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ABSTRACT Budget allocation across multiple advertising channels involves periodically dividing a fixed
total budget among various channels. Yet, the challenge of making sequential decisions to optimize long-
term benefits rather than short-term gains is often overlooked. Additionally, more apparent connections
must be made between actions taken on one advertising channel and the outcomes on others. Furthermore,
budget limitations narrow down the range of potential optimal strategies that can be pursued. In response
to these challenges, this study unveils a pioneering multi-channel advertising budget allocation approach
that leverages a reinforcement learning (RL) Q-learning framework enriched with an advanced Differential
Evolution (DE) algorithm to refine the Q-learning methodology. The RL element makes informed sequential
decisions, adeptly adjusting strategies to favor long-term rewards by assimilating environmental feedback.
Complementing this, the enhanced DE algorithm introduces an inventive clustering-based mutation
technique, exploiting key groupings within the DE population to generate novel and practical solutions.
The model is further bolstered by a discretization tactic aimed at simplifying the model by streamlining
costs. The proposed methodology is rigorously validated using two extensive datasets: the Chinese Internet
Company Advertising Dataset (CICAD) and CRITEO-UPLIFT v2, employing metrics like Area Under the
Cost Curve (AUCC) and Expected Outcome Metric (EOM) as measures of performance. The empirical
results affirm the superiority of the model, showcasing its exceptional performance with significant scores
(AUCC = 0.750 and EOM = 0.736 for CICAD; AUCC = 0.813 and EOM = 0.829 for CRITEO-UPLIFT
v2), thereby illustrating the model’s proficiency in navigating the multifaceted challenges associated with
multi-channel budget allocation and establishing a new benchmark in the field.

INDEX TERMS Budget allocation with constraint, marketing, social networks, reinforcement learning,
differential evolution.

I. INTRODUCTION
The rising variety of digital media platforms, including web-
sites, mobile apps, and social networks, has transformed the
marketing landscape. Marketers are increasingly leveraging
these diverse channels to strengthen customer relationships.

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniela Cristina Momete .

However, they face the significant challenge of optimally
distributing their advertising budget across these platforms
to achieve maximum impact, a dilemma known as Budget
Allocation with Constraints [1]. This challenge is gaining
attention in advertising and marketing due to its critical
role in strategic planning and substantial financial stakes.
For example, in the early months of 2019 alone, search
advertising spending in the US topped 28 billion USD,
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making up roughly half of the total online advertising
expenditure. This underscores the importance and economic
scale of devising effective budget allocation strategies in
digital advertising [2].

Much of the current research is focused on budget
allocation to a single channel [3], [4]. While single-channel
strategies may appear more straightforward for budgeting,
they overlook crucial complexities. A critical area that
needs attention is underestimating the synergistic potential
of multi-channel integration. Today’s marketing landscape
features a variety of channels, each with unique benefits.
By strategically leveraging these channels together, the over-
all impact of an advertising campaign can be significantly
amplified. Each channel has the potential to complement and
enhance the effectiveness of the others. Consequently, the
narrow approach of allocating budgets to individual channels
without considering the synergy between them may result in
suboptimal outcomes [5].

Research on multi-channel budget optimization is lim-
ited [6], [7], [8]. However, they face several challenges
in allocating budgets effectively across multiple channels.
One key issue is the need for sequential decision-making
considering the entire advertising lifecycle. This requires
considering at least two factors: the carryover effects within
a single channel and the influence on other channels, aiming
to maximize long-term benefits rather than just immediate
gains. Specifically, spending in one channel may also
enhance performance in others. Additionally, the inherent
budget limitations pose the question of how to distribute
available funds wisely to optimize overall benefits. The
RL approach, such as Q-learning [9], offers a promising
approach to address these challenges by learning optimal
strategies through trial and error, factoring in the immediate
and long-term impacts of budget allocations across channels.
By continuously updating its strategy based on real-world
feedback, RL can dynamically adjust budget distributions to
meet changing market conditions and channel interactions,
thus potentially maximizing the cumulative benefits within
budget constraints [10].
Meta-heuristic algorithms provide a robust and sophisti-

cated approach to optimizing budget allocation [11], [12],
[13], [14], significantly when enhancing the Q-learning
algorithm [15]. They are particularly adept at navigating
the complex and layered landscapes of budgeting decisions,
where traditional optimization techniques may fall short [16],
[17]. Their strength lies in effectively identifying near-
optimal solutions across vast and intricate decision spaces,
a critical advantage when dealing with the nuanced and often
non-linear nature of financial planning. The DE algorithm
stands out within this meta-heuristic family for its unique
and potent strategy [14], [18]. It uses a straightforward yet
impactful method that relies on the differential between
various solution vectors to probe and capitalize on the
search domain [19]. This tactic enables the DE algorithm
to adjust its search dynamically, canvassing a wide range
of potential solutions [20]. This adaptability is invaluable in

budget optimization, where many variables and conditions
are unpredictable. The DE algorithm operates through three
key phases: mutation, crossover, and selection. Mutation
involves creating a new solution by scaling and combining
differences among current candidate solutions. Crossover
then merges this new mutation vector with an existing one,
introducing variation and new possibilities. Finally, selection
is choosing the optimal solutions among the latest candidates
and the existing pool based on their efficacy. Notably, the
mutation step is critical in generating viable and promising
solutions. It injects diversity and innovation into the solution
pool, ensuring that the search process remains dynamic and
can uncover superior budget allocation strategies [21].
This article introduces a comprehensive approach to

optimizing multi-channel advertising budgets by integrating
RL and the DE algorithm. The proposed model is designed
to empower marketers to efficiently allocate their limited
budgets across various channels, enhancing the overall
impact of their advertising efforts. The methodology is
structured around three core components:
• Discretization of cost space: The initial phase of the
model addresses the challenge of estimating the poten-
tial value (Q value) of each budget allocation within the
entire budget range. To simplify this complex task, The
cost space is segmented into finite sub-intervals, with
the average cost of each interval representing a distinct
action. This transformation converts the Q function
into a more manageable step function. By establishing
thresholds for budget allocation within each channel,
the model ensures that surpassing these thresholds leads
to significant increases in the Q value. This strategic
discretization streamlines the action space and captures
the intricate spending patterns across different channels,
facilitating more precise budget allocation decisions.

• Analysis of inter-channel effects: The model delves
into the intricate dynamics between various advertising
channels to understand how an advertisement in one
channel can influence subsequent advertisements in
the same channel and others. An impact factor is
incorporated into the value function to quantify the
effects of actions in one channel on the performance
of others. This in-depth analysis of synergistic and
competitive interactions between channels enables the
model to recommend budget allocations that enhance
advertising effectiveness.

• Optimization: With the foundation of Q functions for
each channel, the model advances to the optimization
stage, where the focus shifts to strategically distributing
the budget tomaximize expected rewards. By employing
an enhanced DE algorithm, the model identifies the
optimal sub-interval for budget allocation for each
channel based on Q values. This optimization is
conducted within the constraints of the overall budget
and the stipulation that only one budget level can be
chosen for each channel. This critical step ensures that
the finite budget is allocated to leverage the discretized
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cost space and the inter-channel insights, aiming for the
highest possible return on investment (ROI).

The effectiveness of the approach was assessed through
empirical evaluations using two datasets: CICAD and
CRITEO-UPLIFT v2. Performance was measured using
key metrics like the AUCC and the EOM. The proposed
model demonstrated significant strength, achieving an AUCC
of 0.734, an EOM of 0.760 with the CICAD dataset,
an impressive AUCC of 0.801, and an EOM of 0.801 for
the CRITEO-UPLIFT v2 dataset. These results significantly
surpass those of existing models in the field.

This study makes three principal contributions:
• Enhanced Q-learning reward function for multi-
channel interactions: The intricate challenges of
interactions among various decision-making channels
were acknowledged. In response, the Q-learning reward
function was meticulously revamped and augmented,
enabling effective navigation and accommodation of
these complexities.

• Innovative discretization technique for complexity
reduction: A unique technique was unveiled to curb
systemic complexity. This method paves the way for a
more streamlined and optimized system representation
by transforming all cost data points into a sequence of
subintervals.

• Advanced mutation strategy within the DE frame-
work: The study pioneers a clustering-based mutation
technique, exploiting key groupings within the DE
population to generate novel and practical solutions.

The remainder of the article follows this structure:
Section II provides a brief literature review. Section III
introduces the basics, while Section IV delves into the
proposed approach in more detail. Section V contains
the experimental results, along with relevant analysis and
evaluations. Finally, Section VI concludes the paper.

II. RELATED WORK
Budget allocation is a critical issue in economics, attracting
substantial interest from researchers. Given marketing’s
dynamic nature, budget allocation strategies are developed
to optimize specific objectives, like increasing sales, while
adhering to certain limitations. This section will review the
relevant literature on budget allocation, categorized into two
main areas: single-channel and multi-channel approaches.

