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ABSTRACT Lane detection is fundamental to autonomous driving, yet remains challenging in complex
environments with occlusions, ambiguous markings, and varied lighting. We introduce the Global Semantic
Enhancement Network (GSENet), a groundbreaking framework that significantly advances lane detection
accuracy and robustness. GSENet’s core innovations include the Global feature Extraction Module (GEM)
and the Top Layer Auxiliary Module (TLAM). GEM revolutionizes the extraction of fine-grained global
features, overcoming limitations of traditional deep convolutional approaches without compromising
inference speed. TLAM leverages self-attention mechanisms to capture rich contextual information
and learn task-specific representations, dramatically enhancing the network’s performance in complex
scenarios. We further propose the Generalized Line Intersection over Union (GLIoU) Loss, a novel
optimization approach that considers spatial relationships between lane points and introduces a geometric
penalty term. This loss function promotes globally coherent and smooth lane predictions, addressing key
limitations in existing methods. Our comprehensive mathematical analyses, including gradient derivations
and complexity assessments, provide theoretical foundations for the effectiveness of these innovations.
Extensive experiments on challenging benchmarks demonstrate GSENet’s superior accuracy and robustness,
significantly outperforming state-of-the-art methods. Notably, our framework’s modular design extends its
applicability beyond lane detection to various computer vision tasks involving elongated or curved structures,
opening new avenues for research and practical applications in autonomous systems and beyond.

INDEX TERMS Autonomous driving, domain adaption optimization, object detection application.

I. INTRODUCTION
The advent of deep learning, particularly deep neural net-
works [1], has revolutionized numerous applications within
autonomous driving and advanced driver-assistance systems.
Lane detection, a critical aspect of these applications,

The associate editor coordinating the review of this manuscript and
approving it for publication was Ikramullah Lali.

is essential for autonomous vehicle control and accurate lane
boundary delineation. Despite advancements, lane detection
remains challenging, especially in complex environments
characterized by varied scenarios.

Traditional lane detection techniques [2], [3], [4] pre-
dominantly require manual parameter tuning to adapt to
varying road and lighting conditions, introducing potential
variability and errors that could undermine system stability
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FIGURE 1. Depiction of complex driving conditions for lane analysis:
(a) Curvature handling improvements via Angle Loss, (b) Semantic
dependence during intense lighting, (c) Situations lacking clear lane
markings, (d) Obstructions from vehicles in lane visibility.

and performance. These methods often involve edge feature
extraction [2], color space conversion, and subsequent
processing steps such as binary thresholding and denoising.
The final lane detection typically employs methods like the
Hough Transform [3] or lane fitting algorithms such as
RANSAC [5]. However, the reliance on manual adjustments
and inherent instability in feature extraction render these
methods inconsistent in practical applications.

While early neural network models leveraging instance
segmentation and anchor-based object detection have shown
success, they continue to struggle with lane detection under
poor visibility and complex lane configurations, as illustrated
in Figure 1. Recent studies [6], [7], [8] have focused on
addressing these challenges. For instance, UFLD [9] utilizes
lane coherence and shape loss to improve detection speed
and manage irregular lanes, albeit with limited success across
various scenarios. In contrast, [8] introduces a cross-to-fine
mechanism for enhancing lane detection models but falls
short of fully integrating global semantics with local features
and lacks extensive evaluation in real-world challenging
scenarios.

We posit that accurate lane prediction in complex scenarios
necessitates the amalgamation of precise global semantics
and local features, complemented by refined loss functions.
Effective prediction depends on a comprehensive assimila-
tion of scene information from global semantics, including
visible lanes, road markings, and the positioning and
direction of vehicles and pedestrians, to infer lane features
in unseen segments. This also involves integrating detailed
texture information from local features with specific loss
function adjustments to accurately pinpoint lane positions
and shapes.

This paper introduces the GSENet framework, designed
with the understanding that effective lane detection in
complex scenarios heavily depends on global semantics.
We propose a novel global feature extraction system con-
sisting of the Global feature Extraction Module (GEM)
and the Top Layer Auxiliary Module (TLAM). The GEM
processes feature maps from the network’s backbone to
capture precise and expansive global features, which are

subsequently utilized in the upper structure and directly
distilled to the classification and regression heads via the
TLAM in an auxiliary capacity. Additionally, we introduce
the Angle Loss, designed to align the shapes of predicted
and ground truth (GT) lanes by considering their angular
differences, and the Generalized Line Intersection over
Union (GLIoU) Loss, which extends the predicted points
into rectangles to enhance model performance and ensure
smoother lane predictions over the existing Line IoULoss [8].
Our main contributions are as follows:
• We conduct comprehensive theoretical analyses of the
TLAM module and GLIoU Loss, including mathemat-
ical definitions, property discussions, gradient deriva-
tions, and computational complexity analyses. These
analyses provide a solid mathematical foundation for
understanding the working principles and optimization
behaviors of the proposed modules and loss functions,
establishing a theoretical basis for their application in
lane detection and other computer vision tasks.

• We demonstrate the effectiveness and efficiency of
the TLAM module in enhancing the network’s ability
to handle complex lane detection scenarios through
detailed mathematical formulations, gradient deriva-
tions, and computational complexity analyses.

• We provide detailed mathematical definitions, prop-
erty analyses, gradient derivations, and optimization
behavior discussions for the GLIoU Loss, proving its
superiority in optimizing the overlap between predicted
and ground truth lane points while encouraging global
consistency and smoothness.

