial to examine the quality of the produced pictures
and test the model’s performance on a larger dataset to
confirm the effectiveness of the data augmentation approach.
A fundamental GANs is mathematically formulated with two
primary components: the generator (G) and the discriminator
(D). The goal is to instruct the generator to produce authentic
samples and the discriminator to differentiate between actual
and created samples. The objective function of the GANS is
expressed as:

rClmingmaxpV (D, G) = Ex~py.. v [log D(x)]

+ Ezvp o llog(l — D(G(2)],
®)
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FIGURE 6. GANs training history.

The generator G network receives random noise as
input and produces synthetic samples denoted as G(z). The
discriminator D network receives samples x and G(z) as
input and produces the probability that a sample is genuine.
Ex~puaatnlog D(x)] anticipated outcome of observing actual
data samples. The discriminator’s objective is to optimize this
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parameter, ensuring that D(x) approaches a value of 1 for
genuine samples x. K., »[log(l1 — D(G(z)))] anticipated
outcome of the generated samples. The objective of the
generator is to optimize this parameter, resulting in D(G(z))
approaching a value near 0 for the generated samples G(z).

Figure 6, displays the relationship between the number of
training epochs and the loss curve of GANs. This research
uses brain MRI scans to train GANs to create brain MRI
images. We compare GANs model losses between real-world
and created images for BT positive and negative cases. We use
kernel density estimation (KDE) to compare the density
curves of the actual and generated photos and show the
results. The density curves of actual and synthesized photos
are graphed for BT present and absent. The density curve
of images with BT reveals a peak at the tumor location,
indicating a higher pixel concentration there. However, the
density curve of the generated photographs includes a peak,
suggesting they may be less accurate than the originals.
The image density curves show a rather homogeneous pixel
density distribution without the BT. However, the density
curve of the generated images has a comparable distribution
with a small peak around the brain’s center, suggesting
they are more precise and lifelike. The intricate tumor
composition and absence of positive examples in the dataset
may explain the difference in density distributions of genuine
and generated BT images. The image may not accurately
depict the tumor’s details, causing a density curve peak.

GANS is utilized in this study to address the challenges
of data imbalance and limited availability of diverse MRI
images for brain tumor -classification. GANs generate
realistic synthetic samples that enhance the diversity of
the training dataset, mitigating imbalances and improving
model generalization. This augmentation technique allows
the model to learn more robust features, adapt to different
clinical scenarios, and reduce overfitting. By incorporating
GANs, we enhance the model’s capability to accurately
classify brain tumors, thereby optimizing data efficiency and
classification accuracy.

C. APPLY TRANSFER-LEARNING

TL is a technique in machine learning that leverages
knowledge gained from a pre-trained model on one task
to enhance performance on a related task. Two prevalent
approaches in machine learning include fine-tuning, which
entails modifying a pre-trained model to suit a particular task,
and feature extraction, which utilizes previously obtained
characteristics to train a new classifier. Domain adaptation
is to minimize disparities in distributions between the
source and target domains, while model pre-training entails
initializing a fresh model with weights acquired from a
pre-existing trained model. Multi-task learning refers to the
training of a model to simultaneously handle multiple tasks.
These solutions are essential in situations where there is a
limited availability of labeled data for the desired job. They
provide a pragmatic approach to enhance model efficiency
and accelerate training in specific domains. We employ
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various transfer learning algorithms for feature extraction and
modeling.

1) FEATURE EXTRACTION

Using the ResNet-50 model as a feature extractor for an
MRI image dataset entails adapting the pre-trained model
to capture significant visual representations. The ResNet-50
model has been loaded, and its top classification layer has
been removed, preserving the model’s convolutional basis.
The images undergo preprocessing to adhere to the input
specifications of ResNet50. Afterward, the preprocessed
images are subjected to the modified ResNet-50, which
applies feature extraction on deeper layers that contain hier-
archical representations of visual content. The embeddings,
also known as features, offer a comprehensive and conceptual
depiction of the pictures. The process of extracting features
may be highly beneficial when using pre-trained deep learn-
ing models for transfer learning or for providing inputs for
downstream tasks such as grouping, similarity comparison,
or visualization. Thorough deliberation should be given to the
layer from which features are taken, as it impacts the amount
of abstraction that is recorded. The resulting embeddings can
serve as a foundation for additional study, offering a succinct
depiction of the visual characteristics of the MRI data that
were acquired by the ResNet-50 model.