A. SINGLE CHANNEL
Recently, research has extensively explored budget allocation
strategies, particularly in single channels. Zhou et al.
[22] put forward a groundbreaking approach that melds
machine learning (ML) and operations research (OR) more
intimately. Their methodology introduces a pivotal decision
factor that connects ML forecasts with OR optimization,
effectively mitigating the inaccuracies typically associated
with conventional bifurcated approaches. The problem
arises in ensuring the decision factor accurately reflects
the complexities of real-world marketing scenarios and

effectively bridges the gap between ML predictions and
OR solutions. Jannink et al. [23] presented a cutting-edge
strategy for optimizing budget distributions within breeding
programs, harnessing the power of Bayesian optimization
coupled with stochastic simulations.When applied to a clonal
crop breeding framework, their approach underscored the
importance of equitable budget distributions across various
stages and unearthed intricate budgetary decision dynamics.
The challenge lies in adapting this strategy to other domains
where the parameters and constraints differ significantly from
breeding programs. Zhang et al. [24] unveiled a technique
for fine-tuning expansive pre-trained language models,
ingeniously allocating parameter updates in alignment with
the significance of weight matrices. Employing singular
value decomposition for incremental updates, their strategy
enhances performance by judiciously managing parameter
budgets, especially in scenarios with many downstream
tasks. The difficulty here is determining the importance
of weight matrices and how they impact the model’s
overall performance. Ai et al. [25] introduced the Large-
Scale Budget-Constrained Causal Forest (LBCF) algorithm,
ingeniously crafted to navigate the Budget-Constrained
Treatment Selection (BTS) challenge across vast datasets.
Their methodology marked significant progress, particularly
noticeable on extensive video platforms. However, the chal-
lenge is ensuring the algorithm’s scalability and adaptability
to different data types and constraints. Hao et al. [26] con-
ceptualized a dynamic knapsack model to elevate sequential
advertising strategies within the e-commerce domain. Their
innovative dual-level optimization framework, augmented by
a technique to streamline the action space, demonstrated
unparalleled proficiency in maximizing cumulative revenue
compared to existing strategies. The primary issue is the
complexity of implementing and adjusting themodel in a fast-
paced e-commerce environment. Betlei et al. [27] revealed
an innovative approach to Uplift Modeling, dedicated to
prioritizing individuals based on the potential benefits of
interventions like medical prescriptions or guidance. The
foundation of their methodology is the AUUC-max learning
objective, meticulously honed for AUUC and validated
through empirical datasets. A significant problem is ensur-
ing the model’s predictions accurately reflect individual
responses to treatments in diverse populations. Du et al. [28],
tackling the crucial challenge of user retention on user-centric
online platforms, proposed a novel framework optimized
for heterogeneous treatment effects. They advanced two
algorithms, with the latter ingeniously integrating estima-
tion with optimization, specifically designed for enhanced
targeted effects. The difficulty lies in accurately estimating
and optimizing for heterogeneous treatment effects across
a diverse user base. Künzel et al. [29] pioneered a meta-
algorithm, the X-learner, proficient in deducing conditional
average treatment effects (CATE). Relying on foundational
algorithms like random forests (RFs) and Bayesian additive
regression trees (BARTs), its effectiveness was confirmed
through simulations and real-world applications, with their
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insights encapsulated in a user-friendly software package.
The problem is ensuring the meta-algorithm’s adaptability
and accuracy across varied applications and datasets. Athey
and Wager [30] introduced a forward-thinking methodology
to derive treatment assignment protocols from observational
data, considering vital factors such as budget constraints,
equity, and simplicity. Their approach, applicable to binary
and continuous treatments, comes with solid assurances
regarding policy effectiveness. The challenge is in applying
this methodology in practice, considering the complexities of
real-world data and the need for fairness and simplicity in
treatment assignments. Xiao et al. [31] crafted an innovative
solution for sequential incentive marketing, meticulously
calibrating incentive distribution within budgetary limits.
Their sophisticated learning algorithm, which integrates
bisection search with model-centric planning, is framed as a
constrained Markov decision process (CMDP). Its efficacy
has been demonstrated through empirical validation. The
critical issue is the algorithm’s ability to adapt to changing
market dynamics and consumer behaviors while staying
within budgetary constraints.

Single-channel methods have made significant strides in
budget allocation but often need to capture the synergistic
potential that multi-channel integration can offer. The current
marketing landscape, with its diverse channels each offering
unique benefits, suggests that a more holistic approach could
significantly amplify the impact of advertising campaigns.
Paying attention to channel strategies may lead to less-
than-optimal outcomes by neglecting the interplay between
channels.

B. MULTI-CHANNEL
Budget optimization across multiple advertising channels
has yet to be extensively explored in academic research.
Shen et al. [32] introduced a novel cross-channel advertising
budget allocation framework to optimize budget distribution
across various channels to maximize overall conversions.
This framework stands out by addressing the competition
among advertisers and employing an iterative algorithm
with an entropy constraint for rapid convergence and
straightforward implementation in large-scale online adver-
tising systems. However, the challenge here is effectively
modeling the competitive dynamics among advertisers to
ensure that the framework’s global optimization strategy
leads to actual improvements in conversion rates across
the board. Zhou et al. [22] proposed a novel method for
solving marketing resource allocation problems that bridge
the gap between machine learning (ML) and operations
research (OR). Traditionally, these domains have worked
in isolation, with ML predicting model parameters that OR
then use for optimization, often leading to compounded
errors. By introducing a decision factor and a custom loss
function, their approach directly informed OR solutions
through simple sorting or comparison operations on this
factor, allowing for direct heterogeneous causal learning and

unbiased estimations upon loss convergence. Deng et al.
[7] investigated how to maximize total conversion in digital
advertising by navigating through ROI and budget constraints
across multiple channels. They found that optimizing per-
channel budgets instead of ROIs leads to optimal global
conversion. To facilitate this, they introduced an efficient
learning algorithm that helps set these budgets, closely
approximating the global optimal conversion, even with
limited information about the ad auctions, thus mirroring
real-world advertising scenarios. They address the inherent
uncertainty and need for control in digital advertising, where
advertisers cannot predict or directly influence the outcome
of individual ad auctions across channels. Kou et al. [33]
created the vector evaluation genetic algorithm (VEGA),
crafting budget allocation rules for simulation optimization
issues. They recast VEGA’s selection dilemma with an
optimal computing budget allocation method, deriving an
asymptotically optimal rule and a practical approximation.
These rules, tested against existing ones, enhance VEGA’s
efficacy in multi-objective problems by optimizing the search
process in stochastic settings. Luzon et al. [34] introduced a
method for optimizing budget allocation in social network
advertising campaigns by dynamically targeting budget
distribution over time based on an effectiveness function. This
function relates advertising spend to user exposure, allowing
for optimal campaign duration and segment exposure within
a given budget. A significant limitation of this method is its
reliance on accurate effectiveness function estimation, which
can be challenging in dynamic and unpredictable market
environments. Li et al. [35] proposed improving differential
privacy (DP) k-means clustering by ensuring convergence
and usability through optimal privacy budget allocation. This
approach reformulates budget allocation as a combinatorial
optimization problem and uses genetic algorithms for effi-
cient solution finding. A key challenge is the NP-hard nature
of selecting an optimal privacy budget strategy, complicating
the balance between privacy protection and data usability.
Zhang et al. [6] developed a sophisticated hierarchical
framework for online advertising budget allocation. This
framework effectively connects decisions across several
levels of hierarchy. At the broadest level, it allows advertisers
to distribute their budgets across different markets, similar to
the approach in this study. However, Zhang et al.’s method
relies heavily on lower-level decisions, setting it apart from
the proposed approach. The primary issue here is ensuring
that the decisions made at each level of the hierarchy are
coherent and lead to the overall strategic goal of budget
optimization despite the complexity of interactions between
different levels.Wang et al. [5] offered a cutting-edge solution
to the complex challenges of allocating budgets in multi-
channel advertising. Their Q-MCKP algorithm combines the
advantages of Reinforcement Learningwith theMulti-Choice
Knapsack Problem, adeptly facilitating sequential decision-
making, delineating inter-channel actions, and managing
budget constraints effectively. The challenge tackled by
Wang et al. is the dynamic nature of budget allocation in
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FIGURE 1. The procedure of conducting advertisements across multiple
channels (inspired by [36]).

a multi-channel environment, where decisions need to be
continuously adapted based on the evolving landscape of
channel performance and budget constraints.

Existing multi-channel methods often need help efficiently
allocating budgets across diverse channels due to the need for
decision-making that spans the entire lifecycle of advertising
campaigns. These methods must contend with the nuances
of carryover effects and the influence between channels
to maximize long-term benefits beyond immediate gains.
Additionally, the limitations of fixed budgets necessitate
a thoughtful distribution of resources to achieve the best
overall outcomes. RL is proposed as a promising solution
in response to these challenges. RL is particularly effective
at dealing with these complexities by continuously refining
strategies through feedback. This allows adjustments to
be made in response to changing market conditions and
channel interactions, ultimately optimizing the interplay
among channels while adhering to budget constraints.

III. PREREQUISITES
This section provides some background, including the
problem statement, reinforcement learning, and differential
evolution.

A. PROBLEM STATEMENT
As depicted in Figure 1, within the given context, a marketing
professional must judiciously distribute her advertising
budget across multiple channels, given that the total budget
is pre-determined. The initial step involves the marketer for-
mulating a budget allocation plan for an advertising agency.
Following this, the agency will distribute advertisements to
diverse users via pertinent channels per the devised strategy.
Subsequently, the marketer will receive feedback on each
channel’s performance, omitting user-specific details. This
will be followed by the marketer receiving the results from
each channel sans any user-related information. Each channel
accrues a cost when information is submitted, necessitating
the marketers to have the competency to allocate budgets
based on the marketing channels’ conditions.

FIGURE 2. Overview of the MDP framework utilized in RL (inspired
by [38]).

