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ABSTRACT Systems in the real world often consist of multiple subsystems interacting with each other, for
example, the musculoskeletal system or human-human interaction. The measurement of temporal changes
in these systems involves a multidimensional time series. This study introduces a novel framework for
extracting features from multidimensional time series data with a group structure using self-supervised
learning techniques. Specifically, we use a ‘‘lag operation,’’ which is a temporal shifting operation applied to
the features of a certain group.We propose a self-supervised learning method for a neural network model that
uses the data automatically generated by the lag operation and its corresponding operation labels to capture
and quantify the interaction between groups. Upon completion of the training process, the representation
space is obtained with the expectation that it will capture timing-dependent features within its boundaries.
We define and calculate the interaction score, R-score, on the obtained space. To validate our approach,
we apply the proposed methodology to an artificial oscillator and approximately 4 hours of conversational
data to evaluate the R-score properties. From the results of the artificial data, the R-score increases when
the connection between the groups is large. From the high R-score region of the representation space of the
conversation data, we extract the data that contain social behaviors such as ‘‘eye contact,’’ ‘‘turn-taking,’’ and
‘‘smiling,’’ which are related to the interaction between the participants. The experimental results suggest
that the proposed method can obtain a representation space for time series data with a group structure.

INDEX TERMS Feature extraction, multi-dimensional time series data, deep learning, self-supervised
learning.

I. INTRODUCTION
We measured a phenomenon that occurs in the real world,
which may have a hierarchical structure. The elements of
these measurements can be divided into several groups [1],
[2], [3], [4]. In other words, each element in a group in
the measurement interacts within the group, and the groups
interact with each other. We considered a pre-training method
for multidimensional time series data with a group structure
affecting inter- and intra-group interaction.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Huang .

We assumed that our target system depended on the
previous context with some parameters 2.

P(x(t)|x(t − 1), x(t − 2), . . . ; 2).

The interaction term v was defined for each group included
in the system.

PJ (xi∈J (t))

= PJ (xi∈J (t)|xi∈J (t − 1), . . . , vg(X¬J ); 2).

where x, J , and g are the features, index set of the group,
and function which governs the interaction among groups,
respectively. The strength of the interaction is determined by
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the magnitude of v. For simplicity, partial observability [5]
was ignored, and the range of past information was defined
by the time window in practice; for example, 10 time steps.
Our aim was to model multidimensional time series data
for several groups of elements in the measurement; the
elements in a group are tightly coupled (highly correlated),
and relatively weak interactions exist among the groups.

An example is the measurement of human motion using
motion capture systems. Each musculoskeletal element, such
as an arm or a leg, is composed of multiple joints that are
interlocked internally and interact with each other at the arm
and leg levels [1], [2]. Another example is the measurement
of human-human interactions. Because each participant’s
reaction affects the others [3], [4], the probability of gesture
expression at a certain time depends on the conversation
partner’s behavior, that is, the probability of the behavior is
defined as the conditional probability.

Some studies have proposed feature extraction based on
a deep neural network from time series data [6], [7], [8],
[9]. Self-supervised learning is a widely used method, which
employs a pair of sampled time series data for pretraining [6].
The hidden state of a recurrent neural network, for example,
a long-short termmemory-based auto-encoder model, is used
for anomaly detection [7]. The self-supervised learning-based
masked input that is obtained by deleting and reconstructing
a certain region of time series data, is developed for modeling
multi-rate time series data [8]. The transformer is also
useful for extracting features from time-series data [9].
However, most studies do not discuss the group structure of
multidimensional time-series data.

In this study, we proposed a self-supervised learning
method based on a lag operation, in which the time of each
group was shifted. It was assumed that the group structure
was known in advance. The variables in the different groups,
xi and xi′ , do not always directly affect each other, and the
strength of the effect is time-varying. For example, in human-
human communication, the intensity of the interaction would
be different between excitement and quiet situations.

By applying a lag operation to the time series data, the
learned model constructs a distinctive feature space and
extracts data, including group interactions, from a specific
region in the space. A deep neural network model learns
to predict the time shift and the representation space is
obtained by projecting data using the learned network. The
score of each data point is calculated based on kernel
density estimation [10] to determine the location of each
lag-operated data point in the learned representation space.
This evaluation value was used as the criterion for data
extraction.

We applied our model to the feature extraction of artificial
phase oscillators and human behavior during conversations.
In the experiment using the artificial oscillator, the calculated
score changed according to the connection strength of the
intergroup. For the actual data, which were the participants’
behavior during the dyadic conversation, synchronized
behaviors such as nodding, smiling, and others, were included

in the data with high scores. These results suggest that the
proposed model could extract the features of time series data
with a group-like structure.

FIGURE 1. Relationship between x(t) and X (t). i is the index of the
feature.

