
Received 14 June 2024, accepted 13 July 2024, date of publication 16 July 2024, date of current version 24 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3429420

TSSAN: Time-Space Separable Attention Network
for Intrusion Detection
RUI XU , QI ZHANG, AND YUNJIE ZHANG
School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215008, China

Corresponding author: Rui Xu (rxu1026@stu.suda.edu.cn)

ABSTRACT With the continuous evolution of novel network attacks, traditional IntrusionDetection Systems
(IDSs) have commonly employed Deep Neural Networks (DNNs) for intrusion detection. However, the
effectiveness of a DNN in this respect is closely related to the quality of the training data set, and large-scale
network traffic data are difficult to label accurately. Therefore, some challenges still need to be addressed
to detect network attacks. In this paper, we introduce a Time-Space Separable Attention Network (TSSAN)
for intrusion detection. TSSAN utilizes depth wise separable convolution and a time-space self-attention
mechanism to effectively extract temporal and spatial features. By extracting the common features from the
unlabeled data, TSSAN significantly enhanced the detection performance for rare attack types. Experimental
evaluations were conducted using UNSW-NB15 and CICIDS-2017 datasets. Meticulous experiments for
evaluating the individual components of the model were rigorously carried out using the CICIDS-2017
dataset. In the unsupervised learning experiment, our method achieved 0.86 and 0.92 f1score in the two
datasets. In semi-supervised learning, the experiment showed that our method performed significantly
better than the traditional deep learning method when the labelled data were gradually reduced.

INDEX TERMS Intrusion detection, deep learning, network security, self attention, multi-class
classification.

I. INTRODUCTION
With the proliferation of network devices and the exponential
surge in network traffic, the threat of network attacks is
escalating at an alarming rate. The proliferation of novel
network security threats further amplifies the suddenness
and destructiveness of network security threats. Traditional
network intrusion detection systems (IDS) rely on predefined
rules or known signatures of attacks, thereby limiting their
ability to detect known attacks. As the number of new
attack types expands, the detection efficacy of traditional
IDS gradually declines, making it challenging to address the
growing number of novel network security threats [1].

Traditional techniques such as the encryption-decryption
method, protocol control, firewalls, and anti-virus software
models have many limitations. Although these methods
can successfully identify certain types of attacks, they are
ineffective in dealing with a large number of attacks and
denial of service (DoS) attacks. They also have low detection
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rates and high false-alarm rates. Consequently, modern
research is increasingly turning to machine learning (ML)
techniques for intrusion detection, as they have been shown
to outperform traditional methods in terms of recognition rate
and efficiency in handling large-scale attacks. Specific ML
methods that have been used for intrusion detection include
the support vector machine (SVM) [2], K-nearest neighbor
(KNN) [3], random forest [4], k-means clustering, and
logistic regression. However, traditional ML algorithms have
significant limitations when dealing with attacks that have
highly integrated features, and they perform poorly when
dealing with noisy and multidimensional traffic data [5].
In recent years, deep learning has attracted significant

attention owing to its impressive performance in computer
vision (CV) [6] and natural language processing (NLP) [7].
Consequently, many researchers have shifted their focus
toward exploring the potential of deep learning. Intrusion
detection methods based on deep learning can be divided into
three stages: data acquisition, feature extraction, and anomaly
discrimination [8]. Recent studies have demonstrated its
effectiveness [9]. However, most existing studies directly
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utilize language models, such as long short-term memory
(LSTM) [10] for feature extraction. These methods typically
adopt an end-to-end learning approach to classification.
However, such approaches often struggle to effectively
capture long-term temporal features and depend heavily on
manually labelled data. Consequently, the feature-extraction
process is incomplete.

The strategy of employing unsupervised learning to train
large-scale model architectures and subsequently fine-tune
them on a small labelled dataset has garnered considerable
attention [11]. This trend has led to the development of
impressive works such as GPT [12], and BERT [13].
Consequently, large unsupervised learning models have
become the focus of research.

Moreover, selecting the correct features and dealing with
unbalanced data are critical challenges. Researchers often
employ the PSO algorithm to automatically select the
optimal feature subset and utilize the focus loss function
to address the issue of imbalanced categories within a
dataset [14]. By optimizing the feature selection process,
the data dimension can be decreased and the computational
efficiency and generalization ability of the model can be
enhanced. The focus loss function enhances the detection
ability of minority categories by providing them with greater
weight, thereby enabling the model to focus on an accurate
classification.

Furthermore, additional factors must be considered for
practical application [15]. Industrial Internet of Things
(IIOT) data typically exhibit temporal and dynamic qualities,
necessitating real-time response and the ability to adapt to
evolving data. Given the intricacy of the IIoT environment
and the constraints of computing resources, deep anomaly
detection models should have a moderate level of complexity
to deliver superior detection performance while also being
sufficiently efficient to operate on devices with limited
resources.

Although there are notable unsupervised learning
approaches for anomaly detection in one-dimensional time-
series data, the analysis of network traffic data presents
distinct challenges. First, network traffic data contains
categorical features such as IP addresses, nodes, states and
protocols, rather than continuous data. Second, the data
size exhibits significant fluctuations [16]. Furthermore, the
internal features of the network traffic data exhibited a low
level of correlation. The simplistic treatment of network
traffic data as one-dimensional time-series data fails to
effectively aggregate and extract their features, resulting in
suboptimal anomaly detection performance.