This process involves a series of decision-making steps.
Suppose at a given time t, the state of channel i is represented
by s, and a marketer is allocated a fixed budget B to promote
an advertisement across a collection of n channels. Let
xt= (x1, x2, . . . ,xn) symbolize the budget division, where xi
is the budget portion assigned to channel i. Let Ri(si,t , xi,t )
denote the projected gains from channel i when xi,t is
allocated. The aim is to tackle the optimization issue of
budget distribution:

max
x

∑n

i=1
Ri(si,t , xi,t ) s.t

∑n

i=1
xi,t ≤ B (1)

Essentially, the objective is to skillfully allocate budget
B across n channels to optimize the total expected returns
per time. Before any allocation, it is crucial to understand
the expected returns for each sub-budget based on historical
data. However, the sequential nature of the advertising
process necessitates a series of advertising actions over
time, where sub-budgets for each channel are selected
to maximize aggregate benefits. In an ideal sequential
advertising approach, each allocation strategy would be
devised to optimize the expected benefits. The complexity of
the sequential advertising approach stems from the restriction
that information about future events is only available after
an unavoidable delay. To overcome this obstacle, the RL is
employed.

B. REINFORCEMENT LEARNING
RL is a machine learning paradigm in which an agent learns
to make decisions by interacting with an environment. The
ultimate goal of RL is for the agent to acquire a policy,
which is a mapping from states to actions that maximize the
cumulative reward obtained over time. The agent explores
the environment, takes action, receives feedback through
rewards, and uses this feedback to refine its policy and
enhance its decision-making abilities [37].

In RL, algorithms leverage the framework of a Markov
Decision Process (MDP) to determine optimal policies
(See Figure 2). An MDP is characterized by a quintuple
(S,A,P, ρ0, r), where S denotes the state space, and A
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represents the action space [39]. These sets define the
conceivable states and available actions, respectively. The
transition dynamics distribution, denoted as P : S × A ×
S → R, encapsulates the probabilities of transitioning from
one state to another upon executing a specific action. The
initial state distribution, ρ0 : S → R, indicates each state’s
probability of commencing the process. Additionally, the
reward function, r : S × A → R, outlines the immediate
reward the agent receives upon executing a particular action
in a specified state. Throughout the interaction, at each
timestep t , the agent is confronted with a state st and
decides by selecting an action at based on the policy π :
S × A → [0, 1]. Subsequently, the environment responds
by providing a reward r(st , at ) based on the current state
and chosen action, leading to a transition to the subsequent
state st+1, as dictated by the dynamics of the environment.
The discounted return at timestep t can be expressed as
Rt =

∑
∞

k=t γ
k−tr (sk , ak), where γ denotes the discount

factor. Q-values, which represent the anticipated outcomes of
policy π upon executing action a within state s, signify the
quality of state-action interactions. This can be computed as
shown in Equation 2 [40]:

Qπ (s, a) = E[Rt |st = s, at = a, π] (2)

The optimal action-value function, represented as the high-
est anticipated reward among all strategies after observing
state s and performing action a, is calculated as shown in
Equation 8 [40]:

Q∗ (s, a) = maxπE[Rt |st = s, at = a, π] (3)

This function embodies the Bellman equation, which posits
that the maximum anticipated outcome for a specific maneu-
ver is the sum of the rewards from the current maneuver and
the maximum expected outcome from subsequent maneuvers
in the next instance. This concept is illustrated in Equation 4
[40]:

Q∗(s, a) = E[r + γmaxa′Q
∗(s′, a′)|st = s, at = a] (4)

The calculation of the optimal action-value function
is conducted incrementally using the Bellman equation,
as illustrated in Equation 5 [40]:

Qi+1(s, a) = E[r + γmaxa′Qi(s
′, a′)|st = s, at = a] (5)

The RL algorithm, called Q-learning, is one of the
methods used to estimate optimal value functions online.
It commences with initial Q-value estimates for each state and
proceeds to update these estimates at each time step according
to the following formula [40]:

Q(st , at )=Q (st , at)+α(rt+1+γmaxa′Q
(
st+1,a′

)
−Q (st , at))

(6)

In the particular scenario, the attribute vector associ-
ated with a specific channel at a given time is used to
represent the state of that channel. Its cost and revenue
(in terms of registrations) can be regarded as the action

and reward value, respectively. Therefore, in situations
where channel i is in state si,t , the expected gains from
different sub-budgets Ri(si,t , xi,t ), can be calculated using
the value function Qi(si,t , ai,t ), where ai,t represents the
sub-budget xi,t .

C. DIFFERENTIAL EVOLUTION
Differential evolution (DE) [41] has gained substantial
recognition for its impressive performance in tackling many
optimization problems, solidifying its position as a powerful
population-based approach. DE functions via three core
operations: mutation, crossover, and selection. The algorithm
starts with an initial population, typically generated from a
uniform distribution, forming the basis for the subsequent
evolutionary process. In DE, the mutation operation holds
significant importance. It generates a mutated vector, inject-
ing diversity and exploration into the population. During
mutation, fresh candidate solutions arise by perturbing
existing population members. This perturbation combines
information from multiple members to craft a new candidate
solution primarily using vector arithmetic. Specifically,
it involves multiplying the difference between two randomly
selected members by a scaling factor and adding it to a base
member. The mutation operation is central to preserving pop-
ulation diversity and promoting exploration. DE effectively
navigates the optimization landscape by introducing novel
solutions and surmounting local optima. The quality and
diversity of the mutation vector substantially impact the per-
formance of DE and its ability to converge toward an optimal
solution.

Here is the mutation operator responsible for creating a
mutated vector [42]:

v⃗i,g = x⃗r1,g + F(x⃗r2,g − x⃗r3,g) (7)

where x⃗r1,g, x⃗r2,g, and x⃗r3 denote three distinct candidate
solutions randomly chosen from the current population, while
F represents a scaling factor. In the crossover phase, the
mutant and target vectors are combined, typically using the
Binomial crossover technique [42]:

ui,j,g =

{
vi,j,g if rand (0, 1) ≤ CR or j = jrand
xi,j,g otherwise

(8)

where CR represents the crossover rate, jrand is a randomly
selected integer from the set {1, 2, . . . ,D}, where D rep-
resents the dimension of the candidate solution. After the
crossover, the selection operation chooses the better solution
from the target and trial vectors.

IV. THE PROPOSED MODEL
This article presents a novel method for optimizing budgets
across multiple advertising channels, leveraging RL and
DE. The model is built on three foundational elements:
Discretization of cost space, analysis of inter-channel effects,
and Optimization.
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A. DISCRETIZATION OF COST SPACE
As previously indicated, the primary task involves solving
the Q function for each channel. Nonetheless, when dealing
with a specific state, accurately approximating the Q value
for each sub-budget within the range of [0,B] is challenging.
Hence, it is a logical approach to partition the cost space into
finite sub-intervals, wherein the average cost of each interval
represents an action. This strategic maneuver significantly
trims down the expanse of the action space, thereby rendering
the Q function as a step function.

For a given channel i, Qi(si,t , ai,t ) stands as the Q function
encompassing action ai,t and state si,t ,. Additionally, a set of
thresholds, denoted as ωi,j, is considered, where crossing a
threshold results in a sudden increment within Qi

(
si,t , ai,t

)
.

Formally, the definition of Qi
(
si,t , ai,t

)
can be articulated as

follows:

Qi
(
si,t , ai,t

)
=



Qi1
(
si,t

)
ωi,0 < ai,t < ωi,1

Qi2
(
si,t

)
ωi,1 < ai,t < ωi,2

Qi3
(
si,t

)
ωi,2 < ai,t < ωi,3

.

.

.

Qini
(
si,t

)
ωi,ni−1 < ai,t < ωi,ni

(9)

In this context, a set of ji+1 thresholds exist, denoted by
{ωi}j=0,1,...,ni , and a set of ni Q functions, represented as
{Qij

(
si,t

)
}j=1,1,...,ni

.
A significant challenge arises in achieving an accurate

division of the cost for each channel within the range of [0, B],
necessitating the precise determination of the threshold ωl.
For most marketers, daily advertising strategies across each
channel tend to be similar, leading to the accumulation of data
within a limited number of intervals. Therefore, it is aimed at
the discretized sub-intervals comprehensively capturing the
relevant details while avoiding an overly restricted number of
intervals. This method ensures a satisfactory and productive
scope for exploration. In other words, the immediate earnings
within identical sub-intervals should exhibit similarity, and
the data distribution across each interval must aim for the
most uniform dispersion possible. These insights introduced a
new assessmentmetric called theDispersive Coefficient (DC)
[43]. This index helps determine whether the discretization
of an interval is necessary. Given a scenario where mj
data instances exist within an interval denoted as Bj =
{(c1, r1) , (c2, r2) , . . . , (cmj , rmj )} (where cj and rj represent
cost and revenue, respectively), DC for this interval is defined
as follows:

DC
(
Bj

)
=

√∑mj

i=1

(ri − r̄)2 + (ci − c̄)2

mj
+ µ
√
mj (10)

where r̄ and c̄ represent the mean values of the costs
and revenues derived from the mj data, while µ is a
balancing parameter. The initial expression gauges the extent
of scattering within an interval. In contrast, the subsequent

expression is formulated to regulate the volume of data
encompassed within the interval and to avert excessive
concentration within any given interval. DC is a crucial tool
for assessing the need for discretization. It helps optimize the
number of intervals by analyzing the similarity of earnings
and uniformity of data distribution within each sub-interval.
This, in turn, assists in devising amore informed and effective
advertising strategy across different channels.