II. RELATED WORKS
A feature extraction method for multidimensional time series
data based on deep neural networks was developed. The
features of the time series data were expressed as latent vari-
ables using sequence-to-sequence architecture [11], in which
the encoder-decoder architecture was constructed using long
short-term memory [12]. The forecasting performance of the
time series data could be improved by concatenating the
hidden states of the encoder for each type of time series data
(e.g., item sales and weather) [13]. An algorithm based on
a convolutional neural network was used to extract features
from the time series data, and this approach was applied to
the classification of the data [14]. The representation of the
time series data could be obtained using a transformer [15]
similar to language modeling [9]. While these studies show
the features of multidimensional time series data for some
tasks that can be extracted using a deep learning approach,
the group structure of the observed values is not considered.

A self-supervised learning technique was developed to
obtain representations from unannotated information. Self-
supervised learning was mainly used for small amount of
labeled data, and network model weights were obtained
by pretraining using unannotated data and automatically
generated labels. Self-supervised learning approaches apply
transformations φ to the input image, such as rotating and
flipping [16], [17], [18] and breaking down an image into
puzzle-like pieces [19], [20]. A neural network is trained on
the converted data and automatically generated labels, that is,
the image processes that are applied and the correct position
of the broken image patches.

Efficient feature extraction from unannotated data has been
achieved using deep neural networks [18], [21]. In this study,
we adopted the self-supervised learning technique because
this method can construct a feature space using unannotated
samples, which can be obtained at a lower cost than annotated
samples. In the proposed framework, the neural network
learned to infer the amount of time shift using training data
to cope with the interaction between groups.
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FIGURE 2. Input and output variables for self-supervised learning.

III. METHODS
This section describes the proposed learning framework
for feature extraction from multidimensional time series
data, which is trained using time shift labels. Part of the
group behavior is assumed to interact, and the conversion
of interaction data φTL is designed as a lag operation. The
purpose of self-supervised learning is to extract features from
the converted data.

A. PROBLEM SETTINGS AND NOTATIONS
This section describes the setting of the group data and
notation of the variables. For simplicity, we make the
following assumptions:
1 Two groups exist in the multidimensional time series

data, wherein the features of the two at time t are x1(t)
and x2(t).

2 The current state of our target time series data is affected
by the finite length context, i.e., similar to the finite
impulse response.

Based on these assumptions, T time-step features of the
two groups are defined as XT1 (t) = [x1(t − i)|i =

0, . . . ,T ],XT2 (t) = [x2(t − i)|i = 0, . . . ,T ]. Fig. 1
illustrates the relationship between x(t) and X (t) at time t .
The time indices of the features in each group ·L , ·R remain
consistent. In a typical supervised learning setting, a label is
assigned to each sample by human annotators, and the neural
network is trained using the annotated training data. However,
annotation of the data is expensive, and it is preferable to
reduce the annotation task.

In this study, we aimed to develop a framework for
extracting the representation space for the temporal relevance
of the two groups. We proposed an automatic data-synthesis
procedure for a self-supervised method suitable for multidi-
mensional and group data.

B. LAG OPERATION
This section describes the lag operation applied to the
time series data. Corresponding to the time indices of both
features, XT1 (t),X

T
2 (t), the time-shifted feature is defined as

XT1 (t),X
T
2 (t + τ ). Thus, the lag operator φTL is expressed as

follows:

φTL(XT1 (t),X
T
2 (t), τ ) = {XT1 (t),X

T
2 (t + τ )}, (1)

where τ is the lag operation parameter, which is the amount
of time lag, that is, the time shift. τ is sampled from the set of
time shifts T . Without loss of generality, X2 is swapped with
X1 owing to temporal data symmetry.

Fig. 2 illustrates the input features, output variables, and
estimation model. φTL(XT1 (t),X

T
2 (t), τ ) is the input to the

model, and the model outputs the representation z. Feature z
is input into the lag estimator, f , to estimate the shift τ̂ , which
indicates the amount of time shift.

C. LOSS FUNCTION
This section describes the loss functions used to train the
feature extractor. τ ∈ T is used as a label for the
training process. To classify the number of lag operations,
the following loss function,

L(zp, τB, τ̂B) = αLc(τB, τ̂B) + βLd (zp, τB), (2)

was calculated. zp,B, τB, and τ̂B are the representation, batch
size, amount of lag operation for each data, and estimated
amount of time shift, respectively. α and β are the constant
weights for each term. Furthermore, Lc and Ld are the
classification losses used to estimate τ and the distance-
based losses, respectively, to determine the placements of the
representations.
Lc is defined as the cross-entropy loss

Lc(τ, τ̂ ) =
1
b

B∑
b=1

∑
i∈T

p(τ = i) log(p(τ̂ = i)) (3)

to estimate the discrete label τ . To learn the distance of each
feature, Ld is defined as the soft-nearest neighbor loss [22]

Ld (zp, τB) = −
1
b

B∑
b=1

log



∑
j∈1···B
j̸=b

τBj =τBb

exp−
d(zpb,zpj )

T

∑
k∈1···B
k ̸=b

exp−
d(zpb,zpk )

T


, (4)

where T and d(·) are the temperature variable and distance
functions, respectively. The L2-norm d(xb, xj) = ||xb −

xj||2 was used in this study. Representations with the same
τ were placed to close the area in the representation space
by Ld . By employing both Lc and Ld , classification and
placement problems can be handled simultaneously. The
development of a loss function for self-supervised learning
with interaction data is an area of future research.