2) MODEL BUILDING

We utilized GoogLeNet, DenseNet-121, MobileNet, VGG-19,
MobileNet-v2, AlexNet, Xception, ResNet-101, Inception-
v3, and VGG-16 for constructing the models. GoogLeNet
is an advanced CNN architecture primarily designed for
image classification. The main innovation in GoogleNet
is the integration of the Inception module, which employs
several convolutional filters of different sizes (1 x 1, 3 x 3,
and 5 x 5) to capture input at many scales simultaneously.
DenseNet-121 is a CNN architecture that is renowned for
its dense connectivity and effective parameter sharing. This
architecture, belonging to the DenseNet family, features a
distinct design in which every layer is intricately related
to all other layers [48]. MobileNet is a neural network
structure specifically engineered to optimize performance
on devices that have restricted resources, such as mobile
phones and edge devices [43]. The method addresses the
challenges presented by limited computer resources by
employing depth-wise separable convolutions. MobileNet-v2
is a tailored iteration of MobileNet that is specifically
optimized for use on mobile and edge devices. It utilizes
innovative design ideas to overcome constraints in the
resources that are already accessible. The model employs
inverted residuals to improve feature representation by
extending and projecting block information. VGG-19 is a
CNN design that is renowned for its straightforwardness and
efficiency in applications related to image categorization. The
model’s architecture is an expansion of the VGG16 model,
with a total of 19 layers [42]. AlexNet, an innovative CNN,
played a pivotal part in the resurgence of deep learning.
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AlexNet’s architecture consists of five convolutional layers,
followed by three fully connected layers [12]. Xception is a
sophisticated CNN architecture that deviates from traditional
convolutional designs. This approach is remarkable because it
utilizes depth-wise separable convolutions, which effectively
isolate the spatial and cross-channel correlations. ResNet-
101 is a CNN design that use residual learning to efficiently
train networks with a significant number of layers. The
ResNet-101 architecture is an expansion of ResNet, with
101 levels [45]. Residual blocks, which incorporate shortcut
connections, allow the network to acquire residual functions
instead of only transforming inputs into outputs. Inception-
v3 is a sophisticated CNN that improves and broadens the
capabilities of the original Inception model [44]. The primary
objective of this ResNet-101 is to precisely categorize images
and identify objects. The main progress is in the use of
inception modules, which combine many kernel sizes (1 x 1,
3 x 3,5 x 5) to efficiently capture characteristics at various
scales. The VGG-16 architecture is a CNN that consists
of 16 layers and is highly skilled in performing image
classification tasks [56]. The design employs a sequence of
3 %3 convolutional layers, guaranteeing a consistent receptive
field for capturing intricate features.

D. MODEL PARAMETERS TUNING

Model tuning refers to the empirical procedure of identifying
the most favorable settings for hyperparameters to optimize
model performance. We employ various hyperparameters to
fine-tune our suggested model.

1) EPOCH

An epoch (FE) signifies a single iteration over the full training
dataset. During training, the model parameters are updated
E times. The update rules are contingent upon the optimizer,
batch size, and learning rate. For each E, the model estimates
loss, analyses dataset occurrences, and optimizes parameters.

2) OPTIMIZER

Optimizer assigns optimal ML model training parameters.
This strategy minimizes the error or loss function, which
compares expected and actual values. Popular optimizers
include stochastic gradient descent (SGD), Adam, RMSprop,
and Adagrad. SGD adjusts model parameters in the steepest
loss function fall. Adjust Adam’s RMSprop and Momentum
learning rates. RMSprop modifies parameter learning. Ada-
grad adjusts learning rates using gradients. Optimizers affect
neural network training convergence and stability. Denote the
weight matrix as W, the learning rate as ¢, and the gradient of
the loss function as VL. The weight update equation for SGD

can be expressed as follows:
Wiew = Wola —a - VL, )

The Adam optimizer updating rule can be represented by
a single mathematical equation as follows:

o
- iy, (10)
Ste

Or1 =06 —
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where 6; represents the parameter vector at the current
time step ¢. The parameter vector 6,4 represents the
updated values at the next time step (t+1). m, refers to
the bias-corrected first-moment estimate. v, refers to the
bias-corrected estimate of the second moment. € is a minute
constant that is included to ensure numerical stability.