In general, many currently available intrusion detection
techniques rely significantly on labelled data, which means
that inaccurate labelling or the absence of labels in a
dataset can significantly affect the performance of the model.
Consequently, these models may not be able to handle
the intricacy and variability of real-world data effectively,
leading to suboptimal results. Furthermore, internal feature
processing of network traffic data plays a crucial role in

determining the performance of the model. The inability
to properly aggregate and extract features can also make
it difficult to accurately capture temporal and dynamic
characteristics, which are essential for real-time response and
adaptation to constantly changing data.

The primary research goal of this study is to propose an
intrusion detection model based on unsupervised learning
that does not rely on large, manually labelled datasets.
This model effectively captures the temporal and spatial
characteristics of network traffic and achieves superior
detection performance.

The main contributions of this paper are summarized as
follows:

• An unsupervised learning model called the Time-Space
Separable Attention Network(TSSAN), which incorpo-
rates depth wise separable convolution and time-space
self-attention mechanisms is proposed. This algorithm
demonstrated its ability to accurately and efficiently
classify and detect intrusion traffic in the CICIDS2017
and UNSW-NB15 datasets.

• The model was enhanced through the application of
Gaussian jitter and Gaussian noise, which have been
demonstrated to significantly improve its generalization
capacity and decrease the likelihood of overfitting in
experimental results.

• The TSSAN demonstrated significant efficiency gains
when comparing the fully supervised models to the
pre-trained and fine-tuned models. The model achieved
faster training and detection times, while simultaneously
maintaining minimal loss in performance.

• The model performed well in the small sample sce-
narios. By leveraging unsupervised learning to extract
temporal and spatial features, the model achieves
efficient feature learning and significantly improves
detection performance with limited labelled data.

The remainder of this paper is organized as follows.
In Section II, an introduction to the related work is provided.
Section III analyzes the data preprocessing methods and
presents the model architecture. Section IV reports the
experimental results of the study, including unsupervised
learning and fine-tuning experiments conducted on a small
labelled dataset. Finally, Section V concludes the paper and
offers prospects for future work.

II. RELATED WORKS
A. NETWORK INTRUSION DETECTION
Given the remarkable advancements in deep learning in
CV [17], [18] and NLP [19], numerous researchers have
endeavored to extend the application of deep learning
techniques to network intrusion detection. Research has
shown that machine-learning and deep-learning techniques
can effectively detect network anomalies [20]. Supervised
learning methods often rely on models trained on labelled
datasets [21]. Sinha and Manollas [10] proposed a fusion of
1D convolutional neural networks (CNN) and bidirectional
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LSTM to capture the temporal features of network traffic
data. Similarly, Singh et al. [22] proposed a lightweight
network that combines LSTM and Gated Recurrent Units
(GRU) to reduce the computational cost. A Self Attention-
based Long Short Term Memory (SALSTM) network was
employed to evaluate the attack detection capabilities of the
proposed framework, with the explainability of the AI-based
IDS achieved using the SHapley Additive exPlanations
(SHAP) tool [23]. Javeed et al. addressed the security
challenges in the Industrial Internet of Things(IIoT) [24] by
combining the capabilities of two advanced deep learning
(DL) classifiers. Inspired by graph neural networks, several
studies have made advancements such as GraphSAGE [25]
and GAT [26]. In these studies, IP addresses and ports
were mapped to nodes, whereas network connections were
represented as edges. These approaches exhibit promising
results for the UNSW-NB15 dataset. Considering the com-
putational cost, Corin et al. [27] built a binary classification
CNN specifically for Distributed Denial of Service (DDOS)
attacks, achieving high-accuracy detection with low compu-
tational overhead. However, these approaches rely heavily on
manually labelled datasets and are highly dependent on their
quality. Despite their superior performance in classification
tasks compared with traditional methods, supervised learning
methods face challenges when detecting rare anomalies
or unknown attacks. Additionally, the adjustment of these
models requires extensive costs. Furthermore, the presence
of mislabelled data leads to a significant decrease in model
accuracy [28].
Owing to the scarcity of labelled data, researchers have

increasingly directed their attention toward unsupervised
learning approaches. Some researchers have chosen a Gen-
erative Adversarial Network(GAN) as the main model for
anomaly detection [29], [30]. Cui et al. [31] successfully
integrated a clustering algorithm based on the Gaussian Mix-
ture Model (GMM) and Wasserstein Generative Adversarial
Network (WGAN) to address the issues of data imbalance and
inadequate rare attack samples. Zhong et al. [32] proposed an
unsupervised learning intrusion traffic classification model
that utilises the Wasserstein divergence target generative
adversarial network (WGAN div) and informationmaximiza-
tion generative adversarial network (Info GAN) to address
the problem of low accuracy in small-sample classification.
To reduce latency and enhance efficiency, some researchers
have suggested a novel GAN-based IDS that employs
temporary convolutional networks (TCNS) and self-attention
to detect network attacks. This method was demonstrated
to be more precise and quicker than conventional LSTM-
based IDS [33]. Although Generative Adversarial Networks
(GANs) are effective in detecting anomalies, their use is
limited. One issue is the difficulty in training GANs to
converge, which can result in pattern collapse. Additionally,
the complex distribution of the dataset can lead to deviations
in the generated data points from mainstream features,
making it difficult for the generative model to effectively
restore normal samples [34].