D. CALCULATION OF R-SCORE
This section describes the calculation method for the score
of sliced data based on the learned network model. The
probability density was estimated based on the learned rep-
resentation space, specifically with respect to the amount of
lag operation in each case. The density of the representation
for each operation τ was then computed, and estimated using
the kernel density estimation method [10]. The score was
defined as the location of the lag-operated data in the learned
representation space.

The set of data with τ was defined as xτ
=

{φTL(XT1 (t),X
T
2 (t), τ )|τ ∈ T , t = 1, . . . ,N }. The

representation zτ was extracted from xτ , and the probability
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density was calculated as follows:

K (zτ , h) =
1
Nh

N∑
i=1

k
(
zτ − zτi
h

)
, (5)

where k(·) is the kernel density function. A Gaussian kernel
function was used in this study. Parameters h and N are the
bandwidths of the kernel function and the sample size of the
dataset, respectively. The density ratio for z is calculated as

R(z, h, T ) =
1

|T |

∑
i∈T

K (zi; zi, h)∑
j∈T K (zi; zj, h)

. (6)

This R(·) is used as the ‘‘score’’ of the representations. The
R-score increases when the operational data zi, i ∈ T are
projected onto the region where the same operated data
exist. However, the score was approximately 0.2 when zi was
projected onto the undistinguished region, that is, the region
where all types of operated data existed. If unknown data are
input or each operated data is projected into the wrong area,
the R-score becomes zero. In this case, evaluating whether
the data are ‘‘good’’ is difficult. The data with R ≈ 0.2 are
defined as ‘‘low score’’ data.

IV. EXPERIMENTS
The proposed feature extraction framework was applied to
two multidimensional time series data: the artificial phase
oscillator and human-human conversation data. In the artifi-
cial oscillator experiment, the temporal data were generated
from twomultidimensional oscillators with interaction terms.
The data of another experiment were obtained from dyadic
conversation data, and two participants’ facial features, that
is, the roll, pitch, and yaw of the head, facial action units, and
audio features, were considered.

A. ARTIFICIAL DATA BY PHASE OSCILLATOR
In this experiment, we applied our method to model the
artificial time series data and investigate the characteristics
of the model. An artificial oscillator, which is a nonlinear
cyclic signal, was used and two oscillators were connected.
The connection strength of the oscillators was changed. The
R-scores for the time series data obtained from the oscillators
were calculated.

1) PHASE OSCILLATOR
We used Kuramoto’s phase oscillator [23] to generate
artificial data and determine whether the proposed model
could extract features related to the phase difference. A phase
oscillator is a model in which each state is entrained into
a phase difference defined by its parameters. When two
oscillators with each oscillator having a different basis
frequency, are connected to the weight, the feature of the
nonlinear time series data changes because the strength
of entrainment changes according to the magnitude of the
weight. The oscillators converge to the same cyclic signal
if the weight value is large, and the perturbations have an
independent frequency if the weight is small.

Two oscillators with different parameters were used in
this experiment. The interaction between the outputs was
controlled by a weight term. The state of the jth unit in the
ith oscillator changes according to the following dynamics:

θi,j(t + 1) = θi,j(t)

+ 1{ωi +
∑
k

sin(θi,k (t) − θi,j(t) − wi,j,k )

+ ui,j(t)}, (7)

where wi,j,k and ωi are the phase matrix and intrinsic angular
velocity, respectively. ui,j is the input from the other oscillator,
and the term is calculated as

ui(t) =

∑
l

vi,l sin(ul(t)). (8)

In this study, the connection weight v was randomly
initialized, and ω1, ω2, and the number of units were
empirically set to 1.7, 2.0, and 5. The strength of the effect
of the other oscillator was changed by v, and the behaviors of
the output signals sin(θi) and i ∈ {1, 2} were changed.

2) EXPERIMENTAL SETTINGS
The input features of the network model, architecture of the
network, and training setting are described in this section.
The connection weight between the oscillators was sampled
from a uniform distribution, and a 500-step sequence was
generated for each weight. The training data were constructed
by conducting the sequence generation process 100 times,
that is,wwas generated 100 times. For the test data,wwas set
to 0.0, 0.25, 0.5, 0.75, and 1.0 and a 500-step sequence was
generated for each weight.