3) LEARNING RATE

ML Learning Rate (o) controls optimization increments and
model learning speed. «, that exceeds ideal parameters might
cause training divergence or oscillation. The low value of «
can hinder convergence and produce unsatisfactory solutions.
In training, o schedules and adaptive algorithms like Adam
and RMSprop dynamically change o [53].

4) DROPOUT RATE

The dropout rate influences how many neurons are ““dropped
out” during neural network training. This regularisation
reduces randomness overfitting. Dropout rate-specified neu-
rons are randomly assigned zero each epoch. Dropout impacts
hidden neural network layers, not input or output. During
training, the output is produced as the element-wise product
of the input input input and a binary mask with values selected
from a Bernoulli distribution with dropout rate p.

Output = Input © mask, (11

where © denotes element-wise multiplication.

5) TOTAL BATCH SIZE

Total batch size (B) is the number of examples per model
training iteration. The mini-B collects data points processed
per iteration. Memory and processing efficiency depend
on B. The memory may be needed to increase the B
for hardware efficiency. Smaller B allow frequent model
parameter changes but slower calculation. The size of
the dataset, model complexity, and processing resources
determine B.

6) ACTIVATION FUNCTION

Neuron output is mathematically processed by activation
functions in neural network layers. Non-linearity helps
networks learn complicated patterns. The Rectified Linear
Unit (ReLU), Sigmoid, and hyperbolic-tangent activation
functions are common activation functions. The sigmoid
function compresses input values to 0-1, making it helpful
for binary classification. Artificial neural network hidden
layers compress input values from -1 to 1 using the
hyperbolic tangent function. Neural networks model complex
processes and learn and generalize using non-linear activation
functions. ReLU, which zeros negative input values but
leaves positive input values unchanged. Activation functions
assist the model in understanding complex data interactions
in forward and backward passes during training. ReLU
activation function is formally defined as:

ReLU (x) = max(0, x), (12)

103069



IEEE Access

A. Nag et al.: TumorGANet: A TL and GAN-Based Data Augmentation Model for BT Classification

Training and Validation Metrics over Epochs

0.8

0.6 1 —— validation Loss
—— validation Accuracy
—— Train Accuracy
0.4 —— Train Loss

0.2
0.0
Epochs
(a) GANs + GooglLeNet
Training and Validation Metrics over Epochs
2.5 —— Validation Loss
—— Validation Accuracy
—— Train Accuracy
2.0 —— Train Loss
154
104
051
0 10 2 30 © 50
Epochs
(d) GANs + MobileNet-v2
Training and Validation Metrics over Epochs
—— Validation Loss
25 —— validation Accuracy
—— Train Accuracy
—— Train Loss
20
154
104
54
i "Q/\ —AAA s o]
o 10 20 30 0 0
Epochs
(g) GANSs + Xception

Training and Validation Metrics over Epochs

Training and Validation Metrics over Epochs

—— Validation Loss 10
—— Validation Accuracy — et
—— Train Accuracy =
—— Train Loss
08
0.6 —— Validation Loss

—— Validation Accuracy
—— Train Accuracy
—— Train Loss

0.4

Epochs Epochs

(b) GANs + DenseNet-121 (c) GANs + MobileNet

Training and Validation Metrics over Epochs Training and Validation Metrics over Epochs

104 — Validation Loss
2.0 —— Validation Accuracy
—— Train Accuracy
0.8 —— Train Loss
15
0.6 Validation Loss
Validation Accuracy
Train Accuracy 10
s Train Loss
0.5
0.2 1
0.0 1 T T T T T T oo T T T T T T
) 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs
(e) GANs + VGG-19 (f) GANs + AlexNet
Training and Validation Metrics over Epochs Training and Validation Metrics over Epochs
25 —— validation Loss 10
—— Vvalidation Accuracy N
—— Train Accuracy
- —— Train Loss 08
15 06 — validation Loss
—— validation Accuracy
—— Train Accuracy
10 04 —— Train Loss
5 0.2
0{ = £ 00
0 10 20 30 40 50 6 ].‘D 2‘0 3‘0 4‘0 5‘0
Epochs Epochs
(h) GANs + ResNet-101 (i) GANs + Inception-v3
Training and Validation Metrics over Epochs
104
0.8 1
_— — Validation Loss
—— Validation Accuracy
—— Train Accuracy
i — Train Loss
0.2 1
0.0