Some researchers used autoencoders for detection.
Autoencoders have been widely studied owing to their
ease of execution. Catillo et al. [35] proposed a semi-
supervised autoencoder-based intrusion detection method
that emphasizes its usability and reliability in practical
applications. Zhang et al. [36] achieved linear and nonlinear
dimensionality reductions using Pearson correlation coef-
ficients and stacked sparse autoencoders, preserving the
important features of the original data while reducing redun-
dancy. Lopes et al. [37] trained deep autoencoders to learn
compressed representations and utilized low-dimensional
representation data to train Deep Neural Network(DNN)
classifiers, thereby effectively reducing the need for
annotated datasets. Overall, numerous AE variants can be
applied to anomaly detection, making this method highly
adaptable. However, if outliers are present in the training data,
the model learns information about them, resulting in biased
learning [34].

B. TIME-SERIES ANOMALY DETECTION
In recent years, significant attention has been paid to
processing of time-series data. Time-series data represent a
sequence of observations arranged in chronological order.
Li and Jung [38] classified anomalies in time-series data
into three categories: time points, time intervals, and
time series. They conducted a comprehensive review of
the latest deep learning techniques used for time-series
anomaly detection. The limitations of each method were
analyzed, along with the challenges and issues associated
with applying deep learning methods to anomaly detection.
Alahamade et al. [39] detected anomalies in time-series data
by clustering. Inspired by the outstanding performance of
CNNs in computer vision, researchers have also begun
to apply CNNs to anomaly detection [40]. Dutt et al. [41]
utilized a combination of 1-D CNN blocks and conditional
random fields (CRFs) to classify sleep labels. Choi et al. [42]
transformed a multidimensional time series within each
time step into distance images and employed a generative
adversarial network (GAN) for anomaly detection based
on these images. Adiban et al. [43] optimized the discrim-
inator to utilize GAN in time series data. Moreover, with
the exceptional performance of transformer in NLP [44]
and CV [45], self-attention mechanisms have also been
introduced in anomaly detection. Song et al. [46] employed
a transformer encoder for time-series anomaly detection.
Wu et al. [47] proposed improvements to the self-attention
mechanism, capturing both prior and series associations
to emphasize local and global information. Through their
combined approach, they achieved a high detection perfor-
mance. To reduce the computational complexity of Trans-
former for long sequences, Kitaev et al. [48] replaced the
dot-product self-attention mechanism with locality-sensitive
hashing. Similarly, Zhou et al. [49] employed distillation
techniques to eliminate redundant sparse self-attention,
thereby enabling the continuous extraction of salient features.
Wu et al. [50] applied a fast Fourier transform to extract
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periodic information from one-dimensional time-series data,
followed by folding based on different periods and projecting
the data into a two-dimensional space. With the rise of
contrastive learning, this unsupervised learning approach
has also been applied to anomaly detection in time series.
Eldele et al. [51] performed data augmentation on time series
using weak augmentation (jitter-and-scale) and strong aug-
mentation (permutation-and-jitter), followed by a contrastive
learning module for prediction tasks. Yue et al. [52] proposed
improvements in the sampling of positive and negative
samples, enabling the learning of context representations for
arbitrary subsequences at different semantic levels.

The extensive utilization of self-attention mechanisms in
time-series analysis has provided compelling evidence of
their efficacy in extracting temporal information from long
sequences. Their ability to capture long-term dependencies,
consider the global context, and adaptively assign attention
weights to relevant features makes them powerful tools for
feature extraction in time-series anomaly detection and other
related applications.

C. TIME-SPACE SELF-ATTENTION
Transformer [44] has demonstrated powerful effectiveness in
NLP by utilizing self-attention mechanisms to capture the
correlations between different positions within a sequence,
thus demonstrating its remarkable feature extraction capa-
bilities. In addition, the Vision Transformer [45] has proven
the significant potential of self-attention mechanisms in
the field of computer vision. However, the self-attention
mechanism applied to both the language and image domains
primarily focuses on capturing spatial feature correlations
and overlooks the extraction of temporal features.

To overcome this limitation, the time-space self-attention
mechanism divides the self-attention mechanism into
temporal and spatial self-attention layers. The temporal
self-attention layers are designed to capture features between
different time steps within sequential data, while the spatial
self-attention layers capture correlations among different
positions in the sequence. By integrating the advantages of
temporal and spatial attention, the time-space self-attention
mechanism demonstrates remarkable efficacy in dealing
with time-series data that possess intricate spatiotemporal
relationships. As a result, it significantly enhances the feature
extraction capacity for time-series data [53].

III. METHOD
Network traffic data, although belonging to the category
of time-series data, exhibit distinct characteristics compared
with common time-series data. The conventional approach
involves preprocessing network traffic data and utilizing
language models such as RNN and LSTM to extract
temporal features. However, this approach relies heavily
on labelled data. Mislabelled data can significantly impact
the performance of deep learning models. To address these
challenges, a model based on Time-Space self-attention for
intrusion detection is proposed in this paper.