The calculation of the R-score was affected not only by
w but also by the length of the past information T . For
example, the proposed model could not distinguish between
the lag-operated data if the past information was insufficient.
The time steps were set to T = 10, 20, and 50, and the
representation space after training was investigated.

The architecture was a five-layer convolutional neural
network with a kernel size of 3 × 3, and the features of
each oscillator were handled as a two-channel image. The set
containing the number of lag operations for self-supervised
learning was T = [−10, −5, 0, 5, 10] steps. The constant
variables in Equation 2 were set to α = 1.0, β = 0.2.
An Adam optimizer was used to learn the network, and the
learning rate was set to 5 × 10−4.

3) RESULTS
In this section, the relationship among the R-score, inter-
action term, and context length in the artificial data was
investigated.

a: RESULTS OF REPRESENTATION SPACE
The learned representation spaces for each time step are
presented in Fig. 3. When T = 10, most representations
were not isolated, that is, all lag-operated data were mixed in

98948 VOLUME 12, 2024



Y. Okadome, Y. Nakamura: Feature Extraction Method Using Lag Operation

FIGURE 3. Example of compressed representation space with t-sne. Blue, orange, green, red, and purple dots represent the amount of lag
operation τ = −10,−5, 0, 5, 10 steps.

FIGURE 4. R-scores for each time step and connection weight. Blue, orange, green, red, and purple lines represent the sorted R-scores of
v = 0.0, 0.25, 0.5, 0.75, 1.0 in descending order.

the representation space. Conversely, each lag-operated data
was projected onto the difference region of the representation
space when T = 50. Some representations were isolated
when T = 20. To model the structure of multidimensional
time series data, a certain amount of past information is
necessary.

Even when T = 50, unseparated regions, such as (x, y) =

(0, 0), existed. It is important that data with a small w and
before entrainment situation, are included in the dataset. For
the separated region, the distances between the clusters of
τ = 0 and τ = ±5 were smaller than those of τ = ±10.
Because data with the same amount of lag operation tends to
project into the same region by the effect of the soft-nearest
neighbor loss, other clusters with features similar to a certain
cluster are expected to be placed close to each other.

b: RESULTS OF R-SCORE
Fig. 4 presents the sorted R-scores for each connectionweight
and time step. When T = 10, the maximum R-score for all
weights was lower than 0.6, and the difference in the R-scores
between the weights was insignificant. For T = 20, 50, the
R-score increased from w = 0.0 to 1.0.

The R-score for T = 50 was largest, except in the case
of w = 0.0. When w = 0.75 and 1.0, the reduction
in the R-score did not drop dramatically, unlike in the
other conditions. The feature extractor projects most of the
lag-operated data onto the correct cluster. However, because
data with small R-scores are included in the figure, each

group is not entrained to all time steps, even if the weight is
large. This result suggests that the proposed model can train
multidimensional time series data with interaction effects
between groups.

B. HUMAN-HUMAN CONVERSATION DATA
In the second experiment, we applied our proposed method
to human-human conversation data [24]. The motions of
the faces and voices were extracted from video clips
and analyzed. Fig. 5 shows a schematic of the extracted
features. The detailed preprocessing procedures are provided
in Appendix A.
After training the model and score computation, data

with a high R-score were extracted from the representation
space to verify the possibility of extracting data with
synchronization behavior, such as nodding. The extracted
data were evaluated to determine whether synchronization
behaviors were contained by checking the features of the data.
In addition to the investigation, human impressions of the
extracted videos scored using the R-score were evaluated (see
Appendix B).

1) EXPERIMENTAL SETTINGS
The input features of the network model, architecture of
the network, and training settings for conversation data are
described in this section. From the collected 15 sessions
in [25], 13 sessions were used as the training dataset and the
remaining two were used as the test dataset. In the learned
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FIGURE 5. Schematic view of conversation data. Features during conversation are
extracted.

FIGURE 6. Network architecture of self-supervised learning.

FIGURE 7. Example of compressed representation space with t-sne. Blue,
orange, green, red, and purple dots represent the amount of lag
operation τ = −1.0,−0.5, 0, 0.5, 1.0, respectively.

model, the test data were the input and the representations
were the output.

The length of the past information T was empirically set to
T = 50, that is, a five-second context was used. To prevent
the duplication of the information, the features were sampled
every five frames. Therefore, the data in the training and test
datasets were defined as [X50

1 (t),X50
2 (t)|t = 50, 55, 60, . . .].

The numbers of samples for the training and test datasets were
30, 176, and 2, 467, respectively.

Fig. 6 illustrates the network architecture employed in this
experiment. The architecture was a five-layer convolutional
neural network, and the features of each participant were
handled as two-channel images. The set containing the
amount of lag operation for self-supervised learning is

T = [−1s, −0.5s, 0s, 0.5s, 1s] with a maximum time shift of
one second. The constant variables in Equation 2 were set to
α = 1.0, β = 0.2. An Adam optimizer was used to learn
the network, and the learning rate was set to 5 × 10−4. The
feature extraction model was trained five times and the mean
R-score was applied.