With this understanding of the DC, the approach for
discretizing costs is presented. This methodology starts
by considering a single interval [0,B] and then divides
this interval into, on average, L/10 sub-intervals, thereby
establishing the initial collection of segmented sub-intervals.
In each subsequent cycle, a binary query is sent to each
sub-interval, and the set of sub-intervals is adjusted based
on the outcome of the DC function. As additional iterations
progress and the collection of sub-intervals is further refined,
the typical result is the acquisition of the finalized set of sub-
intervals, denoted as ϕ. Additionally, θ represents a parameter
responsible for governing the quality of the solution. The
pseudocode outlining the proposed approach is depicted in
Algorithm 1.

B. ANALYSIS OF INTER-CHANNEL EFFECTS
In the investigation, the entire lifecycle of advertisements
(ads) spanning channels i and j was examined. The objective
was to decipher these diverse channels’ intricate dynamics
and reciprocal influences. When an advertisement, denoted
as Aik , is showcased on channel i at time instance tk ,
its ramifications are twofold. On one hand, it produces
lingering effects on succeeding ads within the same channel i.
Concurrently, it also influences ads broadcasted on channel j.
Given this dual impact, it is paramount to incorporate both
dimensions when quantifying the anticipated rewards linked
to Aik .
The discounted return, denoted as Rt, represents the

aggregated rewards exclusively from channel i and warrants
modifications. Within the framework of channel i, it becomes
essential to embed a key construct: the inclusion of an
impact factor Q́ı (s, a) within the value function. This factor
contemplates ramifications on auxiliary channels when an
action a is operationalized in a given state s. The structural
representation of the impact factor is delineated as follows:

Q́ı (s, a) =
∑

j∈I\{i}

∑∞

k=0
εi,j,t+k+1.γ

k
i .rj,t+k+1 (11)

εi,j,t+k+1 =
ai,t+k+1
aj,t+k+1

. d, d < 1 (12)

where I denotes the set of channels, γi represents the discount
factor for channel i, εi,j,t+k+1 acts as a coefficient multiplied
by a value signifying the ratio of the cost of channel i relative
to the cost of channel j at time t + k + 1. Additionally, d is a
positive scalar value less than one, and rj,t+k+1 signifies the
immediate reward obtained from channel j at time t + k + 1.
Hence, the updated Q∗i for channel i can be derived using the
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Algorithm 1 Pseudo-Code of Discretization Approach for Costs
Input: L: maximum number of intervals, B: budget, P: maximum number of iterations
Output: ϕ:

{(
ωj, ωj+1

]}
j=0,1,...,l (l < L)

l = 0, ϕ = Null
for j = 0 to (( L10 )− 1) do

ωj = (j ∗ B)/( L10 )
ωj+1 = ((j+ 1) ∗ B)/( L10 )
ϕ = ϕ ∪ (ωj, ωj+1]
l = l + 1

while l < L & p < P do
for every

(
ωj, ωj+1

]
∈ ϕ do

dc = DC
(
Bj

)
if dc > θ then:

ω′ =
ωj+ωj+1

2

ϕ = ϕ −
(
ωj, ωj+1

]
ϕ = ϕ ∪

(
ωj, ω

′
]

ϕ = ϕ ∪
(
ω′, ωj+1

]
l = l + 1

p = p+ 1

following equation:

Q∗i (s, a)=Eπ

[∑∞

k=0
γ ki rt+k+1+

∑
j∈I\{i}

∑∞

k=0
εi,j,t+k+1

·γ ki rj,t+k+1|st = s, at = a
]

= Eπ [r t+1 +
∑

j∈I\{i}
(εi,j,t+1.rj,t+1)

+ γiQ∗i
(
st+1, a′

)
|st = s, at = a] (13)

The value of channel i at time t is modified as follows:

Qi (st , at)← Qi (st , at)+α(rt+1+
∑

j∈I\{i}
(εi,j,t+1.rj,t+1)

+ γimax
a′

Qi
(
st+1, a′

)
−Qi (st , at)) (14)

C. OPTIMIZATION
With the Q function of each channel now in possession, the
next step is budget allocation across channels to maximize
anticipated rewards at time t . To achieve this, an enhanced
DE algorithm is used to determine the appropriate interval
j (where the average cost within this interval is considered
an action) for allocating the budget to each channel i. This
decision is encoded through a binary variable, denoted as yij,
which assumes a value of 1 when the budget corresponding
to threshold level j for channel i is assigned.

max
yi,j∈{0,1}

∑n

i=1

∑Ji

j=1
Qi,j

(
si,t

)
yi,j (15)

st.
∑n

i=1

∑Ji

j=1
ai,jyi,j ≤ B,

∑ji

j=1
yi,j ≤ 1,

∀i ∈ {1, 2, . . . , n} (16)

The initial inequality represents the budget limitation,
while the subsequent condition indicates that, for any given
channel, only one budget level can be selected at most.
Moreover, ai,j, serving as an actionable parameter, denotes
the mean cost within the j-th interval of channel i. Ji
represents the number of intervals associated with channel i.

1) THE IMPROVE DE
An improved DE algorithm is used to optimize Equation 15.
The mutation operator is refined, drawing inspiration
from the improvements suggested by [44]. A potential region
in the search space is identified using k-means clustering on
the existing population. This clustering divides the population
into k distinct regions in the search space, with the value of k
randomly chosen between [2,

√
N ]. The cluster that shows

the lowest mean objective function value is subsequently
recognized as the region of interest.

A novelmutation operator based on clustering is employed,
characterized as:

−−→

vcluı = −−→wıng + F(−−→xr1,g −
−−→xr2,g) (17)

where x⃗r1,g and x⃗r2,g denote two randomly selected candidate
solutions, while−→wıng signifies the optimal candidate solution
within the identified promising region. However, it is
crucial to highlight that −→wıng might not always represent
the most optimal solution in the current population. The
mutation procedure, influenced by clustering, is executed
repeatedly for M instances. Following this, the population
undergoes updates in alignment with the Generic Population-
Based Algorithm (GPBA) [45], adhering to the subsequent
guidelines:
• Selection: k candidate instances are randomly produced
and regarded as the initial starting points for the k-means
algorithm.

• Generation:M candidate instances are produced through
mutation based on clustering and are designated as the
set vclu.

• Replacement: M candidate instances are chosen ran-
domly from the existing population and designated as
set B.

• Update: the top-performing M candidate solutions are
chosen from vclu ∪ B to create set B′. In conclusion, the
fresh population is acquired by combining (P−B)∪B′.
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Algorithm 2 Pseudo-Code of the Improved DE Algorithm
Input: D: dimensionality of candidate solution, MaxFES: maximum number of function evaluations, F : scaling factor, CR: crossover

probability
Initialize the population P as follows: P = (x⃗r1 , x⃗r1 , . . . , x⃗NP), where each x⃗ri is randomly generated
Compute the objective function value for each solution in the population P
while FES < MaxFES do

for i = 1 to NP do
Select individuals x⃗r1,g, x⃗r2,g, x⃗r3,g from P randomly (x⃗r1,g ̸= x⃗r2,g ̸= x⃗r3,g)
v⃗i,g = x⃗r1,g + F(x⃗r2,g − x⃗r3,g)
Choose jrand as a random number within the range [0, 1]
for j = 1 to D do

if rand(0, 1) ≤ CR or j == jrand then
ui,j,g = vi,j,g

else:
ui,j,g = xi,j,g

if f (ui,g) < f (xi,g) then
xi,g+1 = ui,g

else:
xi,g+1 = xi,g

Choose a value for k randomly from the interval [2,
√
N ]

Divide the population P into k clusters
Calculate the mean objective function value for all clusters
Determine the value of −→wıng as the best solution within the winning cluster
for i = 1 to M do

Choose x⃗r1,g and x⃗r2,g from P randomly (x⃗r1,g ̸= x⃗r2,g)
−−→
vcluı =

−→wıng + F(x⃗r1,g − x⃗r2,g)
Randomly select M candidate solutions from the population P and designate them as set B
Select the top-performing M solutions from vclu ∪ B and designate them as set B′

Generate a new population as (P− B) ∪ B′

TABLE 1. Summary and features of CICAD spanning 540 days across
channels A, B, C, D, and E.

The pseudo-code representation of the improved DE
algorithm can be found in Algorithm 2.

V. EXPERIMENTS
This section describes the used datasets and highlights their
characteristics. The benchmarks are defined, and the criteria
and assessment methods used to evaluate the performance of
the models are explained. The section concludes with a pre-
sentation of settings and the results, emphasizing the key find-
ings from the analysis and model evaluations and discussing
their relevance in the context of the research objectives.

A. DATASET
This paper presents two types of datasets:
• Chinese Internet Company Advertising Dataset
(CICAD) [5]: The dataset is sourced from an authentic
internet enterprise based in China, emphasizing user
engagement via advertising endeavors. The dataset
spans 540 days and captures advertising activities across
five distinct channels: A, B, C, D, and E. Their respective

record counts are 503, 452, 520, 467, and 503. Each
data entry encapsulates the advertising date, the incurred
cost, the aggregate of clicks generated, the sum of
exposures (often termed impressions), and the total
registrations accrued. Multiple time-oriented features
were devised to provide a nuanced understanding of the
channel dynamics at various temporal junctions. These
intricacies are delineated in Table 1. In representing
the state of each channel, 29 unique features are
deployed. The actions associated with each channel are
extrapolated using the discretization approach described
in Algorithm 1, with the reward being a function of the
registrations achieved.