A. DATASET DESCRIPTION
The UNSW-NB15 dataset was developed by creating a
synthetic environment at the UNSW cybersecurity lab using
the IXIA tool. This tool allows for the generation of modern,
representative network traffic for both normal and abnormal
situations in a synthetic environment. UNSW-NB15 repre-
sents nine major types of attacks using the IXIA PerfectStorm
tool and includes 49 features developed with Argus and
Bro-IDS tools, as well as 12 algorithms covering packet char-
acteristics. In contrast to benchmark datasets such as KDD98,
KDDCUP99, and NSLKDD, which have limited attack and
outdated packet information, UNSW-NB15 provides a more
comprehensive set of data [54]. Table 1 presents a overview
of features of UNSW-NB15 datasets, providing a clear and
concise overview of each feature’s type.

The CICIDS2017 dataset [55] encompasses both benign
and contemporary common attacks that closely approximate
genuine real-world data (PCAPs). This dataset includes the
findings of network traffic analysis using CICFlowMeter,
which is accompanied by labelled flows categorized by
timestamp, source and destination IPs, source and destination
ports, protocols, and attacks (CSV files). Additionally, this
dataset comprises a comprehensive definition of the extracted
features.

Although the UNSW-NB15 and CICIDS 2017 datasets
may not be the most recent, they are commonly used.
Labelling network traffic datasets is challenging and error
prone. The early nature of these datasets has contributed to
their widespread adoption, as they are less likely to have been
mislabelled or overlooked. Furthermore, they encompass a
diverse range of attack types that have been thoroughly
screened and processed, thereby providing intrusion detec-
tion systems with formidable evaluation tools. Owing to
their long-standing importance and reliability, the UNSW-
NB15 and CICIDS 2017 datasets are significant resources
for intrusion detection research, even in the face of newer
datasets. These datasets serve as reliable benchmarks for
assessing and comparing the efficacy of various methods.

B. DATA PREPROCESSING
Fig. 1 illustrates the procedure for data preprocessing.
We considered the UNSW-NB15 dataset [54] as an example.
It comprises a large number of captured packets from
real network traffic, covering various common types of
network attacks. To enable the model to extract features,
a preprocessing step was required to transform the raw CSV
files into windowed sequences. Specifically, the traffic data
from (t + 1) to (t + window size) are grouped into a feature
packet.

1) CLASS IMBALANCE
Unbalanced datasets are common in practical application
problems, particularly in fields such as medical diagnosis,
information retrieval, and fraud detection. In these cases,
the number of samples for each category of data can vary
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TABLE 1. Features of UNSW-NB15 dataset.

FIGURE 1. The schematic of data preprocessing. The CSV files of the original UNSW-NB15 dataset were preprocessed and transformed into window
sequences using a sliding window approach to facilitate the extraction of temporal feature information for inputting into the model.

greatly, with a smaller number of negative samples than
the overall sample size. The issue of imbalanced intrusion
samples is particularly prevalent in intrusion traffic data sets.
Benign data in the dataset often exceeded 90%, and the
proportion of abnormal samples was extremely low. A high
class imbalance in the dataset introduces biases that favor the
majority class (benign), making the classification of minority
classes challenging. There are several methods mentioned in
the literature that can tackle the issue of class imbalance.
Several methods have been proposed in the literature to
address the issue of class imbalance. Some of these methods
are as follows:

a: UNDER-SAMPLING AND OVER-SAMPLING
The method of under-sampling involves reducing the number
of samples of the majority class to balance the number of
samples between different categories when dealing with a
large amount of data. This is typically achieved by randomly
selecting and removing majority class samples [56]. In con-
trast, the Over-sampling method aims to prevent the loss
of valuable data by generating additional samples based on
the unique characteristics of a few selected samples. This
approach adjusts the proportions of different samples until
they reach a state of equilibrium. The two most commonly
used techniques for oversampling are Synthetic Minority
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Oversampling Technique (SMOTE) [57] and Adaptive Syn-
thetic Sampling (ADASYN) [58].

b: CLASS WEIGHT STRATEGY
To give minority classes the attention they deserve during
model training, weights are added to the loss function,
which imposes a heavier penalty for misclassifying minority
classes than for majority classes [59]. By incorporating the
class weight approach, resampling of the training set is not
required, making it an effective solution for addressing the
issue of class imbalance in datasets.

c: SAMPLE WEIGHT STRATEGY
The sample weight approach aims to correct the class
imbalance by assigning a weight to each training sample that
compels each batch of data to be proportionally distributed in
accordance with the desired balance during training. These
weights are computed to ensure that the model considers
the significance of each sample based on its weight, thereby
paying more attention to the underrepresented samples.
This technique effectively equalizes the influence of various
classes without altering the actual distribution of the data in
the training set.

To increase the overall applicability of the data and main-
tain its original characteristics and distribution, this paper
used an oversampling technique to join the minority attack
types with similar features, rather than altering or generating
new composite data. This method does not require intricate
algorithms or additional computing resources, resulting in a
more balanced training environment.

2) DATA CLEANING
Network traffic data may contain lost packets or missing
feature information as well as a significant amount of noise,
outliers, and missing values. Consequently, removing these
elements from data can enhance their quality and availability.
In our processing, we eliminated features with minimal
variance and extremely high similarity, as well as duplicate
features from the dataset. Referencing the CICIDS2017
dataset, we eliminated 21 features after processing them.
Table 2 outlines the specific features that were removed.