2) RESULTS OF THE BEHAVIOR EXTRACTION USING
R-SCORE
In this section, the relationship between the R-score size
and conversation data was evaluated. The representation
space was obtained by learning the training dataset. The
features after conversion, φTL(·, ·, τ ) were expected to have
time-dependent characteristics if isolated in the representa-
tion space. In contrast, the converted features with small
behaviors were not separated, that is, each representationwith
τ was mixed. It is noteworthy that because the tendencies of
the extracted data of the two test sessions were similar, the
following results were discussed for the one test session.

a: REPRESENTATION SPACE
Fig. 7 shows an example of a representation space com-
pressed using t-SNE [26] which is a visualization method for
high-dimensional data. For τ , parts of the training data were
separated. Significant unseparated data exist in the space, and
these representations are placed at ‘‘similar’’ positions even
if different τ were applied.

b: RESULTS OF FEATURE EXTRACTION
Fig. 9 shows the sorted R-scores for the dyadic conversation
data. In human-human conversation, it is considered that
many scenes are not synchronized because the reduction in
the R-score is rapid.

Representations with high R-score (high-R) data and
unseparated mixed (low-R) data with low R-scores were
extracted. For low-Rs, if the input feature was projected onto
the unseparated region, R became 0.2 from equation 6, that
is, all kernel densities were expected to have the same value.
Hence, high-R data are the data extracted from the highest R
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FIGURE 8. Examples of the extracted features. The placement of the upper and lower subject is the same as that in figure 12: (a), (b), and (c) are the
features of three high-Rs; and (d), (e), and (f) are the features of three low-Rs. The horizontal axes represent the frames of the input data. The solid and
dotted lines reflect the features of the ‘‘upper subject’’ and ‘‘lower subject,’’ respectively. Red, blue, and green lines represent three high-Rs and three
low-Rs, and solid and dotted lines with the same color are from the same data.

FIGURE 9. Sorted data based on the R-score. The clusters (C0, C1, C2, C3,
and C4) were defined accordingly and used for the human evaluation
shown in Appendix A. These clusters served as divided datasets,
determined by their respective R-scores. Each cluster contains an equal
number of data points.

in fig. 9, and low-R data are from approximately the 2000th
data. If R = 0.0, the data were expected to project outside the
representation space.

Fig. 8 shows the neck and gaze motions and VAD of the top
three extracted high- and low-Rs. The motions in the figure
are rotations around the y-axis, that is, yaw motions. For the
neckmotion, low-Rs indicated small changes, and the angular
values were larger than the high-Rs. Because the subjects
failed to anticipate beyond this point, the extracted data did
not form interaction scenes.

Regarding eye motion, the solid and dotted lines of the
high-Rs demonstrate an intersection for the subjects, that

is, making eye contact. In the case of low-Rs, eye contact
did not occur because the lines were parallel. Eye contact
is a synchronizing behavior because the feature extraction
model easily detects the lag operation, that is, the R-score
increases even though themean value of the five training trials
is calculated.

In VAD, turn-taking occured at high-Rs because the
solid and dotted lines were alternatively activated. Only
one subject continued to talk during low-Rs. The solid red
line was activated at approximately 25 frames in low-R,
whereas the dotted line was not activated until 40 frames.
In comparison with the results of the gaze and neck motions,
no synchronization behaviors were observed at low-Rs.

V. DISCUSSION
The proposed framework was characterized by a training
method for a convolutional neural network and an R-score
calculated in the representation space. From the distribution
in the representation space, the experimental results demon-
strated that the proposed framework could be used to extract
the features of the multidimensional time series data.

In the proposed method, a simple convolutional neural
network was used as a representation extractor. In particular
in the image [18], [27] and language processing [28], [29]
fields, the application of fine-tuning the fundamental model
was developed for downstream tasks. Similar to thesemodels,
our proposed framework was expected to be a fundamental
model for time series data such as human communication data
([25], in Japanese).
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FIGURE 10. Representation space and R-scores of each connection weight for phase oscillator data of three groups. The
new oscillator with ω3 = 2.5 was added. The network architecture and learning setting, for example, the learning rate and
the number of training and test data points, are the same as those used in the experiments with two groups’ data. Blue,
orange, green, red, and purple dots represent the amount of lag operation τ = −10,−5, 0, 5, 10, respectively. Blue, orange,
green, red, and purple lines represent the sorted R-scores of w = 0.0, 0.25, 0.5, 0.75, 1.0 in descending order, respectively.

In the experiment with dyadic conversation data, our
method could extract data including synchronization behav-
iors, but the types of extracted behaviors have not been
verified. It would also be interesting to evaluate the
relationship between the R-score and social behavior (e.g.,
nodding, smiling, and eye contact). Such knowledge would
be beneficial for the control rules of future communication
robots.