• CRITEO-UPLIFT v2: The dataset provided by the
AdTech firm Criteo was featured in the AdKDD’18
workshop [46]. It stems from a randomized control
trial (RCT) in which a selected group of users was
intentionally withheld from advertising exposures. The
dataset encompasses 12 attributes, including a binary
treatment marker and two response tags about visits
and conversions. In the context of cost-unaware uplift
modeling, the incremental visit serves as the primary
predictive target.

B. METRIC
In evaluating the proposed method’s performance, metrics
were carefully selected to provide comprehensive insights
into the effectiveness and efficiency of the models. These
metrics include:
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• AUCC (Area Under the Cost Curve): The AUCC
is a widely recognized metric in existing research,
as evidenced by its frequent citation in seminal
papers [22], [28]. Its primary function is to assess the
ability of uplift models to rank outcomes in scenarios
where treatments are binary correctly. The AUCC’s
significance lies in its focus on the incremental impact
of an intervention, making it particularly relevant for
this study, which aims to optimize budget allocation
for maximum effect. The methodology for evaluating
AUCC is thoroughly discussed in key literature [28],
providing a robust framework for the analysis.

• EOM (Expected Outcome Metric): Complementing the
AUCC, the EOM is another metric extensively used in
recent studies [25], designed to quantitatively predict the
expected result of a specific budget allocation strategy.
Depending on the study’s focus, this could be response
rate, revenue generation, or cost efficiency. The strength
of EOM lies in its empirical basis, allowing for the
derivation of unbiased estimates of outcomes from
randomized controlled trial (RCT) data. This attribute
of EOMmakes it exceptionally adaptable and applicable
across various scenarios, offering a broader perspective
on the potential real-world impact of budget allocation
strategies.

• ROAS (Return on Advertising Spend): ROAS is an
indispensable metric in advertising analytics, offering
a direct measure of the financial effectiveness of
advertising expenditures. ROAS calculates the revenue
generated per dollar spent on advertising as a funda-
mental indicator, providing an immediate reflection of
campaign profitability. This metric is critically essen-
tial for assessing the efficiency of budget utilization
within specific campaigns and is widely referenced in
marketing literature for its straightforward, quantitative
evaluation of advertising success [47], [48]. ROAS sup-
ports strategic decision-making in real-time advertising
adjustments and budget allocation by highlighting the
direct correlation between advertising spending and
revenue outcomes [49].

• CLV (Customer Lifetime Value): CLV serves as a
strategic metric in understanding the long-term value
of customers, projecting the net profit attributed to the
entire future relationship with a customer. CLV offers
a deep dive into customer profitability that transcends
transactional interactions by estimating the total revenue
a business can expect from a single customer throughout
its relationship [50]. This metric is extensively uti-
lized to tailor marketing strategies, prioritize customer
segments, and optimize resource allocation toward
high-value customers. The comprehensive nature of
CLV, encompassing both current and future potential
earnings from customers, makes it an essential tool
for businesses aiming to maximize lifetime customer
value and foster enduring customer relationships. Its
utilization is well-documented in numerous studies,

underscoring its ability to effectively influence long-
term business growth and profitability strategies [51].
The choice of these four indicators was driven by
their proven reliability and relevance in measuring
the performance of budget allocation models. AUCC
provides a nuanced understanding of model ranking
capability within a binary treatment context, while EOM
extends the evaluation to the anticipated real-world
outcomes of these allocations. Together, they offer a
balanced and comprehensive assessment framework,
aligning with the study’s objectives to optimize budget
allocation and understand the practical implications of
these optimizations in real-world settings. ROAS and
CLV are selected to address the complexities and multi-
faceted impacts of advertising campaigns more effec-
tively [49]. ROAS is crucial for providing immediate
financial feedback on advertising expenditures, offering
a clear and quantifiable measure of how effectively
each dollar spent contributes to revenue generation. This
metric is handy in fine-tuning advertising strategies and
ensuring budget allocations are immediately profitable,
thus resolving the problem of traditional metrics that
overlook the direct financial outcomes of marketing
efforts. Furthermore, CLV is included as a strategic
metric that extends beyond the short-term horizon to
gauge the long-term value generated from customer
relationships. By incorporating CLV, the aim is to
capture the immediate returns and the projected lifetime
profitability of customers acquired through specific
advertising strategies. This approach is essential for
developing more sustainable marketing strategies that
prioritize and optimize resources toward more valuable
customer segments, thus addressing the issue of tradi-
tional metrics failing to consider campaigns’ broader,
long-term impacts on customer retention and value [51].

C. SETTING
All experiments were conducted on a 64-bit Windows operat-
ing systemwith 64 gigabytes (GB) of random-accessmemory
(RAM). This significantly enhanced the system’s capacity to
handle large datasets and perform demanding computations
smoothly. It also featured a one-terabyte (TB) solid-state
drive (SSD), ensuring fast data access and substantial storage
capacity—essential for efficientlymanaging large volumes of
data. This configuration allowed for the smooth running of
multiple applications and services simultaneously, meeting
the high computational demands of the research with both
efficiency and reliability.

A crucial technique, k-fold cross-validation, was employed
to optimize hyperparameters for the proposed and compar-
ative models. This technique is a key factor in ensuring
the robustness and generalizability of the model. It involves
partitioning the data into distinct subsets and training the
model on k-1 of these while using the remaining subset
for testing. This process is repeated k times, with each
subset used exactly once as the test set. By averaging
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TABLE 2. Summary of optimized hyperparameters for RL and DE
components.

the results from all k experiments, a more comprehensive
assessment of the model’s performance across different data
segments is obtained, significantly reducing the likelihood
of anomalies due to peculiarities in any single split. This
approach enhances confidence in the model’s performance.

The k-fold cross-validation method in the proposed model
helps identify the most effective hyperparameter settings that
balance the trade-off between exploration and exploitation
in RL and the evolutionary parameters in DE. Furthermore,
validating across multiple subsets effectively mitigates the
risk of overfitting, ensuring that both algorithms adapt well
to new, unseen data and maintain their efficacy across
diverse advertising scenarios. Table 2 details the outcomes
of these optimization activities for both the RL and DE in
the proposed model. It offers a detailed summary of the
selected hyperparameters for the RL and DE components,
including the ranges and specific values that delivered
optimal performance during the validation stage.

D. RESULT
The proposed model was evaluated against seven established
methods: OptiMark [2], MCBB [7], DRP [22], AdCob [32],
VEGA [33], DySNAdOpt [34], and GAPBAS [35]. It was
also compared with three variants: Proposed w/o RL,
Proposed w/o DA, and Proposed w/o DE, each lacking a key
component—RL, Discretization Approach (DA), and DE,
respectively. Table 3 presents a comprehensive comparison
of these models across two datasets using AUCC and EOM
metrics.

Among the competing models, GAPBAS emerged as the
top performer on both datasets, securing AUCC scores of
0.703 and 0.810 on the CICAD and CRITEO-UPLIFT v2
datasets, respectively, alongside EOM scores of 0.645 and
0.757. This progression from OptiMark to GAPBAS illus-
trates a consistent enhancement in performance, showcasing
the evolution of modeling techniques and their increasingly
adept handling ofmulti-channel budget allocation challenges.
The proposed model outshines all competitors with remark-
able improvement margins. Compared with GAPBAS, the
best of the compared models, the proposed model achieved

a 20.2% increase in AUCC for CICAD and a 13.1% increase
for CRITEO-UPLIFT v2. Similarly, it showed a 33.6% rise in
EOM for CICAD and a 16.5% increase for CRITEO-UPLIFT
v2. These significant leaps in performance highlight the
synergy achieved by integrating RL, DE, and discretization
approaches, adeptly navigating the complexities of multi-
channel budget allocation to optimize advertising campaign
outcomes.

The comparison with its derivative models reveals the
integral value of each component. For instance, the proposed
model boosts AUCC by 16.5% over the Proposed w/o RL
variant and 13.6% over the Proposed w/o DE variant on
CICAD. The EOM also saw significant uplifts of 22.4% and
17.1% over the Proposed w/o RL and Proposed w/o DE
variants, respectively. This analysis underscores the critical
contribution of RL, DE, and discretization in enhancing
the model’s performance, with each element playing a
pivotal role in fine-tuning budget allocations and maximizing
conversion rates.

Generally, the results of this study align with and
expand upon recent advancements in multi-channel budget
allocation and optimization. Similar investigations, such
as those conducted by DRP and AdCob, have explored
the complexities of distributing budgets across various
channels using different methodologies to enhance marketing
campaign effectiveness. Our proposed model builds on these
foundational studies by incorporating RL, DA, and DE.
These integrations have proven to significantly advance the
management of the complex challenges associated with such
allocations. The effective synergy of these methods reflects
the progressive nature of current research and underscores our
model’s innovative capacity to outperform existing methods
significantly. By situating our findings within the broader
context of recent innovations, we highlight the significance
and impact of our approach in advancing the field of budget
allocation in digital marketing.