• We theoretically analyze how to adapt the self-attention
mechanism of the TLAM module and the geometric
modeling of the GLIoU Loss to address challenges
in domains such as road boundary detection, power
line detection, blood vessel segmentation, and crack
detection in concrete structures, providing new insights
for developing more accurate, efficient, and reliable
solutions.

• We successfully introduce Joint Adversarial Domain
Adaptation (JADA) into GSEN, incorporating structural
graph alignment, which effectively addresses joint
distribution shifts byminimizing bias through class-wise
and domain-wise alignments.

II. RELATED WORK
A. SEGMENTATION-BASED METHODS
Segmentation-based strategies represent some of the earliest
CNN applications in lane detection, focusing on pixel-level
classification. This method offers enhanced accuracy but at
the cost of reduced processing speed. Initially, such methods
addressed lane detection as a multi-category segmentation
challenge, employing spatial CNN architectures to encapsu-
late prior shape knowledge [6]. The RESA model [7] intro-
duced optimizations to alleviate computational demands.
However, segmentation approaches like [10] and [11] still
struggle with high latency and diminished performance
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in scenarios with occlusions or extreme environmental
conditions.

B. ROW-WISE-BASED METHODS
Row-wise detection methods reframe the problem into a
classification paradigm, enhancing processing speed and
predictive accuracy of lane shapes. The UFLD framework [9]
exemplifies this approach by segmenting the detection
process, while CondLaneNet [12] leverages conditional
convolutions for refined accuracy. UFLDv2 [13] introduces
a hybrid anchor system to mitigate positional inaccuracies,
though it requires additional post-processing for lateral lanes,
highlighting the trade-offs between speed and comprehen-
siveness.

C. ANCHOR-BASED METHODS
Anchor-based lane detection aligns with general object
detection frameworks like YOLO [14], [15], [16], [17],
utilizing pre-defined anchor points and Non-Maximum Sup-
pression (NMS) [18]. Advanced models like Line-CNN [19]
and LaneATT [20] apply two-stage or adaptable one-stage
detection processes. CLRNet [8] enhances this approach with
a detailed anchor partitioning system. However, the reliance
on fixed anchors can limit flexibility in varied environments.

D. POLYNOMIAL-REGRESSION-BASED METHODS
Polynomial regression methods conceptualize lane repre-
sentation through polynomial equations, focusing on coef-
ficient regression and related metrics. PolyLaneNet [21]
has significantly influenced this field. LSTR [22] proposes
a DETR-based polynomial prediction technique, achieving
high processing speeds but with lower accuracy.

While these diverse approaches have advanced lane
detection capabilities, each presents unique advantages and
constraints, indicating a need for continued innovation
to address evolving challenges in autonomous vehicle
navigation.

III. METHOD
We present an enhanced lane detection methodology that
significantly extends the capabilities of the state-of-the-art
CLRNet [8], incorporating several innovative advancements
to bolster its performance.

A. GLOBAL FEATURE EXTRACTION MODULE (GEM)
Motivation: Integrating global semantic information into
CNN-based lane detection models [7], [8], [9], [12], [13] is
a complex task, especially under conditions such as occlu-
sions and low-light scenarios where lanes are not directly
visible. These challenging scenarios necessitate a robust
mechanism for global information synthesis to maintain
detection accuracy. Traditional approaches relying on deep
convolutional layers for global feature extraction are often
inefficient and limited in their capacity to handle complex
scenarios effectively. To address this gap, we introduce the

FIGURE 2. Diagram illustrating the distribution of feature maps from the
uppermost layer of the backbone into two distinct branches.

Global Feature Extraction Module (GEM), an innovative
architecture designed to enhance the network’s ability to
harness global semantics for superior feature synthesis.
GEM Structure: Structurally, the GEM comprises two syn-

ergistic branches that facilitate the extraction of refined global
features, as illustrated in Figure 2. The first branch, termed
the lower branch, processes the top-level feature maps from
the backbone through an MLP-mixer [23] network, which
undergoes preliminary channel scaling and normalization.
This network aids in establishing initial relationships between
global features and spatial configurations by interacting
spatial and channel feature information. Although this
approach helps in laying down the basic global feature
framework, it primarily captures coarse features and is less
effective in detailed feature granularity.

To overcome these limitations and enhance feature detail,
the second branch, known as the upper branch, employs
a dilated convolution process that allows for expanded
contextual analysis due to its increased receptive field. After
dilation, the feature map is segmented into P sub-blocks and
allocated across h heads. Each head computes the similarity
across pixels within these sub-blocks using a weighted sum
approach, enhancing the precision of global feature capture.
This multi-head approach not only improves granularity
by focusing on smaller segments but also maintains an
overarching view for long-distance spatial relationships,
crucial for complex scenario handling.

Further refining the system, we integrate a SimAm
block [24], a novel, parameter-free 3D attention mechanism
designed to bolster the network’s final stages by enhancing
the depth and quality of global semantic representation. The
combination of dual-branch outputs merges the strengths and
compensates for the weaknesses of each branch, thereby
yielding a unified, detailed, and robust global feature set
that significantly improves lane detection accuracy in diverse
driving conditions.