3) DATA STANDARDIZATION
To guarantee the versatility of the model in handling datasets
of varying sizes and conditions,it is essential to perform
necessary data preprocessing. Firstly, it is necessary to
standardize the naming format. One such process involves
replacing characters such as ’/’ and ’ ’ with ’_’ in the
feature name. This is carried out to make the names
more easily processed by programs and to standardize the
naming conventions across each file. Network traffic data
often consist of numerous features, each having distinct
units. Normalization is an effective technique for eradicating
the influence of these unit variances, thereby facilitating the
comparison and analysis of the features more efficiently. The

Algorithm 1 Data Preprocessing
Require: CSV files of dataset
Ensure: Time series data
1: Remove duplicate rows from dataset
2: Replace infinite values
3: Remove rows containing NaN
4: Merge labels of the same major attack class in dataset
5: Normalize input data
6: Convert data to One-hot Code
7: Split the network traffic data into equally sized

sequences
8: Return the processed data, including data from index to

index + win_size

TABLE 2. Features removed during data cleaning.

standardized formula is as follows:

xnormalization =
x −Min

Max −Min
(1)

4) DATA NUMERICALIZATION
As shown in Table 1, the UNSW-NB15 dataset encompasses
non-numeric characteristics, whereas the neural network
input necessitates numeric features. Consequently, it is
crucial to transform certain non-numeric features, such as
‘proto’, ‘state’, and ‘service’, into numerical form. One-
hot encoding was implemented in the processing. As an
illustration, if the ‘service’ feature possesses three types
of attributes, namely ‘ssh’, ‘ftp’, and ‘http’, and their
corresponding numeric values are encoded as binary vectors
(1,0,0), (0,1,0), and (0,0,1), respectively.

The data preprocessing procedure is illustrated in
Algorithm 1.

C. MODEL ARCHITECTURE
1) DATA EMBEDDING
Fig. 2 illustrates the detailed process of data embedding.
The model takes input Xinput ∈ RB×T×C , which is first

VOLUME 12, 2024 98739



R. Xu et al.: TSSAN: Time-Space Separable Attention Network for Intrusion Detection

FIGURE 2. The illustration of data embedding. The network traffic data is initially partitioned into numerical and categorical data. Subsequently, each
type is individually processed. The processed data is then subjected to dynamic position encoding using DWconv to obtain embedding data that facilitates
effective feature extraction.

splitted into a categorical feature vector Xcat ∈ RB×T×C1

and a numerical feature vector Xvalue ∈ RB×T×C2 , where
C = C1 + C2. On the one hand, we utilize a multi-layer
perceptron (MLP) to extract features for one-hot vectorsXcat .
On the other hand, data augmentation techniques such as
jitter, scale, and permutation are applied to the numerical
vectors Xvalue. Then, the output of the MLP is concatenated
with the augmented numerical features, i.e.,

X = Concat(MLP (Xcat) ,Aug (Xvalue)). (2)

Then, X is multiplied by the learnable embedding matrix
E ∈ RB×C×D, which is used in the Embedding layer. This
is followed by the patching operation, which is an essential
technique to capture local features. By partitioning network
traffic data into patches along the dimension C , it enables
the extraction of local information. Finally, DWconv is
used instead of positional embedding. DWconv consists
of Depthwise Convolution and Pointwise Convolution. The
Depthwise Convolution performs a separate convolution
operation on each input channel, learning the correlation of
each channel independently. The Pointwise Convolution then
combines the results of the Depthwise Convolution along
the channel dimension. Thus, the embedding of input X is
defined as the equation 3.

Embedding (X) = DWconv(Patch(MatMul(X,E))). (3)

Depthwise convolution is employed to effectively extract
critical features, mapping the extracted spatial features to
lower-dimensional representations, thereby reducing com-
putational burden and the number of network parameters.
Depthwise separable convolution substantially decreases the
computational complexity of convolution operations. In com-
parison to traditional convolution operations, it demands
fewer parameters and computations, making it more feasible
for processing large-scale network traffic data.

D. MODEL
The overall architecture of TSSAN is illustrated in Fig 3.
As network traffic data contain less semantic information
compared to text data, our proposed model aggregates
information in shallow layers using convolution blocks,
which contain pointwise and depthwise separable convolu-
tion layers. In deep layers, time-space self-attention blocks
are used to extract information from both the temporal and
spatial dimensions.

1) CONVOLUTION BLOCK
In the shallow layers, Pointwise Convolution was used
to linearly combine the channels, followed by Depthwise
Convolution to extract information from the data. The
extracted information is then combined in the channel
dimension using Pointwise Convolution. This architecture
is designed to efficiently extract information from shallow
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FIGURE 3. The overall architecture of the proposed model TSSAN. Depthwise convolution and pointwise convolution are employed in shallow layers to
aggregate information. Space-time self-attention mechanisms are utilized in the deep layers to calculate self-attention separately in the temporal and
spatial dimensions. This enables the model to effectively extract both temporal and spatial information from time-series data, such as temporal trends
and periodic components and the fusion of features within and between periods.

layers and qucikly obtain effective features. These features
are subsequently utilized in self-attention computations,
enabling more comprehensive and accurate information
processing.

The combination of Pointwise Convolution and Depthwise
Convolution enables enhanced information flow between
channels. The use of Depthwise Convolution reduces com-
putational costs and parameter size by applying different
filters for each channel. This approach not only accel-
erates computation but also reduces memory consump-
tion. Furthermore, skip connections are used between all
layers to facilitate information exchange across layers.
The proposed architecture aims to achieve efficient and
effective feature extraction in both the shallow and deep
layers.