In the statistical analysis, paired t-tests were conducted
to evaluate the significance of the performance differences
between the proposed and existing advanced models, specif-
ically focusing on the OptiMark model as a representative
comparison. The analysis revealed extremely low p-values
across all metrics, with the CICAD dataset showing p-values
of 7.09×10−12 for the AUCC and 6.77×10−14 for the EOM.
Similarly, for the CRITEO-UPLIFT v2 dataset, the p-values
were 4.71 × 10−12 for AUCC and 2.56 × 10−14 for EOM.
These results indicate a statistically significant superiority of
the proposed model over the OptiMark model. The remark-
ably low p-values across both datasets and performance
metrics strongly suggest that the enhancements integrated
into the model, such as the advanced DE algorithm and
the strategic incorporation of RL techniques, substantially
contribute to its improved performance.

Table 4 showcases the performance of various advertising
models using ROAS and CLV metrics, enabling a compara-
tive analysis between the proposed model and its competitors
across the CICAD and CRITEO-UPLIFT v2 datasets. For
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TABLE 3. Performance comparison of the proposed model against other models on the CICAD and CRITEO-UPLIFT v2 datasets using the AUCC and EOM
metrics.

TABLE 4. Performance comparison of the proposed model against other models on the CICAD and CRITEO-UPLIFT v2 datasets using the ROAS and CLV
metrics.

instance, a ROAS of 1.0 for the OptiMark model on the
CICAD dataset indicates a break-even scenario where each
dollar invested in advertising returns precisely one dollar in
revenue.

This suggests that while the campaign is not losing money,
it is also not generating any profit, which might be considered
a conservative outcome in terms of investment return. On the
other hand, the proposed model shows a ROAS of 2.8 on
the same dataset, significantly outperforming OptiMark
and other models. This indicates that the proposed model
generates approximately $2.80 in revenue for every dollar
spent on advertising, reflecting a highly efficient use of the
advertising budget that substantially increases profitability.
Similarly, the proposed model achieves a remarkable CLV
of $138 on the CICAD dataset. It suggests that each
customer acquired or retained through the campaign is
expected to contribute an average of $138 in net profit over
their relationship with the company. This is a considerable
increase compared to the $100 CLV reported for OptiMark,
underscoring the proposed model’s superior capability in
generating immediate revenue and fostering valuable long-
term customer relationships. Furthermore, the variation
in ROAS and CLV across different models and datasets
highlights the adaptability and performance of the proposed
model under various conditions. For example, while the
VEGA model shows a competitive ROAS of 1.8 and a CLV
of $115 on the CICAD dataset, it does not perform as well
on the CRITEO-UPLIFT v2 dataset with a slightly higher

ROAS but a lower CLV. In contrast, the proposed model
maintains and enhances its performance on the CRITEO-
UPLIFT v2 dataset, with a ROAS of 3.8 and a CLV of
$159, demonstrating its robustness and effectiveness across
different advertising environments. These metrics are critical
in understanding the efficiency and impact of each model.
A higher ROAS directly relates to better immediate financial
returns, while a higher CLV indicates more profitable and
sustainable customer relationships. Therefore, the proposed
model’s superior performance in these metrics suggests it
is more effective at utilizing budgets to generate immediate
revenue and create long-term value, making it a compelling
choice for advertisers aiming to maximize immediate and
future returns from their campaigns.

Table 5 compares computational efficiency metrics for
various models applied to the CICAD and CRITEO-UPLIFT
v2 datasets. The metrics considered are Runtime, measured
in seconds, and GPU Usage, measured in gigabytes (GB).
The OptiMark model shows a balanced performance on
both datasets with moderate runtime and GPU usage.
In contrast, the MCBB and GAPBAS models exhibit
higher GPU demands, particularly evident in the latter’s
substantial consumption on the CRITEO-UPLIFT v2 dataset,
marking the highest among all models at 10.25 GB. DRP
and the proposed model exhibit similar efficiency on the
CICAD dataset regarding runtime, but the proposed model
leverages GPU resources more effectively. This indicates an
optimization that does not compromise the computational
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TABLE 5. Performance computational efficiency of the proposed model against other models on the CICAD and CRITEO-UPLIFT v2 datasets.

FIGURE 3. Dynamic performance and economic viability of the proposed model over 12 months on CICAD and CRITEO-UPLIFT v2 datasets,
illustrating resilience and efficiency in online advertising environments.

time for resource usage. AdCob, while the least efficient in
terms of runtime, particularly on the CRITEO-UPLIFT v2
dataset, compensates with the lowest GPU usage, suggesting
a trade-off between time and resource consumption. VEGA
and DySNAdOpt show contrasting resource allocations, with
VEGA consuming the most GPU resources across both
datasets, which could imply a more complex but potentially
robust computational process. DySNAdOpt, despite a higher
runtime on the CRITEO-UPLIFT v2 dataset, manages to keep
the GPU usage to a minimum, mirroring the efficiency of
AdCob in this regard.

Figure 3 offers an in-depth examination of the proposed
model’s performance and economic impact over 12 months,
utilizing the CICAD and CRITEO-UPLIFT v2 datasets.
Figure 3. a represents the model’s performance over time.
This portrayal vividly illustrates the model’s adeptness
at adjusting to the ever-evolving landscape of market
conditions, advertising trends, and the complex feedback
loops inherent in the online advertising ecosystem. The
performance across both datasets showcases periodic peaks,
suggesting the model’s capacity to maintain high-efficiency
levels amidst fluctuating market dynamics. This resilience
is likely a testament to the model’s advanced learning

mechanisms, which harness the strengths of RL and DE
algorithms. These algorithms work in tandem to continually
refine and optimize budget allocation strategies, ensuring the
model’s sustained high performance despite shifting market
trends.

Figure 3. b, focusing on the ROI, further accentuates the
proposed model’s effectiveness. The ROI trajectories for
both datasets display variability, mirroring the complex rela-
tionship between advertising expenditure and the resulting
conversions or sales. Notably, the ROI consistently exceeds
the breakeven point across both datasets, underscoring the
model’s ability to generate substantial value from advertising
investments, thus ensuring positive economic outcomes.

The proposed model’s distinct advantage is highlighted
through this dual analysis. Its unparalleled performance is
attributed to several innovative features, including integrating
a clustering-basedmutation strategy within the DE algorithm.
This approach allows the model to explore and identify
optimal budget allocations through novel and practical
solutions. Additionally, the model employs a discretization
strategy that simplifies the intricate process of budget
allocation, enhancing its applicability and effectiveness in
real-world scenarios. The model’s adaptability, as evidenced
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FIGURE 4. Impact of budget reallocation on multi-channel advertising performance. a) original channel performances, b) modified
performances with an increased social media budget.

by its sustained performance over an extended period,
indicates its proficiency not just in static conditions but
also in adapting to dynamic market changes— a crucial
attribute in the rapidly changing online advertising landscape.
The economic analysis demonstrated through consistent
ROI gains confirms the model’s practical value, offering
advertisers an optimized solution that maximizes campaign
impact and ensures favorable financial returns.

Figure 4 skillfully illustrates the dynamics among various
advertising channels through two sets of box plots, repre-
senting the performance metrics of five primary channels:
social media, search engines, email, display ads, and affiliate
marketing. Figure 4. a provides a snapshot of these channels’
performances before any budgetary changes. Each plot
highlights the median performance at its center, while the
box around it marks the interquartile range (IQR), capturing
the central 50% of the data. The whiskers extending from
the boxes shed light on the broader spectrum of outcomes,
showcasing the variability beyond the median and quartile
data.

Initially, the performances across these channels are
notably consistent, with only minimal differences in median
values and data spread. However, this consistency is disrupted
by a deliberate 50% budget increase for social media, leading
to significant shifts in the performance metrics of the other
channels (Figure 4.b). This adjustment brings to the forefront
the adaptive nature of budget allocation in multi-channel
advertising strategies, demonstrating how modifications in
one area can profoundly influence the success of others.
It emphasizes the interconnectedness of these channels,
suggesting that strategic budget reallocations can have far-
reaching effects across the advertising landscape.

The changes observed in the performance metrics post-
budget adjustment highlight the dynamic and intertwined
nature of multi-channel advertising. This complexity
demands a thorough comprehension of how these channels
interact and influence one another. Advertisers are, therefore,
encouraged to take a more expansive view of their budgeting
strategies, considering not only the immediate effects but also

TABLE 6. Model performance under normal and adversarial conditions
across CICAD and CRITEO-UPLIFT v2 datasets.

the broader implications of their financial decisions on all
channels.

Table 6 showcases the model’s resilience and adaptability
by juxtaposing its performance across standard and adver-
sarial scenarios, employing two distinct datasets: the CICAD
and CRITEO-UPLIFT v2.

When evaluated on the CICAD dataset under conven-
tional conditions, the model exhibits commendable strength,
achieving an AUCC of 0.845 and an EOMof 0.862. However,
introducing adversarial examples leads to a modest reduction
in its effectiveness, with the AUCC falling to 0.820 and the
EOM to 0.834. This decline highlights the model’s suscepti-
bility to adversarial tactics but simultaneously underscores its
durability, as it continues to performwith notable competence
in the face of such disruptions.

The performance trajectory of the CRITEO-UPLIFT v2
dataset is similar. Under normal testing conditions, the
model initially posts robust scores—0.916 in AUCC and
0.882 in EOM. However, when confronted with adversarial
examples, its metrics experience a minor decrement, with
the AUCC descending to 0.893 and the EOM to 0.874.
This consistent performance pattern, even under adversarial
pressure, reaffirms the model’s robust nature and ability to
maintain a high level of effectiveness across various testing
landscapes.