B. TOP LAYER AUXILIARY MODULE (TLAM)
Motivation: The Top Layer Auxiliary Module (TLAM) is
designed to harness the rich global semantic information
encapsulated in the uppermost feature maps of the neural
architecture. Inspired by the transformative potential of
attention mechanisms in network depth and complexity
management [25], and their successful application in visual
tasks [26], [27], TLAM aims to refine the feature distillation
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TABLE 1. Performance comparison on the CULane Dataset: Our GSENet model demonstrates superior efficacy across various complex conditions
including crowded areas, dazzle lighting, shadowed regions, unmarked lanes, arrows, cross traffic, and nighttime driving.

FIGURE 3. Visual explanation of angle loss and generalized line IoU Loss:
(a) Angle Loss determines the mean angles among aligned predicted and
ground truth points for each lane. (b) The GLIoU Loss applies an extra
penalty when extended rectangles from disparate predicted and ground
truth points fail to intersect.

process between the Global Feature Extraction Module
(GEM) and the network’s decision-making layers.
TLAM Structure: The structural essence of TLAM lies

in its dual approach to processing the semantic information
through self-attention mechanisms [25]. Initially, the feature
map L0 ∈ RB×C0×H0×W0 , extracted from the network’s
backbone, undergoes transformation via a basic residual
network φ to enhance its semantic richness. This processed
feature map, denoted as Ftop ∈ RB×C1×H1×W1 , is subjected
to two distinct self-attention operations, Auxihead1 and
Auxihead2, aimed at optimizing feature representations for
both classification and regression tasks:

Ftop = φ(φ(L0)), (1)

S1, S2 = Auxihead1(Ftop),Auxihead2(Ftop), (2)

where φ : RB×Ci×Hi×Wi → RB×Ci+1×Hi+1×Wi+1 represents
a simple residual network. Auxihead1 segments Ftop into
structured patches {pi}Ni=1, pi ∈ RB×(P2·C1) [27], which are
then flattened and restructured into F ′

top ∈ RB×N×(P2·C1),

where P is the patch size and N =
H1W1
P2

is the number
of patches. This data structure is then processed through a
multi-head self-attention mechanism [25], yielding output
S1 ∈ RB×N×(P2·C1):

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V , (3)

S1 = Concat(head1, . . . , headh)WO, (4)

where headi = Attention(F ′
topW

Q
i ,F ′

topW
K
i ,F ′

topW
V
i ),

and WQ
i ∈ R(P2·C1)×dk ,WK

i ∈ R(P2·C1)×dk ,WV
i ∈

R(P2·C1)×dv ,WO
∈ R(h·dv)×(P2·C1) are learnable projection

matrices, h is the number of heads, and dk = dv =
P2·C1
h .

Post self-attention, S1 undergoes Dropkey processing [28]
with a dropkey rate of δ ∈ [0, 1] to further enhance feature
robustness:

S ′

1 = Dropkey(S1, δ), (5)

and is subsequently reshaped and integrated into the clas-
sification heads as Fcls ∈ RB×C2×H2×W2 . Meanwhile,
Auxihead2 processes Ftop in a similar manner to produce S2,
which, after Dropkey processing, enhances the regression
heads as Freg ∈ RB×C3×H3×W3 .
Theoretical Analysis: The TLAM module leverages the

power of self-attention to capture long-range dependencies
and global contextual information from the top-level feature
maps. By applying self-attention separately for classification
and regression tasks, TLAM enables the network to learn
task-specific global representations, enhancing its ability to
handle complex lane detection scenarios.

The multi-head attention mechanism in TLAM allows
for attending to information from different representation
subspaces, enabling the network to capture diverse and
complementary global features. Furthermore, the Dropkey
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TABLE 2. Unmatched performance on the TuSimple Benchmark: Our
approach sets a new standard, with F1 scores calculated using
the official source code.

operation on the attention output serves as a regular-
ization technique, preventing overfitting and improving
generalization.

Let Ftop = {F (i)
top}

B
i=1 denote the set of top-level feature

maps for a batch of size B. The self-attention operation in
Auxihead1 can be viewed as a function f1 : Ftop → S1, where
S1 = {S(i)1 }

B
i=1. Similarly, Auxihead2 represents a function

f2 : Ftop → S2. The Dropkey operation can be formulated as
a stochastic function g : Si → S ′

i , where S
′
i = {S ′(j)

i }
B′

j=1 and
B′

≤ B due to the random dropping of keys.
The integration of S ′

1 and S ′

2 into the classification and
regression heads can be expressed as:

Fcls = h1(S ′

1), Freg = h2(S ′

2), (6)

where h1 and h2 are reshaping and integration functions.
Considering the composite function T : Ftop →

(Fcls,Freg) representing the TLAM module, we have:

T (Ftop) = (h1 ◦ g ◦ f1(Ftop), h2 ◦ g ◦ f2(Ftop)). (7)

The TLAM module enhances the expressiveness of the
network by introducing a learnable and stochastic transfor-
mation T that maps the top-level features to task-specific
global representations, enabling the network to better handle
the complexities of lane detection.
Computational Complexity: The computational complex-

ity of the TLAM module is primarily determined by the
self-attention operations in Auxihead1 and Auxihead2. For
an input feature map Ftop ∈ RB×C1×H1×W1 , the complexity
of a single self-attention head is O(BN 2P2C1), where N =
H1W1
P2

is the number of patches. With h heads, the overall
complexity of the self-attention operation is O(hBN 2P2C1).
The Dropkey operation and the integration of attention
outputs into classification and regression heads have a

complexity of O(BNP2C1) and O(BC2H2W2 + BC3H3W3),
respectively. Therefore, the total computational complexity
of the TLAM module is:

O(TLAM ) = O(hBN 2P2C1 + BNP2C1

+ BC2H2W2 + BC3H3W3). (8)

While the self-attention operation has a quadratic com-
plexity with respect to the number of patches N , the TLAM
module’s computational overhead is manageable due to
the typically small values of h and P and the application
of self-attention only at the top level of the network.
The Dropkey operation and the integration of attention
outputs add minimal computational burden. Overall, the
TLAM module provides a computationally efficient means
of enhancing the network’s global semantic understanding for
improved lane detection performance.