G

0 10 20 30 40 50
Epochs

Proposed TumorGANet (GANs +

VGG-16)

FIGURE 7. GANs is used combined with different transfer learning model, where the training and validation model performance is shown for each model.

This operation is applied individually to each element of
the output produced by every neuron. During the training
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phase of the TumorGANet, we fine-tune certain parameters
to optimize the outcomes. Our main focus is fine-tuning
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FIGURE 8. GANs is used combined with different transfer learning model, where confusion matrix is shown for each model.

hyperparameters, including the number of epochs, optimizer,
and learning rates. To classify among four classes, we utilize
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the ReLU activation function and Adam optimizer. The
parameter settings are presented in Table 3.
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FIGURE 9. Comparison of model performance of all applied model by precision, recall, F1-Score, and accuracy.

TABLE 3. Hyperparameters of the hybrid model.

Parameters Value
Optimizer Adam

Dropout rate 0.5

Learning rate 0.0001

Total batch size 1024
Activation function =~ ReLU
Epochs 50

TABLE 4. Details about the mechanism used to carry out our approach.

Name Experiment parameters

System type Windows 10, 64-bit

Processor Intel(R) Core(TM) i5-8265U CPU
SSD 512GB

RAM 16GB

Development tool ~ Anaconda3, and Google Colab
Hard Disk Drive ITB

E. EXPERIMENTAL SETUP
The experiments were conducted on a computer system that
had the specifications listed in Table 4.

F. PERFORMANCE EVALUATION METRICS

To evaluate the effectiveness of TumorGANet in classifying
brain tumors from MRI images, many Evaluation Metrics
are employed, each focusing on a certain component of its
performance.
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Precision, recall, Fl-score, and accuracy are commonly
used measures to evaluate the efficacy of image categoriza-
tion models. These metrics provide a quantitative assessment
of the model’s capacity to accurately categorize images.
The conventional mathematical methodology is utilized to
evaluate these metrics, which are defined as follows: true
positive (TP), false positive (FP), true negative (TN), and false
negative (FN) [57].

o Accuracy: The Accuracy is a quantitative assessment of
the overall effectiveness of the model. Accuracy is the
degree of concordance between the model’s predictions
and the actual outcomes. The calculation is performed
using the formula:

TP + TN
TP + FP + TN + FN’
o Precision:This metric assesses the model’s ability
to minimize false positives, indicating its reliabil-
ity in accurately confirming tumor instances. It is
characterized by a specific definition:
. TP
Precision = ———, (14)
TP + FP
o Recall: Recall evaluates the model’s capacity to
correctly detect all instances of tumors and is defined
as:

Accuracy = (13)

TP

Recall = ——,
TP 4+ FN

15)
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TABLE 5. All applied model’'s Hamming loss (HL), Matthews correlation coefficient (MCC), Jaccard score (JS), and Cohen’s kappa values (CK).

Model HL (%) MCC (%) JS(%) CK (%)
GANSs + GoogLeNet 2.44 94.10 90.10 93.20
GANSs + MobileNet-v2 2.44 94.10 90.20 93.10
GANSs + DenseNet-121 247 94.10 90.10 93.10
GANs + MobileNet 7.90 95.00 93.00 95.20
GANs + VGG-19 1.60 96.00 93.10 96.00
GANSs + AlexNet 0.90 97.55 96.20 97.50
GANSs + Xception 10.90 0.738 64.30 70.70
GANSs + ResNet-101 0.50 99.10 97.90 98.70
GANSs + Inception-v3 1.02 97.20 95.80 97.20
Proposed TumorGANet (GANs + VGG-16) 00.20 99.50 98.50 99.50
e F1 Score: The F1-Score achieves a compromise « Hamming Loss (HL): HL quantifies the mean number
between the trade-offs of precision and recall. The of erroneous class predictions made by a classifier.
harmonic mean of these two measures is calculated as 1
follows: HL = — ZH[%- # 3, (17)
Fl 5 Precision x Recall 16 . =1
score = 2 X Precision + Recall’ (16) We have a dataset w1th nsamples, Whire y; represents
the true labels for the i sample and y; represents the
The F1-Score is particularly useful for imbalanced projected labels for the same i sample.
classes when both false positives and negatives are o Jaccard Score (JS): The JS quantifies the degree of
significant [43]. similarity between the anticipated class labels and the
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TABLE 6. Classwise model performance of all applied model by precision, recall, and F1-score values.