As illustrated in Fig 4, depthwise separable convolution
plays a crucial role in the preprocessing phase of network
traffic data. It excels in extracting essential features, capturing
spatial information, reducing computational complexity, and
enhancing model generalization. Consequently, it effectively
supports the task of detecting network traffic anomalies.

2) TIME-SPACE ATTENTION BLOCK
a: THE COMPUTATION OF QUERY, KEY AND VALUE
Within each time-space attention block, a query, key, and
value vector should be computed as input to the encoder.
Specifically, the output of the (ℓ − 1)-th layer is linearly
transformed to serve as the input to the ℓ-th layer. This
ensures that the learned representations in the previous
layer are appropriately incorporated into the current layer’s
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FIGURE 4. The comparison involving the use of space-time attention in
terms of reconstruction loss.

computations. The query, key, and value vectors are then used
to compute self-attention across both the temporal and spatial
dimensions. The query, key, and value vectors are defined as
the equation 4, 5 and 6.

Q(ℓ)
= W (ℓ)

Q LN
(
z(ℓ−1)

)
∈ Rdq , (4)

K (ℓ)
= W (ℓ)

K LN
(
z(ℓ−1)

)
∈ Rdk , (5)

V (ℓ)
= W (ℓ)

V LN
(
z(ℓ−1)

)
∈ Rdv , (6)

where z(ℓ−1) represents the output of the (ℓ − 1)-th layer,
and LN denotes the LayerNorm operation, which is a
normalization technique that rescales the values of the input
tensor to have zero mean and unit variance across each
channel dimension. It has been widely used to improve the
stability and convergence of the training process. LayerNorm
is employed to enhance the performance of the Time-Space
Attention Block. The weight matrix W (ℓ)

Q , W (ℓ)
K and W (ℓ)

V is
used to map the input into the query, key, and value vectors.

b: TIME-SPACE SELF-ATTENTION COMPUTATION
To compute temporal self-attention, the original input vector
X(B,T ,P) ∈ RD is resized to X(B×P,T ) ∈ RD, i.e., X(B×P) ∈

RT×D, and then linearly transformed to Qt ,Kt ,Vt (B×P) ∈

RT×D. In this context, B represents the batch size, T denotes
the length of the time series, P refers to the number of
patches, and D indicates the dimensions. X(B×P) represents
the concatenation of X along the dimensions B and P. The
temporal self-attention weights α are then computed by the
equation 7.

α = softmax
(
QtK⊤

t
√
D

)
∈ RT×T . (7)

Then, the temporal self-attention can be represented by the
equation 8.

Attention(Qt ,Kt ,Vt ) = αT×TV T×D
∈ RT×D. (8)

FIGURE 5. The comparison involving the use of depthwise separable
convolution in terms of reconstruction loss.

Similarly, by resizing X(B,T ,P) ∈ RD as X(B×T ,P) ∈

RD, Qs,Ks,Vs(B× T ) ∈ RP×D are obtained, and spatial
self-attention is computed as the equation 9.

Attention(Qs,Ks,Vs) = softmax
(
QsK⊤

s
√
D

)
V ∈ RP×D. (9)

Finally, the temporal and spatial self-attention values were
weighted and fused together to compute the time-space self-
attention value.

Separating the computation of temporal and spatial fea-
tures allows for an effective capture of both temporal and spa-
tial characteristics. For instance, it captures temporal trends
and periodic components within sequences, as well as the
inter-feature correlations across different spatial dimensions.
This approach efficiently combines the variations in feature
characteristics within each period and across various periods,
resulting in a significant enhancement in feature extraction
efficacy.

As shown in Fig 5, the addition of temporal self-attention
has led to a significant reduction in the model reconstruction
loss. This indicates that the introduction of spatio-temporal
self-attention mechanism enables a more comprehensive and
accurate handling of network traffic data, especially when
considering spatiotemporal relationships. The strength of this
architecture lies in its ability to enhance feature extraction,
reduce false positive rates, adapt to various attack types, and
improve the model’s generalization capability. This makes
spatiotemporal self-attention a powerful tool for addressing
network intrusion detection tasks.

IV. EXPERIMENTAL ANALYSIS AND DISCUSSION
The experiments were performed using a server equipped
with the CentOS Linux release 7.8.2003 (Core) operating
system, 16GB of RAM, an Intel(R) Xeon(R) Gold 5220R
CPU @2.20GHz and an NVIDIA RTX 3090 graphics card.
The models were implemented in Python version 3.8.12,
utilizing the PyTorch version 1.11.0 library. The detailed
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TABLE 3. Experimental environment.

TABLE 4. The training parameters of the model.

experimental parameter configuration is presented in Table 3
and the training parameters of the model are shown in Table 4

A. UNSUPERVISED LEARNING
In unsupervised learning anomaly detection, the recon-
struction loss is commonly used to determine anomalies.
Following the training of the model, each sample from the
same dataset was inputted into the trained model, and the
original data were reconstructed from the model’s output.
The reconstruction loss, which is the difference between
the original data and reconstructed data, was computed for
each sample. This is typically measured using various loss
functions such as the mean squared error (MSE) or cross-
entropy loss. A higher reconstruction loss indicates larger
errors in sample reconstruction, which may suggest that it is
an anomaly. To identify anomalous samples, the distribution
of reconstruction losses in the training data was analyzed
to determine an appropriate threshold. Generally, samples
with reconstruction losses above the threshold are considered
anomalies.