C. GENERALIZED LINE INTERSECTION OVER UNION LOSS
(GLIoU LOSS)
Definition: Let P = {(xPi , yPi )}

N
i=1 and G = {(xGi , yGi )}

N
i=1

denote the sets of predicted and ground truth lane points,
respectively, where N is the number of points. For each
pair of consecutive points (xPi , yPi ) and (xPi−1, y

P
i−1) in P ,

we define a rectangular region RPi with a length of√
(xPi − xPi−1)

2 + (yPi − yPi−1)
2 and a width of 2e, where e is a

predefined constant. Similarly, we define rectangular regions
RGi for each pair of consecutive points in G. The GLIoU Loss
LGLIoU is defined as:

LGLIoU = 1 −

∑N
i=1 d

GI
i∑N

i=1 d
GU
i

, (9)

where

dGIi =

 IoU (RPi ,R
G
i ) −

X − min(X ,Y )
X

, if 2 ≤ i ≤ N

IoU (RPi ,R
G
i ), if i = 1

(10)

dGUi =

{
1, if 2 ≤ i ≤ N
IoU (RPi ,R

G
i ), if i = 1

, (11)

and IoU (RPi ,R
G
i ), Sbound (R

P
i ,R

G
i ), S(R

P
i ), and S(R

G
i ) denote

the intersection over union, the area of the minimum
bounding box, and the areas of the rectangular regions RPi
and RGi , respectively.
Theoretical Analysis: The GLIoU Loss is designed to

address the limitations of the Line IoU Loss [8] by
considering the spatial relationships between consecutive
lane points and introducing a geometric penalty term. The
IoU component of the GLIoU Loss ensures that the predicted
lane points maximize the overlap with their corresponding
ground truth rectangular regions, while the geometric penalty
term minimizes the area of the minimum bounding box
enclosing these regions.

To better understand the behavior of the GLIoU Loss, let
us analyze its properties and derive its gradient with respect
to the predicted lane points.
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Properties: The GLIoU Loss has the following properties:
1) Non-negativity: LGLIoU ≥ 0, as dGIi ≤ dGUi for all i.
2) Symmetry: LGLIoU (P,G) = LGLIoU (G,P), as the IoU

and geometric penalties are independent of the order of
the input sets.

3) Zero loss: LGLIoU = 0 if and only if RPi = RGi for all i,
which occurs when the predicted and ground truth lane
points are identical.

4) Boundedness: 0 ≤ LGLIoU ≤ 1, as 0 ≤

∑N
i=1 d

GI
i∑N

i=1 d
GU
i

≤ 1.

5) Robustness to outliers: The geometric penalty term
ensures that the GLIoU Loss is robust to outliers in
the predicted lane points, as it penalizes the model for
predicting lane points that significantly deviate from
the ground truth.

Gradient Analysis: To derive the gradient of the GLIoU
Losswith respect to the predicted lane points (xPi , yPi ), we first
express the IoU term IoU (RPi ,R

G
i ) as:

IoU (RPi ,R
G
i ) =

S(RPi ∩ RGi )

S(RPi ) + S(RGi ) − S(RPi ∩ RGi )
, (12)

where S(RPi ∩RGi ) denotes the area of the intersection between
RPi and RGi .
Next, we compute the gradient of IoU (RPi ,R

G
i ) with

respect to (xPi , yPi ) using the chain rule:

∂IoU (RPi ,R
G
i )

∂(xPi , yPi )
=

1

(S(RPi ) + S(RGi ) − S(RPi ∩ RGi ))
2

·

(
∂S(RPi ∩ RGi )

∂(xPi , yPi )
· (S(RPi ) + S(RGi ))

−
∂S(RPi )

∂(xPi , yPi )
· (2S(RPi ∩ RGi ) − S(RGi ))

)
.