The proposed method was applied to simple artificial data
and small laboratory experimental data, and the experimental
results suggest that a representation space can be extracted
by the proposed method. We discuss the following points
considered in time series analysis: real-time, contextual
variations, and seasonal patterns. Our proposedmethod learns
the representation space and the kernel density function
of the space performed offline. In the real-time situation,
observations during an experiment are projected onto the
representation space, and then, the R-score is calculated by
computing the value of the kernel density. While the calcula-
tion for the projection onto the feature space using the trained
neural network is not large, the computational cost for the
kernel density estimation increases as the number of samples
O(n). Therefore, to implement a real-time application, it is
necessary to employ a computationally reasonable method
for density estimation. The development of a framework for
real-time processing using fast computational methods, such
as approximations using mixed Gaussian distributions, is a
future challenge.

To extract the features, there is a relationship between the
time constant of change of the situation and the magnitude of
time difference in the lag operation. Hence, large time lags
and windows are considered necessary to evaluate contextual
variation and seasonal patterns. However, if these situational
changes alter the relationship between the observations, they

will likely be projected to different feature points according
to the situation by the proposed method.

Data synchronization is important because the proposed
method is strongly dependent on time synchronization. The
data were synchronized with high precision and could be
processed appropriately because an omnidirectional camera
was used in the experiment. However, if measurements are
made using a large number of sensors to capture more
complex phenomena, accurate sensor synchronization will
be difficult to implemented. In such cases, a sensor network
system must be used for practical applications.

For the proposed method, there are two types of scalabili-
ties: the number and variety of data, and the group structure.
Regarding the former, in the experiment of representation
extraction from human-human conversation data, we used
a limited amount of data (15 sessions and 20 minutes for
each session). It is expected that the data contains smaller
variety compared to that obtained from large-scale data
collection. Such variety may affect the extracted features.
Considering the extensions of the proposed method, such
as the attribute-aware feature extraction method, it may be
useful to handle such variations.

Regarding group structure, we confirmed that the proposed
method works effectively for cases where there is only a
two-group structure and the group composition is known
in advance. Development of methods applicable to diverse
phenomena, such as automatic extraction of group compo-
sition, will be considered for future study. As an evaluation
of applicability to more complex phenomena, the results of
an application to time series analysis of oscillators consisting
of three groups are shown in figure 10. This is the result
of applying the lag operation to one group out of the three;
however, it can be seen that the distribution changes with
different lags.
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FIGURE 11. Schematic view of conversation data gathering. Each participant used
the microphone, and individual cameras for each person are placed on the table.

FIGURE 12. Example of face feature extraction.

Additionally, our proposed method involves some assump-
tions and limitations. The proposed method implicitly
includes the following assumptions: 1) The target system
ensures that the current feature is obtained depending on a
finite length of the context. 2) The group structure is known.
3) Part of behaviors in each group is interacting with each
other. From these assumptions, the following four limitations
are considered: 1) A fixed time window is used. 2) The
data that has three or more groups is not supposed in the
framework. 3) The size of the time lag must be determined
according to the task in advance. 4) Only a limited number
and variation of data are used in the experiment. Relaxing
these assumptions and limitations, such as by increasing the
number of groups, can extend the application of the model.

VI. CONCLUSION
Weproposed a self-supervised learningmethod based on a lag
operation to model multidimensional time series data with a
group structure. In this method, a lag operation, in which the
time index of one subject was shifted, was applied to the time
series data. The structured representation space was obtained
by learning the label of the amount of the time shift. Using
this feature extractor, each sample could be projected onto the
representation space, and our method computed the R-score
for each sample.

The proposed method was applied to artificial and
actual datasets, that is, a phase oscillator and dyadic
conversation. For the phase oscillator, we confirmed the

change in the R-score according to the connection weight
between each oscillator and the length of the time window.
In the human-human conversation experiment, after learning
using the lag-operated data, synchronization behaviors were
selected based on the score criterion. These results indicated
that the proposed approach could extract features from both
artificial and actual time series data.

In the experiments, we modeled the multidimensional
time series data with two groups. Situations involving a
larger number of groups such as the three-party conversation,
existed in the actual problem setting. The determination of the
validity of the model in many groups will be a necessary task
in future studies. In addition to the validity investigation, it is
necessary to examine the availability of the extracted features
because the proposed method is a feature extraction method,
which involves a type of pretext task.

APPENDIX
A. PREPROCESSING PROCEDURES FOR HUMAN-HUMAN
CONVERSATION DATA
1) DATA PROCESSING
The data gathering and feature extraction from the videos are
described in this subsection. In this experiment, 15 sessions
videos of dyadic conversation recorded [25] were used. Each
session lasted approximately 10 − 20 min and the total
duration of each session was approximately 4 h. A video
showing the facial information (Fig. 12) was recorded using
an omnidirectional camera (Xacti CX-MT100). A dynamic
microphone was placed near the mouth to observe the voice
of each participant.