Model Tumor Types  Precision (%) Recall (%) Fl1-score (%)
Glioma 93 93 96
Meningioma 94 95 94
GANSs + GoogLeNet No tumor 99 100 100
Pituitary 97 100 99
Glioma 100 91 95
. Meningioma 85 98 91
GANSs + MobileNet-v2 No tumor 99 100 99
Pituitary 99 91 95
Glioma 96 98 97
Meningioma 85 99 92
GANSs + DenseNet-121 No tumor 100 98 99
Pituitary 100 84 91
Glioma 94 97 96
. Meningioma 97 88 92
GANSs + MobileNet No tumor 100 100 100
Pituitary 93 100 96
Glioma 94 96 95
Meningioma 97 90 94
GANs + VGG-19 No tumor 100 100 100
Pituitary 95 99 97
Glioma 99 95 97
Meningioma 96 98 97
GANSs + AlexNet No tumor 100 100 100
Pituitary 97 99 98
Glioma 94 88 91
. Meningioma 53 98 69
GANSs + Xception No tumor 99 89 94
Pituitary 97 33 49
Glioma 100 97 98
Meningioma 97 100 98
GANSs + ResNet-101 No tumor 100 100 100
Pituitary 99 99 99
Glioma 96 100 98
. Meningioma 98 96 97
GANSs + Inception-v3 No tumor 99 99 99
Pituitary 98 97 98
Glioma 929 97 98
Meningioma 97 99 98
Proposed TumorGANet (GANs + VGG-16) No tumor 100 100 100
Pituitary 100 99 99

actual class labels. The term refers to the ratio of the
common elements between the expected and actual class
labels, divided by the combined elements of both sets.

_xnvy
XUy
Matthews Correlation Coefficient (MCC): MCC eval-

uates a classifier’s count of TP, FP, TN, and FN
predictions.

JK

; (18)

B TP x TN—FP x FN
= /TP T FPY\TP+EN)YIN +FP)(IN + FN)’
(19)

mcc
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Cohen’s Kappa (CK): CK calculates the model’s
predictions and real labels’ agreement, allowing for
random agreement. Uneven dataset classes can increase
accuracy. CK accounts for random agreement for a
more accurate image. A high CK value indicates
great model agreement with real labels. CK effec-
tively assesses categorization model reliability. This
is crucial in medical diagnostics, where FP and
FN have serious effects. This is its mathematical
form:

CK = —— (20)
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FIGURE 11. Feature explainability analysis by using LIME model.
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. Actual : Glioma tumor
Predicted: Pituitary tumor

FIGURE 12. LIME based misclassification result analysis.

According to this equation, the observed agreement p,,
represents the actual proportion of agreement between
raters, whereas the expected agreement p, represents
the possibility of agreement by chance. The number CK
indicates the strength of the true agreement compared
to chance. A score of / indicates perfect agreement,0
indicates random agreement and a negative number
indicates systematic disagreement.