(13)

The gradients
∂S(RPi ∩RGi )
∂(xPi ,yPi )

and
∂S(RPi )
∂(xPi ,yPi )

can be computed

analytically based on the geometry of the rectangular regions
RPi and RGi .
Similarly, the gradient of the geometric penalty term can

be derived using the chain rule:

Z = Sbound (RPi ,R
G
i ),

V = min(Z , S(RPi ) + S(RGi )),
∂

∂(xPi , yPi )

(
Z − V
Z

)
=

1
Z2 · (g1 − g2), (14)

where

g1 =
∂Sbound (RPi ,R

G
i )

∂(xPi , yPi )
·

(
min(Sbound (RPi ,R

G
i ), S(R

P
i )

+ S(RGi )) − S(RPi ) − S(RGi )
)
, (15)

g2 =
∂

∂(xPi , yPi )
min(Sbound (RPi ,R

G
i ), S(R

P
i ) + S(RGi ))

· Sbound (RPi ,R
G
i ). (16)

The gradient
∂Sbound (RPi ,RGi )

∂(xPi ,yPi )
can be computed analyti-

cally based on the geometry of the minimum bound-
ing box enclosing RPi and RGi , while the gradient

∂

∂(xPi ,yPi )
min(Sbound (RPi ,R

G
i ), S(R

P
i ) + S(RGi )) can be deter-

mined using the subgradient of the min function.
Finally, the gradient of the GLIoU Loss with respect to

(xPi , yPi ) can be computed using the chain rule:

∂LGLIoU
∂(xPi , yPi )

= −
1∑N

i=1 d
GU
i

·
∂

∂(xPi , yPi )

N∑
i=1

dGIi . (17)

The gradient of dGIi with respect to (xPi , yPi ) can be
expressed as:

Let Sbound = Sbound (RPi ,R
G
i ),

Ssum = S(RPi ) + S(RGi ),

Sdiff = Sbound − min(Sbound , Ssum),

∂dGIi
∂(xPi , yPi )

=



∂IoU (RPi ,R
G
i )

∂(xPi , yPi )

−
∂

∂(xPi , yPi )

(
Sdiff
Sbound

)
, if 2 ≤ i ≤ N

∂IoU (RPi ,R
G
i )

∂(xPi , yPi )
, if i = 1

(18)

Optimization Behavior: The gradient of the GLIoU Loss
with respect to the predicted lane points has two main
components: the gradient of the IoU term and the gradient
of the geometric penalty term. The IoU gradient encourages
the predicted lane points to move towards their corresponding
ground truth positions, maximizing the overlap between
the predicted and ground truth rectangular regions. The
geometric penalty gradient, on the other hand, minimizes
the area of the minimum bounding box enclosing these
regions, promoting a more globally coherent and smooth lane
prediction.

During optimization, the GLIoU Loss gradient balances
these two objectives, ensuring that the predicted lane points
not only align closely with the ground truth but also maintain
a consistent and plausible spatial arrangement. This behavior
is particularly beneficial in scenarios where the lanemarkings
are partially occluded or missing, as the geometric penalty
term helps to infer themissing lane points based on the overall
lane shape.
Computational Complexity: The computational complex-

ity of the GLIoU Loss is O(N ), where N is the number
of lane points. This linear complexity arises from the need
to compute the IoU and geometric penalties for each pair
of consecutive points. The gradient computation also has a
complexity of O(N ), as it involves the summation of the
gradients of dGIi for all i.

Despite its linear complexity, the GLIoU Loss gradient
computation involves several analytical expressions for the
gradients of the IoU and geometric penalty terms, which
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can be efficiently implemented using parallel processing
techniques on modern GPUs. Additionally, the gradient
computation can be further optimized by precomputing and
caching some of the intermediate terms, such as the areas of
the rectangular regions and the minimum bounding boxes.
Advantages and Limitations: The GLIoU Loss offers

several advantages over existing lane detection loss functions,
such as the Line IoU Loss [8]:

1. The GLIoU Loss considers the spatial relationships
between consecutive lane points, promoting a more globally
coherent and smooth lane prediction. 2. The geometric
penalty term in the GLIoU Loss makes it robust to outliers
in the predicted lane points, penalizing the model for
predicting lane points that significantly deviate from the
ground truth. 3. The GLIoU Loss is differentiable and can
be efficiently computed and optimized using modern deep
learning frameworks.
Limitations & Future Directions: 1. The GLIoU Loss

relies on a predefined constant e to determine the width of
the rectangular regions. The optimal value of e may vary
depending on the dataset and the specific lane detection task,
requiring some tuning. 2. The GLIoU Loss assumes that
the lane markings can be approximated by a sequence of
rectangular regions, which may not always be the case in
practice, especially for highly curved or discontinuous lane
markings. 3. The GLIoU Loss does not explicitly model
the topological relationships between different lanes, such
as their relative positions and orientations. Incorporating
such information could potentially further improve the
lane detection performance. 4. Adaptive width estimation:
Instead of using a fixed constant e for the width of the
rectangular regions, future work could explore methods for
adaptively estimating the optimal width based on the local
characteristics of the lane markings, such as their thickness
and curvature.
Mathematical Notations and Definitions: To ensure clarity

and consistency throughout the manuscript, we provide a
summary of the key mathematical notations and definitions
used in the TLAM module and GLIoU Loss sections:

• R: The set of real numbers.
• P = {(xPi , yPi )}

N
i=1: The set of predicted lane points,

where (xPi , yPi ) denotes the coordinates of the i-th
predicted point and N is the total number of points.

• G = {(xGi , yGi )}
N
i=1: The set of ground truth lane points,

where (xGi , yGi ) denotes the coordinates of the i-th
ground truth point.

• RPi : The rectangular region defined by consecutive
predicted lane points (xPi , yPi ) and (xPi−1, y

P
i−1), with a

length of
√
(xPi − xPi−1)

2 + (yPi − yPi−1)
2 and a width

of 2e.
• RGi : The rectangular region defined by consecutive
ground truth lane points (xGi , yGi ) and (xGi−1, y

G
i−1), with

a length of
√
(xGi − xGi−1)

2 + (yGi − yGi−1)
2 and a width

of 2e.