An omnidirectional camera was placed between two
participants talking to each other, as shown in fig. 11, and
the camera recorded the faces of the participants. Voice
information was obtained using a headset microphone, and
the microphone amplifier was adjusted such that only the
voice of the person with a microphone was recorded.

The input features of the model were generated from
the obtained data. From the video and audio data, three-
dimensional face rotation (roll, pitch, and yaw) and the
corresponding velocities, two-dimensional gaze rotation
(x- and y-axes of an image) and the corresponding velocities,
four-dimensional facial action unit (FAU), and voice activity
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TABLE 1. Questionnaire items for the impression evaluation by crowd participants. ‘‘response, temporal, and attitude’’ in brackets are the groups of
questionnaire items.

TABLE 2. Result of Tukey’s HSD test for C0 vs C1–C4. The statistics and
p-values for the G1 questionnaire group are described.

TABLE 3. Result of Tukey’s HSD test for C0 vs C1–C4. The statistics and
p-values for the G2 questionnaire group are described.

detection (VAD) results were extracted. The video and audio
sampling rates were set to 30 fps and 48 KHz, respectively.

2) FACE FEATURE EXTRACTION
By applying OpenFace [30] which is a software for face
feature analysis in videos, the face position and features were
estimated, as shown in Fig. 12. From the results of OpenFace,

TABLE 4. Result of Tukey’s HSD test for C0 vs C1–C4. The statistics and
p-values for the G3 questionnaire group are described.

the face and gaze rotation, as well as the FAU, which is
usually used for facial expression analysis, were obtained.

3) VOICE ACTIVITY DETECTION
The voice activity was detected by distinguishing between
voice and noise, including breathing and touching the
microphone. To detect the voice activity of each participant,
inaSpeechSegmenter [31] was applied to the gathered voices.
inaSpeechSegmenter is a detection method based on the deep
learning model, and its output is classified into ‘‘noise,’’ ‘‘no
energy,’’ ‘‘music,’’ and ‘‘speech.’’ Appropriate sections of
‘‘speech’’ were selected and labeled as a result of VAD, and
the power of ‘‘speech’’ was recorded.

4) COMBINING FEATURES
The input features of the self-supervised learning model
were generated by combining the face motion, gaze motion,
FAU, and VAD. To obtain the face-related features, each
feature was downsampled from 30 to 10 fps to smooth
the signals. The power of the voice was down-sampled
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FIGURE 13. Answer values of G1 (Q1, Q5, and Q8). The mean and results of Tukey’s HSD test are illustrated. The horizontal and vertical axes are clusters
(C0–C4) and evaluation values, respectively. Characters ‘‘*’’ and ‘‘**’’ show the significant differences with p < 0.05 and p < 0.01, respectively. Moreover,
‘‘+’’ represents significant trends (p < 0.1).

FIGURE 14. Answer values of G2 (Q2, Q6, and Q7). The mean and results of Tukey’s HSD test are illustrated. The horizontal and vertical axes are clusters
(C0–C4) and evaluation values, respectively. Characters ‘‘*’’ and ‘‘**’’ show the significant differences with p < 0.05 and p < 0.01, respectively. Moreover,
‘‘+’’ represents significant trends (p < 0.1).

FIGURE 15. Answer values of G3 (Q3, Q4, and Q9). The mean and results of Tukey’s HSD test are illustrated. The horizontal and vertical axes are clusters
(C0–C4) and evaluation values, respectively. Characters ‘‘*’’ and ‘‘**’’ show the significant differences with p < 0.05 and p < 0.01, respectively. Moreover,
‘‘+’’ represents significant trends (p < 0.1).

to 10Hz to calculate the maximum power for the past
48, 000/10 = 4, 800 samples. These features were combined
for each subject, and the input features [x1(t), x2(t)] were
generated for the learning model. Consequently, twenty-five-
dimensional explanatory variables were obtained for each
participant.

B. HUMAN IMPRESSION EVALUATION
This experiment evaluated the relevance between the R-score
and human impression, that is, the meaning of the score
was indirectly evaluated. Participants were advertised on a
crowded platform through an agency that handled contracts
and operations.
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FIGURE 16. Band graphs of the ratio of evaluation values for each cluster. The horizontal and vertical axes are the ratios of each evaluation and
clusters (C0–C4), respectively. Blue, purple, green, and yellow bands represent the evaluation values 1, 2, 3, and 4, respectively.

The results of previous experiments suggest that syn-
chronization behaviors are obtained from data with a
high R-score, and vice versa. All samples were divided
into five clusters based on their R-scores, and samples
from each cluster were presented to 200 participants.
Each participant evaluated the videos by completing a
questionnaire. In this experiment, the differences in human
evaluations of the data extracted based on the R-scores were
investigated.