G. FEATURE EXPLAIN-ABILITY LOCAL INTERPRETABLE
MODEL-AGNOSTIC EXPLANATIONS (LIME)

LIME is a powerful method designed to enhance the
understandability of complex machine learning models at
a particular level. The objective is to improve the clarity
and understanding of predictions by adding the concept of
local explanations. The focus is on the interpretability of
individual data instances rather than the entire model. The
technique operates by generating altered samples around the
particular occurrence of interest, inducing random variations
to the feature values. LIME is a method that accurately
approximates the complex decision boundary of a model in
the nearby area of a given instance without being limited to
any single model. This is accomplished by implementing a
locally interpretable model, typically a linear model. LIME
employs kernelized weights to ensure that the perturbed
samples exert a substantial influence on the local model.
These weights prioritize samples that are in closer proximity
to the original instance. The feature significance is assessed
by examining the coefficients of this particular model, which
quantifies the influence of each feature on the decision-
making process. The most influential qualities, determined by
their highest relevance scores, offer a localized explanation
that indicates the variables with the greatest impact on the
specific prognosis. LIME is useful across various industries,
particularly in sensitive sectors such as healthcare or finance,
where it is crucial to understand the underlying reasoning
behind specific predictions [51]. LIME is essential for
instilling confidence and facilitating the deployment of
machine learning models in practical scenarios by providing
comprehensible insights into the model’s decision-making
process for individual cases. The equation for LIME is as
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follows:

d
L(x.f. T = > T(x)fi(x) + C My , 1)

i=1

where, x is the instance, f is the approximation model, IT
is the feature importance weights, d is the feature count,
and C is a regularization parameter. The equation includes
a weighted sum of features and a regularisation factor
that promotes sparsity in feature weights. The optimization
challenge involves determining weights IT that minimize
the difference between black-box model predictions and
approximation model forecasts, for instance x.

VI. OUTCOME

We predicted glioma, pituitary, meningioma, and no tumor
using ten transfer learning methods. Classifier performance
was measured using numerous criteria. GANs with VGG-16
performed best once the best model was found. We conducted
an ablation study to determine how specific components
affect ML system performance. To achieve human confidence
in Al systems, LIME was used to find the best model.
User-friendly models are essential. Al interpretability reveals
these systems’ inner workings and helps identify data leaks,
model bias, robustness, and causation. The GANs + ResNet-
101 model demonstrates the second-highest performance
among the models. Additionally, the model achieves an
average precision, recall, F1-Score, and accuracy of 99%
each. In addition, the GAN s + Xception model demonstrates
unsatisfactory outcomes compared to other models. The
precision, recall, F1-Score, and accuracy values are all
average, with percentages of 86%, 77%, 76%, and 78%
respectively. The training vs validation curves for different
models are shown in Figure 7 and the confusion matrices
for different models are shown in Figure 8. The bar chart in
Figure 9 presents the average values of classification preci-
sion, recall, F1-score, and accuracy for all models. Figure 10,
displays a line chart illustrating the performance metrics of
Testing Loss, Validation Loss, Training Accuracy, Validation
Accuracy, and Test Accuracy. In addition, we computed the
values of HL, MCC, JS, and CK for various models as
shown in Table 5. The table demonstrates that our Proposed
TumorGANet model, which combines GANs and VGG-19,
achieves the lowest HL value while attaining the maximum
MCQC, JS, and CK values. Specifically, the values are 0.2%
for HL, 99.50% for MCC, 98.50% for IS, and 99.50% for
CK. The HL number indicates that this model has an error
rate of 0.2% in its predictions. The MCC of 98.50% signifies
arobust concordance between the anticipated and the factual
classifications.

The average classification precision, recall, F1-Score,
and accuracy for all of the models studied are displayed
in Table 6 for four classes. The results demonstrate that
our Proposed TumorGANet, which combines GANs with
VGG-16, outperforms all other models in terms of precision,
recall, F1-Score, and accuracy. Specifically, the achieved
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TABLE 7. Ablation study of TumorGANet model.