• S(R): The area of a rectangular region R.
• Sbound (R1,R2): The area of the minimum bounding box
enclosing two rectangular regions R1 and R2.

• IoU (R1,R2): The intersection over union between
two rectangular regions R1 and R2, defined as

S(R1∩R2)
S(R1)+S(R2)−S(R1∩R2)

.

• LGLIoU : The Generalized Line Intersection over Union

(GLIoU) Loss, defined as 1 −

∑N
i=1 d

GI
i∑N

i=1 d
GU
i

.

• dGIi : The numerator term of the GLIoU Loss for the i-th
pair of predicted and ground truth lane points, defined as

IoU (RPi ,R
G
i )−

Sbound (RPi ,RGi )−min(Sbound (RPi ,RGi ),S(R
P
i )+S(R

G
i ))

Sbound (RPi ,RGi )

for 2 ≤ i ≤ N , and IoU (RPi ,R
G
i ) for i = 1.

• dGUi : The denominator term of the GLIoU Loss for the i-
th pair of predicted and ground truth lane points, defined
as 1 for 2 ≤ i ≤ N , and IoU (RPi ,R

G
i ) for i = 1.

•
∂f
∂x : The partial derivative of a function f with respect to
a variable x.

• O(·): The big-O notation, used to describe the computa-
tional complexity of an algorithm or operation.

These notations and definitions serve as a reference for
the mathematical expressions and concepts presented in the
TLAM module and GLIoU Loss sections, ensuring a clear
and precise description of the proposed methods and their
theoretical underpinnings.
Theoretical Extensions and Generalizations: In this sec-

tion, we explore potential theoretical extensions and general-
izations of the TLAM module and the GLIoU Loss, aiming
to provide a broader perspective on their applicability and
potential future developments.
TLAM Module Extensions: 1. Higher-order feature inter-

actions: The current formulation of the TLAM module
considers pairwise feature interactions through self-attention
mechanisms. An interesting extension would be to investigate
higher-order feature interactions, such as triple or quadruple
interactions, to capture more complex dependencies among
the top-level features. This could be achieved by introducing
additional attention heads or by designing novel attention
mechanisms that explicitly model higher-order interactions.

2. Adaptive patch size: In the current implementation, the
patch size P is a fixed hyperparameter. However, the optimal
patch size may vary depending on the characteristics of the
input images and the complexity of the lane detection task.
A potential extension could involve developing methods for
adaptively determining the patch size based on the input
data, such as using a learnable patch size or employing a
multi-scale patch extraction approach.

3. Integration of domain-specific priors: The TLAM
module could be extended to incorporate domain-specific
priors or constraints related to lane detection. For example,
prior knowledge about the expected lane widths, curva-
tures, or topological relationships between lanes could be
encoded into the self-attention mechanisms or the feature
integration process. This could help the model to generate
more realistic and consistent lane predictions, especially in
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challenging scenarios with occlusions or ambiguous lane
markings.

4. Attention-based feature fusion: In the current design, the
outputs of the classification and regression attention heads
are simply reshaped and integrated into the corresponding
network branches. An interesting extension could be to
explore more sophisticated attention-based feature fusion
strategies, such as using cross-attention mechanisms to
adaptively combine the outputs of different attention heads
based on their relevance and complementarity.
GLIoU Loss Extensions: 1. Higher-order geometric con-

straints: The GLIoU Loss currently considers first-order geo-
metric constraints by promoting the alignment and overlap
of rectangular regions defined by consecutive lane points.
A natural extensionwould be to incorporate higher-order geo-
metric constraints, such as curvature or torsion, to encourage
the predicted lane points to form smooth and realistic curves.
This could be achieved by introducing additional penalty
terms in the loss function or by designing more advanced
geometric representations of the lane segments.

2. Adaptive weight for the geometric penalty term: The
contribution of the geometric penalty term in the GLIoU
Loss is controlled by a fixed weighting factor. An interesting
extension could be to develop methods for adaptively
adjusting the weight of the geometric penalty term based on
the characteristics of the input data or the current state of
the model. This could be achieved by learning the weighting
factor as a model parameter or by using a data-driven
approach to estimate the optimal weight for each input
sample.

3. Incorporation of uncertainty estimation: The GLIoU
Loss could be extended to incorporate uncertainty estimation
into the lane detection process. By modeling the uncertainty
associated with each predicted lane point, the loss func-
tion could adaptively adjust the contributions of different
points based on their reliability. This could be achieved
by introducing probabilistic formulations of the IoU and
geometric penalty terms or by employing Bayesian deep
learning techniques to estimate the uncertainty of the model
predictions.

4. Multi-task learning with auxiliary losses: The GLIoU
Loss could be combined with auxiliary loss functions
that target specific aspects of the lane detection problem,
such as lane type classification, lane change prediction,
or lane departure warning. By jointly optimizing the GLIoU
Loss and these auxiliary losses, the model could learn
more comprehensive and robust representations of the lane
structure, leading to improved overall performance.
Generalization to Other Domains: The TLAMmodule and

the GLIoU Loss are not limited to lane detection and can
be potentially generalized to other computer vision tasks that
involve the prediction of elongated or curved structures. Some
potential applications include:

1. Road boundary detection: The TLAM module could
be adapted to capture the global context and geometric
properties of road boundaries, while the GLIoU Loss could

be used to enforce the consistency and smoothness of the
predicted boundary points.