Figure 5 depicts the progression of rewards an agent
accumulates over a series of episodes for two distinct datasets.
In the CICAD dataset, a discernible upward trend suggests
a learning curve where the agent gradually improves perfor-
mance as it gains experience through repeated interactions
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FIGURE 5. Reward trajectories over successive episodes for the CICAD dataset (a) and the CRITEO-UPLIFT v2 dataset (b).

FIGURE 6. Comparative performance analysis of RL, DE, and their integration in minimizing error across generations for a) CICAD, b) CRITEO-UPLIFT v2
datasets.

with the environment. The rewards start at a lower baseline
and exhibit a relatively steady ascent, punctuated by occa-
sional dips that could signify the agent’s exploratory actions
or environmental changes. In contrast, the CRITEO-UPLIFT
v2 dataset displays a more volatile reward path, with higher
peaks and a broader range of values. This may indicate a more
complex or less predictable environment where the agent’s
actions yield more fluctuating results. This could signify
a more sophisticated or less stable set of dynamics in the
advertising system, where the agent must adapt to a broader
array of factors to maximize the reward.

In both cases, the variability in the reward trajectories
underscores the stochastic nature of reinforcement learning
tasks and the importance of exploration. The agent’s perfor-
mance does not improve linearly but evolves through trial
and error. The graphs suggest that the agent is successfully
refining its policy over time, which is essential for achieving
long-term benefits in dynamic systems such as multi-channel
advertising budget allocation.

Figure 6 presents a detailed performance comparison of
RL, DE, and their combined approach to minimizing error
values over time. The graphs illustrate how these algorithms
reduce the distance from an optimal value across generations
or learning sessions within the context of the CICAD and
CRITEO-UPLIFT v2 datasets.

The first graph demonstrates a scenario where individual
algorithms and their integration fluctuate as they progress.
The RL algorithm shows a gradual improvement trend,
reflecting its learning and adjustment capabilities as it
receives environmental feedback. However, its path is
not strictly linear, suggesting some variability in learning
efficiency or the challenges presented by the dataset at
different stages. The DE algorithm, known for its robust
global search capabilities, exhibits a more volatile reduction
in error. This indicates its exploratory nature, where it
might escape local minima but encounter periods of less
efficient search, leading to the observed fluctuations. Despite
these fluctuations, DE decreases the error significantly,
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FIGURE 7. Comparative analysis of decision-making times for RL and DE algorithms across a) CICAD, b) CRITEO-UPLIFT v2 datasets.

highlighting its effectiveness in navigating complex problem
spaces. The combined approach generally shows a smoother
and more consistent decline in error compared to the
individual performances. This smoother curve implies that
integrating RL and DE harnesses the strengths of both the
strategic exploration of DE and the adaptive learning of RL.
By mitigating the weaknesses of each algorithm through
integration, the combined approach achieves a more stable
and effective reduction in error, reaching lower error levels
more consistently.

In the second graph, the three approaches’ performance
is more aligned, suggesting a scenario where the distinct
advantages of eachmethod are less pronounced. However, the
integrated approach maintains a slight edge, first reaching the
lowest error values. This sustained performance superiority in
different datasets and under varying conditions underscores
the robustness of the combined approach, reinforcing the
value of integrating RL and DE to handle diverse and
challenging optimization tasks in dynamic environments.

Figure 7 shows the distribution of decision-making times
for the RL and DE algorithms applied to CICAD and
CRITEO-UPLIFT v2 datasets. Each histogram provides
insights into how quickly each algorithm processes data and
makes decisions, which is crucial for performance in real-
time bidding (RTB) environments.

For the CICAD dataset, the RL algorithm typically
completes decision-making faster than the DE algorithm.
Most RL decision times are concentrated around 100ms, with
a notable peak slightly below this value. This suggests that RL
is generally more efficient due to its ability to incrementally
learn and adapt based on past experiences without requiring
extensive new computations for each decision. DE shows a
broader spread of decision times, with a significant amount of
decisions taking longer, up to about 250 ms. This distribution
indicates that DE’s approach, which involves evaluating
multiple solution variations to evolve the optimal decision,

inherently requires more computation time, leading to slower
decision-making processes.

In the CRITEO-UPLIFT v2 dataset, the decision-making
times for both RL and DE are generally faster than the
CICAD dataset, which might indicate that the characteristics
or complexity of this dataset allow quicker processing.
RL again shows faster processing times, with most decisions
around 50-100 ms. This faster performance underscores
RL’s suitability for environments where decisions must be
made quickly, such as in RTB. DE’s times are again slower
on average than RL’s, with a broader spread and a peak
around 150 ms. While quicker than in the CICAD dataset,
the times still reflect DE’s more computationally intensive
nature.

Across both datasets, RL consistently demonstrates
quicker decision-making capabilities than DE. This charac-
teristic is advantageous in RTB environments, where faster
decision times can lead to better bidding opportunities
and outcomes. DE, while slower, may still be valuable in
scenarios where the decision quality from exploring diverse
solutions outweighs the need for speed. However, its slower
decision-making process might only limit its effectiveness in
high-speed environments if optimizations are made to reduce
computation times.

1) ANALYSIS OF THE DE ALGORITHM
In a subsequent experiment, the advanced DE algorithm was
compared with a range of renowned metaheuristic optimiza-
tion algorithms, and the efficacy of eight distinct algorithms
was rigorously evaluated: Salp Swarm Algorithm (SSA)
[52], Bat Algorithm (BA) [53], Firefly Algorithm (FA) [54],
Artificial Bee Colony (ABC) [55], and the standard DE. The
detailed results of this stringent comparison are presented in
Table 7, highlighting the algorithmic effectiveness on both the
CICAD and CRITEO-UPLIFT v2 datasets. On the CICAD
dataset, the enhanced DE algorithm achieved a commendable
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TABLE 7. Performance comparison of the enhanced DE algorithm against prominent metaheuristic optimization algorithms on the CICAD and
CRITEO-UPLIFT v2 datasets.

FIGURE 8. Performance variation of the DE algorithm with different population sizes. The plot showcases the efficacy of the model for
the datasets CICAD and CRITEO-UPLIFT v2, highlighting optimal population size values of 64 and 128, respectively. a) CICAD, b)
CRITEO-UPLIFT v2.

21% error reduction compared to the conventional DE. This
marked improvement emphasizes the superior efficiency of
the method relative to the traditional DE approach.

Notably, the DE algorithm surpassed other metaheuristic
algorithms like ABC, FA, and BA, consolidating its stance as
a robust optimization tool in this domain. Similarly, for the
CRITEO-UPLIFT v2 dataset, the DE algorithm realized an
outstanding 19.27% reduction in error rates. This pronounced
performance boost reiterates the versatility and resilience of
the DE algorithm across varied datasets, positioning it as an
optimal solution for diverse optimization tasks.

A series of experiments were embarked upon to delve
deeper into the nuances of the DE algorithm, focusing on
exploring the influence of population size on the algorithm’s
effectiveness. The objective was to identify the optimal
population size to enhance the algorithm’s performance,
particularly in metrics such as the AUCC and the EOM.
To achieve this, the population size was varied across a range
of values—16, 32, 64, 128, and 256—and the resulting impact
on performance was monitored.

The findings, illustrated in Figure 8, shed light on some
fascinating patterns. For the CICAD dataset, the peak
performance, as measured by AUCC and EOM, was attained
with a population size of 64. Similarly, for the CRITEO-
UPLIFT v2 dataset, the algorithm reached its optimal
performance with a population size of 128. Interestingly,
increasing the population size beyond these optimal points

did not consistently lead to better results. A notable decrease
in performance metrics was observed for both datasets as the
population size was further expanded from optimal to 256.
This pattern implies that while a larger population size can
initially contribute to the algorithm’s improved performance,
a limit exists beyond which further increases may lead to
diminishing returns.

In the context of the DE algorithm, the scaling factor
is a crucial parameter governing the amplification of the
differential vector between two candidate solutions. This
amplification occurs when producing a trial solution during
themutation operation. Typically, the scaling factor in DE lies
between 0 and 2. A scaling factor near 0 results in minimal
perturbation of the differential vector, leading to finer
solution space exploration. This fine-tuned approach can be
beneficial for ensuring stability and convergence, especially
during the initial optimization phases. Conversely, a scaling
factor approaching 2 causes a more pronounced perturbation,
facilitating broader solution space exploration.While this can
aid in promoting diversity and escaping local optima, it may
also render the algorithm less stable, potentially leading to
convergence challenges. To assess the influence of the scaling
factor, experiments were executed with varying initial values
from the set {0, 0.1, 0.2, 0.8, 1, 1.2, 1.5, 1.8, 2}, as depicted in
Figure 9. The model’s performance, evaluated using diverse
metrics, peaks at scaling factor values of 0.8 for CICAD and
1.2 for CRITEO-UPLIFT v2.
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FIGURE 9. Performance variation of the DE algorithm with different scaling factors. The plot showcases the efficacy of the model for
the datasets CICAD and CRITEO-UPLIFT v2, highlighting optimal scaling factor values of 0.8 and 1.2, respectively. a) CICAD, b)
CRITEO-UPLIFT v2.

FIGURE 10. Convergence patterns of the objective function values across iterations using the proposed Differential Evolution strategy on two
datasets: a) CICAD and b) CRITEO-UPLIFT v2.