Optimizer Learning Rate Epoch Precision (%) Recall (%) Fl-score (%) Accuracy (%) HL (%) MCC (%) JS(%) CK (%)
0.001 100 99.00 98.00 95.00 4.70 93.70 91.00 93.60
Adam 0.0001 50 99.00 100 99.00 98.00 2.20 96.00 95.00 96.00
0.00001 100 100 100 99.00 0.60 99.10 98.70 99.10
0.001 100 100 100 99.00 00.40 99.30 99.00 99.30
SGD 0.0001 50 100 100 100 99.00 1.30 0.981 97.30 98.10
0.00001 94.00 100 94.00 88.00 11.70 94.30 79.40 84.20
0.001 99.00 100 99.00 98.00 1.70 97.60 96.50 97.60
Adagrad 0.0001 50 97.00 100 96.00 88.00 11.80 84.40 78.90 84.00
0.00001 81.00 93.00 96.00 73.00 27.00 64.40 57.10 63.50
0.001 100 100 99.00 98.00 1.60 95.50 97.40 97.40
Nadam 0.0001 50 100 100 99.00 98.00 1.80 97.50 96.40 97.50
0.00001 100 100 100 99.00 01.00 98.50 97.90 98.50
0.001 100 99.00 94.00 92.00 7.90 98.50 85.60 85.30
RMSprop 0.0001 50 100 99.00 94.00 92.00 7.70 90.90 85.40 89.60
0.00001 100 100 100 99.00 0.80 98.80 98.30 98.80
TABLE 8. Comparison of TumorGANet model with the one previously used to categorize brain tumors.
Reference Year Model Used Accuracy (%) Calculated HL.  Ablation g::::i-gcl;:ion gi?)tl:ﬁability
Tahia et al., [34] 2021 CNN 92 No No Yes No
Lamrani et al., [36] 2022 CNN 96 No No No No
Nayak et al., [39] 2022  Deep autoencoder approach 97 No No No No
Kokkalla et al., [40] 2021  Deep inception residual network  97.69 No No No No
Kesav et al., [41] 2022 RCNN-based model 98.21 No No No No
Krishnasamy, N. et al., [44] 2023  FCNs + ResNet 93.90 No No No Yes
Ullah N et al., [46] 2022  Inceptionresnetv2 98.91 No No No No
Gaikwad, S. et al., [49] 2023  EfficientNetV2B1 97.40 No No No No
Ullah N et al., [50] 2024  DeepEBTDNet 98.96 No No No Yes
Haque, R., et al., [51] 2024  NeuroNetl19 99.30 No Yes No Yes
Ullah N et al., [52] 2022  TumorResNet 99.33 No Yes No No
Proposed 2024 TumorGANet 99.53 Yes Yes Yes Yes (LIME)

values for these metrics are 100%, 100%, 99%, and 99%,
respectively. An F1-Score of 99% indicates a favorable
equilibrium between precision and recall. Furthermore, the
model exhibits a 99% accuracy rate in accurately predicting
classes.

VII. ABLATION STUDY

Ablation study is a systematic way to assess and isolate the
contributions of model components, features, and aspects
in machine learning. This procedure reveals how these
factors affect model performance. This experimental method
involves deliberately removing or altering model architecture,
training procedure, or input properties to assess performance
measurements. The key goal is to understand the model’s
decision-making process and determine which elements
influence forecasts [44]. Ablation studies can improve
machine learning model comprehensibility by revealing
feature importance, model robustness, and component sen-
sitivity. In this research, we utilized five different optimizes
and three distinct learning rates, with the epoch fixed. Table 7
presents the results of the ablation study conducted on the
TumorGANet model. We maintain a constant Epoch while
altering the Optimizer and Learning Rate. Significant values
are shown in bold.

VIIl. FEATURES EXPLAINABILITY ANALYSIS
Figure 11, shows LIME-generated images. The display only
shows super-pixels in the correct region, complete with
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highlighted contours and background. The image showed
green super-pixels in the correlation portion, indicating a
higher likelihood of belonging to a specific class. Meanwhile,
red super-pixels indicate a drop in probability. LIME
generates heat maps by overlaying a transparent mask on the
original image, with the mask’s transparency indicating the
significance of each feature. The more transparent sections
represent the most significant elements. LIME generates heat
maps by selecting a local region around the prediction and
training a basic linear model. Model misclassified photos in
Figure 12 exhibit continuous patterns or trends in attributes
that led to erroneous predictions. To prevent future errors,
the model should be updated and training data quality
improved.