2. Power line detection: The self-attention mechanisms
in the TLAM module could be leveraged to model the
long-range dependencies and structural patterns of power
lines, while the GLIoU Loss could be employed to ensure the
accurate localization and alignment of the predicted power
line segments.

3. Blood vessel segmentation: The TLAM module could
be used to capture the hierarchical and branching structure
of blood vessels, while the GLIoU Loss could be applied to
promote the connectivity and smoothness of the segmented
vessel regions.

4. Crack detection in concrete structures: The TLAM
module could be utilized to extract global contextual features
related to crack patterns, while the GLIoU Loss could be
employed to ensure the accurate detection and localization
of individual crack segments.

In each of these applications, the TLAM module and the
GLIoU Loss would need to be adapted and fine-tuned to
address the specific challenges and characteristics of the
target domain. This may involve adjusting the patch size,
the number of attention heads, or the formulation of the
geometric penalty term to better suit the nature of the problem
at hand.

In conclusion, the theoretical extensions and generaliza-
tions discussed in this section highlight the potential for
further enhancing the capabilities and applicability of the
TLAM module and the GLIoU Loss. By exploring higher-
order feature interactions, adaptive patch sizes, domain-
specific priors, and advanced feature fusion strategies, the
TLAMmodule could be made more expressive and adaptable
to various lane detection scenarios.

D. JOINT ADVERSARIAL DOMAIN ADAPTATION
In this section, we introduce our Joint Adversarial Domain
Adaptation (JADA) approach for addressing the distribu-
tion discrepancy between source and target domains in
autonomous driving.

1) PROBLEM FORMULATION
Let S = {(xsi , y

s
i )}

ns
i=1 and T = {xtj }

nt
j=1 denote the labeled

source domain and unlabeled target domain, respectively,
where xs/t ∈ X represents the input data and ys ∈ Y is the
corresponding label. Our objective is to learn a transferable
feature extractor F : X → Z and a classifier C : Z → Y
that can effectively bridge the domain gap and predict labels
for target samples.

From a probabilistic perspective, the joint distributions of
the source and target domains can be denoted asPs(xs, ys) and
Pt (xt , yt ), respectively. According to the Bayesian principle
and the triangle inequality, the joint distribution shift can be
bounded by the sum of marginal and conditional distribution
shifts:

d(Ps,Pt ) ≤ d(PXs ,PXt ) + d(PY |X
s ,PY |X

t ), (19)
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where d(·, ·) denotes a discrepancy measure, PXs and PXt
are the marginal distributions, and PY |X

s and PY |X
t are

the conditional distributions. This inequality provides a
theoretical foundation for our JADA approach, which aims
to minimize both marginal and conditional distribution shifts
for effective domain adaptation.

2) MARGINAL ADVERSARIAL ALIGNMENT
To align the marginal distributions PXs and PXt , we adopt
the adversarial learning framework and introduce a marginal
domain discriminatorDm : Z → [0, 1]. The feature extractor
F is trained to generate domain-invariant representations,
while the marginal domain discriminator Dm aims to
distinguish between the source and target domains. The
marginal adversarial loss is defined as:

Lmadv = −Exs∼S logDm(F(xs))

− Ext∼T log(1 − Dm(F(xt ))). (20)

By minimizing Lmadv, the feature extractor F learns to
produce domain-invariant features that confuse the marginal
domain discriminator Dm, thus aligning the marginal distri-
butions of the source and target domains.

3) CONDITIONAL ADVERSARIAL ALIGNMENT
To estimate and minimize the conditional distribution shift
d(PY |X

s ,PY |X
t ), we propose a class-wise adversarial align-

ment approach. We introduce a set of class-specific domain
discriminators {Dk : Z → [0, 1]}Kk=1, where K is the number
of classes. The conditional adversarial loss is defined as:

Lcadv = −

K∑
k=1

Exs,ki ∼Sk logDk (F(x
s,k
i ))

− Exti∼T log(1 − Dk (F(xti ))), (21)

where Sk represents the set of source instances belonging to
the k-th class. By minimizing Lcadv, the feature extractor F
learns to produce class-wise domain-invariant features, thus
aligning the conditional distributions of the source and target
domains.

To ensure accurate estimation of the class-wise distribution
shifts, we employ a selective sampling strategy during mini-
batch construction. Specifically, we randomly select a subset
of classes and compute the conditional adversarial loss only
when the label spaces of the source and target domains match
within the mini-batch. This strategy mitigates the potential
misalignment of source and target instances, leading to more
reliable estimation of class-conditional distributions.