Table 5 presents a comparison between TSSAN and
unsupervised intrusion detection methods. In this section,
we evaluate the performance of the model using the
ROC-AUC metric, which is a widely accepted method for
assessing the effectiveness of binary classification models,
particularly in the fields of machine learning and statis-
tics. The ROC-AUC value is a single numerical value
that provides a comprehensive assessment of the model’s
ability to distinguish between positive and negative classes.
A higher ROC-AUC value, closer to 1, signifies superior
discrimination abilities, as the model exhibits a higher
true-positive rate and a lower false-positive rate across
various threshold values. Conversely, an ROC-AUC value
closer to 0.5 indicates a weak discriminative ability, akin
to random guidance. The experimental outcomes indicate
that TSSAN outperforms conventional machine learning
techniques in unsupervised anomaly detection. This is
attributable to the integration of self-attention mechanisms
in both time and space, which enables the model to capture

FIGURE 6. Effects of Data Augmentation: Although the reconstruction
loss of the model continues to increase, there has been an improvement
in accuracy. This indicates that the data augmentation technique has
enhanced the model’s generalization ability and reduced the risk of
overfitting.

the general features of network traffic during unsupervised
learning, thereby achieving favorable results in intrusion
detection.

Table 6 presents a comparison between TSSAN andwidely
used unsupervised anomaly detection methods for time-
series data. The evaluation metrics include precision, recall,
and F1-score. Precision refers to the proportion of samples
classified as positive that are actually positive. Recall refers
to the proportion of samples correctly classified as positive
examples among all the actual positive examples. F1 Score is
the harmonic mean of Precision and Recall, and its formula
is:

F1 =
2 × Precision × Recall
Precision + Recall

(10)

The results consistently showed that TSSAN achieved a
higher performance in terms of anomaly detection than the
existing time-series feature extraction models. According
to the results, unsupervised learning enables the model to
identify intrinsic patterns and structures in the data without
the need for labelled target variables. This suggests that
the data possesses inherent characteristics that allow the
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TABLE 5. ROC-AUC comparison with unsupervised intrusion detection methods. The experimental results of the comparative method for intrusion
detection are showed on [60].

TABLE 6. Performance comparison with time-series anomaly detection mehtods.

TABLE 7. Composition of the CICIDS2017 Dataset. The training dataset contains a total of 2 million network flows, with approximately 80% of the flows
representing normal traffic and the remaining 20% representing different types of attacks.

FIGURE 7. The performance of TSSAN (fine-tuning) and MLP is compared across different attack types under varying quantities of
labelled data.

model to make accurate predictions or classifications without
the aid of external labels. Network traffic data exhibit

inherent features that enable models to accurately predict or
classify data without relying on external labels. By employing
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FIGURE 8. (a) The detection performance comparison of the TSSAN(fine-tuning), TSSAN(random initialized), and TSSAN(supervised) across
different attack types. (b) The comparison of model detection speed with increasing time series length.

the extraction and fusion of temporal and spatial self-
attention, themodel successfully uncovered potential features
of network traffic, thereby facilitating in-depth understanding
and analysis of the data without clear labels.

Fig 6 illustrates the impact of the Gaussian jitter and
noise. Given the immense volume of network traffic, noise
contamination inevitably affects the data. Therefore, applying
data augmentation to numerical data can effectively mitigate
the impact of noise in real-world applications, thereby
significantly enhancing detection performance. As depicted
in the figure, the addition of Gaussian jitter and Gaussian
noise significantly enhanced the generalization ability of the
model and reduced the risk of overfitting.

B. FINE-TUNING
Table 7 presents the distribution of attack samples for
different categories in the CICIDS2017 dataset. During
the fine-tuning process, the training and testing sets were
divided in a ratio of 1:2. This strategy aims to assess
the model’s performance on different categories of attack
samples, thereby gaining deeper insights into their capability
to detect various types of anomalies. This evaluation is crucial
for evaluating the robustness and feasibility of the model in
real-world applications.

To assess the performance of TSSAN, we conducted
a comparison with the recent methodology using the
same dataset. Table 8 provides a comprehensive summary
of the accuracy outcomes of various strategies on the
CICDIDS2017 and UNSW-NB15 datasets. As shown in
Table 8, TSSAN outperformed most existing methods on
the CICDIDS2017 and UNSW-NB15 datasets. On the
CICDIDS2017 dataset, our method achieved an accuracy
of 99.95%, which is substantially higher than that of other
methods. For the UNSW-NB15 dataset, our method also
attained a remarkable accuracy of 99.20%. The experimental
results indicate that the TSSAN can effectively extract
spatiotemporal features, retain crucial features, and enhance
the accuracy and dependability of the model.

Table 9, Table 10 and Table 11 present the detection
performance of MLP, DBN, and TSSAN, respectively, for

TABLE 8. Comparison with recent methods using the same dataset.

different attacks. The experimental results show that these
three methods perform well on frequent attack types in the
dataset, such as DDoS and brute-force attacks. However,
when it comes to rare attack types in the training set, such
as infiltration and web attacks, TSSAN exhibits significant
advantages over MLP and DBN. This indicates that the
TSSAN has significantly enhanced its ability to extract
general features from network traffic after unsupervised pre-
training, resulting in excellent detection performance for rare
anomalies.