IX. COMPARISON WITH STATE-OF-THE-ART METHODS

In this study, we utilized a Brain MRI dataset consisting
of 7023 pictures, which is significantly larger than the
datasets used in earlier research. Class-wise analyses were
performed to evaluate precision, recall, and F1-score for
each type of tumor, namely glioma, meningioma, and
pituitary cancers, as well as for the absence of tumors in
TumorGANet. Prior techniques employing transfer learning,
as outlined in Haque R., et al., [51], did not compare the
performance class-wise on the same dataset. An ablation was
conducted on the TumorGANet model, utilizing five distinct
optimizers: Adam, SGD, Adagrad, Nadam, and RMSprop,
each with three varying learning rates. This ablation analysis
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showcases the robustness of TumorGANet. The Tumor-
GANet model and the previously used method for brain
tumor classification are compared in Table 8. TumorGANet
demonstrates a remarkable accuracy of 99.53%. We have
computed the numerical value of HL. None of the earlier
models mentioned in Table 8 computed the HL. In addition,
we utilize LIME to do analysis, identify important features,
and present both correctly identified and misclassified
instances.

X. DISCUSSION

This study presents a TumorGANet which is a DL framework
that outperformed other methods for BT classification
from MRI, with training and testing accuracy levels of
99.77% and 99.53%, respectively. The TumorGANet utilized
ResNet-50 to extract features from the dataset and then
employed GANSs for data augmentation to boost the model’s
capabilities. Finally, VGG-16 was used to categorize BT. This
architecture for TumorGANet uses the following parameters:
Optimizer Adam, 0.5 dropout rate, 0.0001 learning rate,
1024 total batches, ReLU activation function, and 50 epochs.
TumorGANet used GANs-based augmentation approaches
over other augmentation methods because GANs generate
synthetic data that closely resembles the original dataset, cap-
turing its underlying distribution more accurately compared
to simple transformations like rotation or flipping. It can
produce a wide variety of realistic data samples, introducing
diverse variations and complexities that help improve the
model’s robustness and generalization. GANs can also
generate data tailored to specific features, allowing for more
effective augmentation based on the desired attributes. With
this, TumorGANet can more accurately detect BT than
previously developed models.

The new TumorGANet model helps classify BT better,
but it might not work well with all types of data. Real-
world differences in how images are taken and tumor types
could make it harder for the model to work everywhere.
Although GANs can enhance data augmentation, there is
a potential for introducing synthetic features or artifacts
that may not faithfully depict actual tumors. Thorough
validation and rigorous quality control of augmented data
are crucial. Training and deploying DL models, particularly
those utilizing architectures such as ResNet50 and GANs, can
incur significant computational costs. This may restrict the
availability of the model, particularly in contexts with limited
resources. Also, it needs a lot of special knowledge, which
might be tough for some people to use.

XI. CONCLUSION

TumorGANet presents an innovative approach for cate-
gorizing BT by employing state-of-the-art techniques in
MRI-based analysis. This research combines innovative
strategies, utilizing the capabilities of deep learning and
transfer learning paradigms, to address the limitations asso-
ciated with traditional approaches. This study enhances the
strength and diversity of the dataset by using pre-processing
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techniques and utilizing data augmentation with GANSs.
To determine which features are important for prediction,
we also employ LIME. In addition to showcasing the
model’s transparency using LIME, our suggested model,
TumorGANet, showcases the model’s advanced proficiency
in classification tasks. A low rate of tumor identification
mistakes is achieved by the proposed model, TumorGANet,
due to its high degree of accuracy. To ensure that patients
receive accurate and timely treatment, the model examines
the findings of MRI scans to enhance categorization and
decrease the number of false negatives. When it comes to
analyzing MRI scans, TumorGANet achieves the highest
accuracy at 99.53%, with precision and recall at 100%, F1
scores at 99%, and Hamming Loss at 0.2%. To publish our
model globally and enable its continual refinement through
the development of an expert BT classification system. This
application can enhance the accuracy of BT diagnosis for
medical specialists and clinicians. We aim to integrate feder-
ated learning and digital twins into this expert system in the
future.

XIl. FUTURE WORK

Future research will focus on integrating federated learning
into TumorGANet to enhance data privacy and security,
enabling the model to learn from diverse datasets without
compromising patient confidentiality. Incorporating digital
twin technology is another priority, providing dynamic,
real-time simulations of patient conditions for personalized
treatment planning. Expanding the dataset to include more
diverse MRI scans from various sources will further validate
and enhance the model’s robustness. Additionally, real-time
implementation and clinical trials are planned to assess
TumorGANet’s performance in practical settings, ensuring its
efficacy in improving brain tumor diagnosis and treatment.
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