Figure 10 presents the convergence trends of the objec-
tive function’s values across numerous iterations for two
distinct datasets within the framework of the proposed DE
strategy. Figure 10. a displays the results for the CICAD
dataset, showing a marked, albeit irregular, downward trend,
indicating an overall successful optimization process with
some fluctuations that might represent the exploration phase
inherent in the DE approach. Figure 10. b, detailing the
CRITEO-UPLIFT v2 dataset, depicts a more consistent and
steady decrease in the objective function values, suggesting a
smoother optimization pathway and possibly a less complex
problem space or a better initial parameter setting for this
particular dataset. The variance in convergence patterns
between the two datasets underscores the adaptability of the
DE strategy to different data characteristics and optimization
landscapes. It also reflects the inherent stochastic nature of

evolutionary algorithms, where exploration can occasionally
lead to temporary increases in the objective function before
converging to a more optimal solution.

E. DISCUSSION
This article unveils an innovative strategy for allocating
budgets across multiple advertising channels, combining RL
Q-learning with an advanced DE algorithm. This integrated
model excels in making strategic, sequential decisions and
effectively tackles the intricate challenges of distributing
budgets across various platforms. Extensive testing on the
CICAD and CRITEO-UPLIFT v2 datasets confirms the
effectiveness of the proposed approach, which outperforms
existing advanced models.

The experiments, including detailed ablation studies,
underscore the unique value each component—RL, DA,
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and DE—brings to the overall efficacy of the model. The
remarkable performance against other top-tier models can
be attributed to the seamless fusion of RL and DE. RL’s
ability to adapt and learn from continuous feedback enhances
the model’s strategic decision-making. Concurrently, the DE
algorithm, with its innovative clustering-based mutation,
explores and refines potential strategies, leading to the dis-
covery of effective and pragmatic budget allocation solutions.

Every element of the proposed model has been care-
fully chosen to uniquely tackle the multifaceted challenges
inherent in allocating budgets across multiple advertising
channels. The RL framework stands out for its exceptional
capability in making sequential decisions and its adeptness at
learning from varying outcomes. This makes it exceptionally
suited to the ever-changing landscapes of advertising, where
adaptability and foresight are crucial.

The DE algorithm, enriched with a novel clustering-
based mutation approach, plays a pivotal role in efficiently
traversing the complex landscape of potential strategies.
It promotes exploration and exploitation, uncovering innova-
tive and practical budget allocation solutions. Furthermore,
introducing a discretization method streamlines the model’s
complexity, enhancing its manageability and real-world
applicability. This tactic breaks down the vast and intricate
budget space into more approachable segments, facilitating
easier decision-making and implementation. This strategic
simplification improves the model’s usability and scalability,
enabling it to accommodate a wide range of advertising
scenarios and budget sizes without compromising perfor-
mance. Collectively, these components synergize to create a
robust model that meets the demands of multi-channel budget
allocation and sets a new standard in the field, offering a blend
of precision, adaptability, and practicality.

The theoretical underpinnings of the study hold substan-
tial importance, providing a sophisticated framework that
enriches the grasp of multi-channel advertising strategies and
extends its benefits to the broader domains of reinforcement
learning and evolutionary computation. The findings show-
case the potent synergy achievable through the amalgamation
of these advanced methodologies, illuminating new pathways
for investigating adaptive strategies within complex and ever-
evolving systems. This research not only elucidates the
intricacies of budget allocation across diverse advertising
platforms but also lays down foundational insights that could
catalyze innovations in algorithmic approaches to decision-
making under uncertainty. The integration of reinforcement
learning with evolutionary algorithms exemplifies a novel
approach to solving real-world problems characterized by
their dynamic and unpredictable nature. Consequently, this
study contributes a significant leap forward in the theoretical
understanding, promising to inspire future research on
harnessing these methodologies to tackle various challenges
in various disciplines.

However, the proposed model has limitations:
• Scalability: The scalability challenge is heightened
as the diversity and number of advertising channels

expand, potentially leading to an exponential increase
in computational demands. This is particularly pertinent
in today’s digital marketing landscape, where new
platforms emerge rapidly. To address this, advanced
dimensionality reduction techniques could be employed
to distill the essential information from vast datasets,
thereby reducing computational load. Additionally,
leveraging parallel computing frameworks could dis-
tribute the workload across multiple processors, sig-
nificantly enhancing the model’s ability to scale up
efficiently and handle a broader array of channels
without a corresponding spike in computational time or
resources.

• Data dependency: The reliance of the model on exten-
sive and high-quality historical data poses a significant
limitation, especially in scenarios where data is scarce,
outdated, or biased. Such data issues can skew model
predictions and diminish performance. To combat this,
robust data augmentation techniques, which generate
synthetic data points from existing ones, could be
implemented to enrich the dataset and improve model
robustness. Moreover, exploring unsupervised learning
components that do not rely on labeled data could offer
valuable insights from unlabeled data, thereby reducing
the model’s dependency on extensive historical datasets.

• Adaptability to rapid changes: The digital advertising
landscape is characterized by its volatility and rapid
evolution, with frequent shifts in user preferences,
platform algorithms, and market dynamics. The current
model might need help promptly adapting to these
swift changes, potentially compromising effectiveness.
Incorporating faster adaptation mechanisms, such as
meta-learning, within the RL component could provide
a solution. Meta-learning enables the model to rapidly
adjust to new conditions based on previous learning
experiences, enhancing its adaptability to suddenmarket
shifts and maintaining its performance in a dynamic
environment.

• Technical complexity in integration: The integration of
RL with an improved DE algorithm presents a signifi-
cant technical challenge. Both algorithms have complex
parameters and processes that must be meticulously
aligned to work in tandem. This complexity makes the
model difficult to implement and maintain and requires
specialized knowledge and skills, potentially limiting
its accessibility and scalability to broader applications
where such expertise may not be available. Adopting
a modular approach in the model’s design can help
isolate the functionalities of RL and DE, making each
component more manageable and easier to maintain.
Encapsulating each algorithm in its module allows their
interaction to be controlled more finely, reducing inte-
gration complexity.Moreover, implementing knowledge
transfer techniques, where insights from domain experts
are encoded into the system, can mitigate the need for
deep technical expertise in every application scenario.
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Developing comprehensive documentation and training
programs can also facilitate broader accessibility and
usability, helping overcome the barriers posed by the
model’s complexity.

• Real-time decision-making challenges: Implementing
the solution in an RTB environment requires the model
to make quick decisions, which might be challenging
given the algorithms’ complexity. The necessity for
rapid response times in RTB can be at odds with
the computational demands of both RL and DE,
potentially leading to delays that could impact the
efficacy of bidding strategies and overall campaign
performance. To solve this problem, implementing
predictive and preemptive computing strategies will
be critical. Leveraging machine learning techniques
to predict bidding scenarios and prepare responses in
advance can decrease decision-making time during live
bidding events. This preemptive setup can be supported
by a robust data caching system that stores previously
computed results and rapidly retrieves them when
similar scenarios arise, further reducing the latency
involved in each transaction. To further enhance system
responsiveness, a microservices architecture could be
adopted. This allows individual components of the RL
and DE algorithms to operate independently and scale
dynamically according to demand. Each microservice
would handle a specific task or process within the
larger bidding strategy, operating concurrently across
different servers or cloud environments. This improves
fault tolerance and system reliability and increases data
processing and decision-making efficiency.

VI. CONCLUSION
This study introduced an innovative approach to allocat-
ing budgets across multiple advertising channels, which
harnessed the capabilities of an RL Q-learning framework
combined with an advanced DE algorithm to enhance the Q-
learning process. The RL component was adept at making
informed sequential decisions, skillfully adapting strategies
to prioritize long-term advantages by integrating environ-
mental feedback. The DE algorithm was also augmented
with a novel clustering-based mutation technique, leveraging
significant clusters within the DE population to create
unique and practical solutions. The strategy was refined
by implementing a discretization method that simplified
the model and made cost management more efficient.
The proposed method underwent rigorous validation using
two comprehensive datasets: the CICAD and CRITEO-
UPLIFT v2. The empirical evidence confirmed the model’s
dominance, demonstrating outstanding performance with
substantial scores (AUCC = 0.750 and EOM = 0.736 for
CICAD; AUCC = 0.813 and EOM = 0.829 for CRITEO-
UPLIFT v2), thus highlighting the model’s capability in
addressing the complex challenges of multi-channel budget
allocation and setting a new standard in the domain.

In future work, the capabilities of the multi-channel adver-
tising budget allocation model are planned to be expanded
by incorporating real-time bidding strategies, allowing the
model to not only allocate budgets but also dynamically
adjust bids in response to changing market conditions.
This could significantly enhance the model’s reactivity
and profitability in the ever-evolving online advertising
landscape. Another avenue for future research is integrating
a broader range of environmental feedback signals, including
consumer behavior metrics and competitor actions, to refine
the decision-making process further. By understanding and
responding to a broader context, the model could deliver even
more sophisticated and nuanced budget allocation strategies,
driving higher returns on investment. Finally, future work
will include advanced optimization techniques to enhance the
efficacy and efficiency of our model through hyperparameter
optimization of RL and DE algorithms. Specifically, we plan
to exploremeta-heuristic algorithms, which arewell-regarded
for their ability to identify optimal or near-optimal solutions
in complex, multi-dimensional spaces. These techniques
are particularly effective in navigating environments with
multiple local optima, making them ideal for refining our
approach to hyperparameter tuning.
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