The experimental results further validated the superiority
of the TSSAN in intrusion detection tasks. Through unsuper-
vised learning of network traffic data, TSSAN can capture
the underlying correlations and feature differences among
different attack types, thereby demonstrating a higher sensi-
tivity and accuracy in detecting rare anomalies. In contrast,
traditional methods, such as MLP and DBN, are limited by
their feature extraction capabilities and model assumptions,
leading to limited performance when confronted with rare
anomalies.

Fig 7 illustrates the detection performance of the TSSAN
for different proportions of the labelled training data. The
experimental results demonstrate that the TSSAN exhibits
a significant improvement in detection performance when
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TABLE 9. Detection performance of MLP. It exhibits limitations in accurately detecting rare attack types, such as Infiltration and Web Attacks, which have
minimal presence in the training set. In such cases, these rare attack instances are often misclassified as normal instances.

TABLE 10. Detection performence of DBN [70]. The detection performance is significantly better for attack types that are prevalent in the training set,
while it deteriorates considerably for rare attack types.

TABLE 11. Detection performance of the proposed TSSAN. It demonstrates strong detection capabilities for both common and rare attack types.

the labelled training data are limited. The experimental
outcomes demonstrate that when confronted with limited
labelled data, the model can effectively extract features from
both temporal and spatial dimensions through the exploitation
of potential structures and patterns in the data following
extensive unsupervised learning. This enables the model to
acquire effective feature representations of unlabelled data.
These learned feature representations have the ability to
capture the intrinsic patterns of the data more accurately
and exhibit superior performance on limited labelled data
compared to conventional supervised learning methods such
as MLP. In this scenario, unsupervised learning allows
the model to perform effective feature learning in the
absence of labelled data, thereby enhancing its generalization
capacity and overall performance. This underscores the
significance of unsupervised learning in dealing with data
scarcity or incomplete labelling and highlights its potential

to minimize reliance on substantial volumes of labelled
data.

C. RUNTIME
Fig 8 illustrates the comparison of the training and detection
efficiency between supervised learning and fine-tuning after
pre-training as the length of the time series increases.
TSSAN(random initialiazed) refers to randomly initializing
the parameters of the model’s backbone network and
then freezing them, with classification being performed
solely by the final layer of the Multi-Layer Perceptron
(MLP). The experimental results indicate that TSSAN (fine-
tuned), which only trains the final classification layer
in the frozen backbone network, exhibits nearly identical
detection performance to the fully supervised learning model
TSSAN (supervised). Nevertheless, in terms of training
time, the fine-tuned model demonstrated significantly higher
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efficiency than the supervised model. It is evident that
pre-training on large-scale data has a significant impact
on the model’s detection efficiency. Fine-tuning only the
classification layer has effectively reduced both training
and detection times, providing strong support for real-time
detection.

D. DISCUSSION
The proposed TSSAN model exhibits considerable advan-
tages for unsupervised anomaly detection. By incorporating
temporal and spatial self-attention mechanisms, the model
captures intricate features of network traffic more com-
prehensively, leading to increased detection accuracy and
robustness. Furthermore, the integration of deep separation
convolution not only reduces the computational complexity
of the model but also significantly enhances the performance
of reconstruction loss, validating its crucial role in optimizing
the model structure and performance. Moreover, the appli-
cation of data augmentation techniques, such as Gaussian
jitter and Gaussian noise, further bolsters the generalization
capacity of the model, mitigates the risk of overfitting, and
enables the model to and enables the model to better cope
with various complex situations in the real world. In addition,
the TSSAN model demonstrates strong performance in
small-sample scenarios by extracting temporal and spatial
features from data through unsupervised learning. These
enhancements not only improve the detection performance
and efficiency of the model but also broaden the potential
of unsupervised learning in practical network security
settings.

Despite its impressive capabilities, the model may still
have certain limitations. Firstly, the pre-training phase neces-
sitates substantial computational resources because of the
requirement of unlabelled data on a large scale. Additionally,
while the model has shown outstanding performance in the
dataset, there are still challenges in applying it to complex
network environments in real-world scenarios. The outcomes
of the two data augmentation procedures demonstrate that the
model possesses the capacity to handle noise and exhibits
a certain extent of generalization. Consequently, the model
holds great promise for identifying anomalies in real-world
network settings. Therefore, additional research is required
in future studies to evaluate the practicality of the model and
to address the needs of practical application.

V. CONCLUSION
In this paper, an unsupervised learning model called the
Time-Space Separable Attention Network(TSSAN) is pro-
posed for network intrusion detection, aiming to improve the
detection performance for intrusion detection when lacking
labelled data. The experimental results demonstrate that
TSSAN achieves a detection performance comparable to
traditional MLP methods with less than 10% of the labelled
data. This highlights the efficiency and superiority of the
TSSAN in utilizing limited labelled data. Furthermore, the
fine-tuning process of the TSSAN is rapid and efficient,

providing strong support for real-time intrusion detection
applications.

Although TSSAN exhibits remarkable performance in
feature extraction from unlabelled network traffic data and
the detection of a limited number of attack types, there
are still some potential issues that require improvement.
Future research should focus the practical applications of
the TSSAN. Although TSSAN performs well on network
traffic datasets, challenges may arise in complex and dynamic
real-world network environments. Therefore, utilizing the
TSSAN in real-world network intrusion detection systems
to evaluate its performance in actual scenarios will further
demonstrate the feasibility and practicality of the model.
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