1) EXPERIMENTAL SETTINGS
Fig. 9 shows the data sorted according to their R-scores. The
sorted data were divided into five clusters as shown in the
figure. The number of samples for each cluster was equal, that
is, the amount of data in each cluster was N/5, where N is the
size of the test data. In this experiment, the cluster with the
highest R-score (C0) was compared to the other clusters (C1,

C2, C3, and C4). Cluster C3 contained data with R ≈ 0.2;
therefore, C3 was considered a ‘‘bad’’ cluster.

For this experiment, 40 sets of videos were prepared, each
containing 20 videos. For each set, four videos were sampled
from each cluster, resulting in 160 videos being extracted
from each cluster without duplication.

Each evaluator watched one set of videos, and the score
for each watched video was recorded. For each set, five
evaluators were assigned because of the score stability. Two
hundred crowd participants were solicited to evaluate the
videos.

Table 1 lists the questionnaire items used in this experi-
ment. The original questionnaire items and English-translated
version are presented. The questionnaire contained nine
questions, mainly focusing on whether there was an exchange
between the two individuals in each scene.

Each questionnaire item was divided into three groups
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FIGURE 17. Cumulative bar graphs of the ratio of clusters for each evaluation value. The horizontal and vertical axes are evaluation values and the ratio
of clusters. Red, yellow, green, purple, and blue bars are clusters C0, C1, C2, C3 and C4, respectively.

G1 : impression of conversation (Q1, Q5, and Q8),
G2 : tempo of conversation (Q2, Q6, and Q7),
G3 : perceived attitude of characters (Q3, Q4, and Q9).

Q9 is an inverted scale, that is, the evaluation value
is expected to be high when the two participants are
quiet and static (motionless). To prevent the concentration
on ‘‘Neutral,’’ the participant answered the score of the
judge using a four-point Likert scale: 1) Strongly disagree;
2) Disagree; 3) Agree; 4) Strongly Agree.

2) RESULT OF STATISTICAL TEST
The following paragraphs present the results of Tukey’s
Honest Significant Difference (Tukey’s HSD) test of the
questionnaire groups, that is, the results of G1, G2 and
G3 between the cluster with the highest R-score (C0) and the
other clusters.

a: RESULTS OF G1
Fig. 13 summarizes the human evaluation of G1. The differ-
ences between C0 and the other clusters were investigated
using statistical tests. Table 2 presents the statistics and
p-values of Tukey’s HSD test.

For questionnaire item Q1, significant differences between
C0 and the other clusters were observed. For Q5 and Q8,
significant differences between C0 and certain clusters (C2,
C3, C4) were observed, whereas no significant differences
were observed between C0 and C1.

b: RESULTS OF G2
Fig. 14 shows a summary of the human evaluations of
G2. The differences between C0 and the other clusters
were investigated using statistical tests. Table 3 presents the
statistics and p-values of Tukey’s HSD test.
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These results were similar to those of the response groups.
For item Q2, significant differences between C0 and the
other clusters were also observed. Regarding Q6 and Q7,
significant differences between C0 and C2 and C3 and C4
were observed, whereas there were no significant differences
between C0 and C1.

c: RESULTS OF G3
Fig. 15 shows a summary of the human evaluation of G3.
Table 4 presents the statistics and p-values of Tukey’s HSD
test.

A significant difference between C0 and C4 in Q3 was
observed. Based on the results of Q3, both participants
talked to each other seriously. In Q9, which is an inverted
scale, significant differences between C0 and C2 and C3 and
C4 were observed, whereas no significant differences were
observed between C0 and C1.

3) RESULTS OF ANSWER DISTRIBUTIONS
Fig. 16 shows a band graph of the ratios of the evaluation val-
ues for each cluster. The ratio of Agree (3) to Strongly Agree
(4) was high in the cluster with a large R-score for Q1-Q8.
Specifically, in Q1, the ratio of Agree to Strongly Agree for
C0 was above 0.6, whereas that of C3 was approximately 0.4.
Additionally, for Q9, C0 exhibited a high ratio of Strongly
Disagree and Disagree, whereas C3 exhibited relatively low
scores.

Fig. 17 presents a cumulative bar graph depicting the
ratio of the clusters for each evaluation value. In Q1–Q8,
the ratio of C0 increased as the evaluation value increased.
In contrast, when the evaluation value decreased, the ratio
of the data close to R = 0.2 (cluster C3: representing
‘‘Bad’’ data) increased. In C4, no large changes in the
ratio across all questionnaire items were observed. This
is because the ‘‘bad’’ and unknown data were included
in C4.

These results suggest that ‘‘exciting’’ and ‘‘harmonizing’’
behaviors during the dyadic conversation scenes were
extracted. Using a trained feature space with lag operations,
extracting data that synchronizes with the behavior, even
when evaluated by humans, was possible.
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