4) TOPOLOGICAL GRAPH MAPPING
To further align the intrinsic structures of the source and target
domains, we propose a Topological Graph Mapping (TGM)
loss. We first construct instance relationship graphs Gs,l and
Gt,l for the source and target domains at the l-th layer of the

TABLE 3. Evaluation of each technique through ablation study: Results
derived using a ResNet18 backbone on the CULane dataset.

feature extractor F . The TGM loss is defined as:

Ltgm =

∑
l

1
B

∥Gs,l(F(X s)) − Gt,l(F(X t ))∥2F , (22)

where B is the mini-batch size, X s and X t are the mini-batch
samples from the source and target domains, respectively, and
∥ · ∥F denotes the Frobenius norm. The instance relationship
graphs are computed using the Gram matrix and row-wise L2
normalization:

M s/t,l
= Hs/t,l(Hs/t,l)⊤,

Gs/t,l = Norm(M s/t,l), (23)

whereHs/t,l
∈ RB×(C lH lW l ) is the reshaped activation map at

the l-th layer, with C l ,H l , andW l being the number of chan-
nels, height, andwidth of the activationmap, respectively, and
Norm(·) denotes row-wise L2 normalization.
By minimizing Ltgm, the feature extractor F learns to

produce structurally aligned representations for the source
and target domains, preserving the intrinsic relationships
between instances. This structural alignment complements
the marginal and conditional adversarial alignment, leading
to more comprehensive domain adaptation.

5) OVERALL OBJECTIVE
The overall objective function of JADA is a weighted sum of
the task-specific loss, marginal adversarial loss, conditional
adversarial loss, and topological graph mapping loss:

L = Ltask + αLmadv + βLcadv + γLtgm, (24)

where Ltask is the task-specific loss (e.g., cross-entropy loss
for classification), and α, β, and γ are hyperparameters that
control the trade-off between different loss terms. The feature
extractor F , classifier C , marginal domain discriminator Dm,
and class-specific domain discriminators {Dk}Kk=1 are jointly
optimized in an adversarial manner to achieve effective
domain adaptation.
By simultaneously minimizing the marginal distribution

shift, conditional distribution shift, and structural discrepancy
between the source and target domains, JADA provides a
comprehensive and principled approach to domain adaptation
in autonomous driving scenarios. The proposed method
demonstrates superior adaptability and generalization ability,
enabling the GSEN to effectively transfer knowledge from
labeled source data to unlabeled target data.
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IV. EXPERIMENTAL METHODOLOGY
A. LANE DETECTION DATASETS
Our experimental investigations leverage two prominent
and extensively benchmarked datasets in the realm of lane
detection: CULane [6] and Tusimple.1

CULane: This dataset is a large-scale benchmark for lane
detection, encompassing 88.9k images for training, 9.7k for
validation, and 34.7k for testing. The resolution of each image
is 1640 × 590 pixels, capturing a diverse array of driving
conditions including urban and rural roads, traffic congestion,
variable weather, and varying lighting environments, making
it a comprehensive testbed for assessing lane detection
algorithms under realistic scenarios.
TuSimple: Developed by the autonomous driving company

Tucson, this dataset comprises 3.3k training images, 0.4k for
validation, and 2.8k for test evaluations, with each image
having a resolution of 1280×720 pixels. TuSimple is notable
for its detailed modeling of lane changes, providing intricate
information on lane width and configuration, which aids in
the fine-grained analysis of lane detection technologies.

B. DOMAIN ADAPTATION DATASETS
To evaluate the domain adaptation capabilities of our
proposed GSENet, we utilize the following datasets:

Source Dataset:We use the CULane dataset as our source
domain. This dataset provides a rich variety of lane detection
scenarios, including 88.9k images for training. The diverse
driving conditions in CULane make it an ideal source for
learning generalizable features.

Target Dataset: For the target domain, we employ the
BDD100K dataset [29]. This dataset contains 100k images
with a resolution of 1280 × 720 pixels, covering a wide
range of driving scenarios across different times of day,
weather conditions, and locations. We specifically use the
lane detection subset of BDD100K, which includes 70k
images for training and 10k for validation.

Preprocessing: Both datasets are resized to a uniform
resolution of 800 × 320 pixels to ensure consistency in
input size. We apply standard data augmentation techniques,
including random horizontal flips, rotations, and intensity
adjustments, to both source and target domain images. The
choice of CULane as the source and BDD100K as the
target is motivated by their complementary nature. While
CULane provides a strong foundation for lane detection in
various scenarios, BDD100K introduces new challenges with
its diverse geographical locations and driving conditions.
This setup allows us to evaluate the effectiveness of our
domain adaptation approach in transferring knowledge from a
well-labeled source domain to amore diverse and challenging
target domain.

C. EVALUATION METRICS
For the CULane dataset [6], we adopt the F1-measure to
assess the accuracy of lane predictions against the ground

1https://github.com/TuSimple/tusimple-benchmark/

truth, calculated through Intersection over Union (IoU). The
F1 score is formulated as follows:

F1 =
2 × precision × recall
precision + recall

. (25)

Predictions are deemed True Positives (TP) if their IoU with
the ground truth exceeds a predefined threshold; otherwise,
they are considered False Positives (FP). Furthermore,
we utilize the modified F1 score (mF1) introduced by
CLRNet [8]:

mF1 =

∑19
i=10 F1@(i× 5)

10
. (26)

This metric includes F1 scores at IoU thresholds of 0.5 and
0.75. For the TuSimple dataset, the accuracy metric is defined
as:

Accuracy =

∑
clip Cclip∑
clip Sclip

, (27)

where Cclip represents the count of correctly predicted points
and Sclip denotes the total ground truth points within each clip.
A prediction is accurate if it correctly identifies over 85% of
the ground truth pixels. Additionally, TuSimple introduces a
metric for False Positives (FP), expressed as:

FP =
Fpred
Npred

. (28)

D. IMPLEMENTATION DETAILS
For our experiments, we utilize several backbone networks:
ResNet18, ResNet34, ResNet101 [30], and DLA34 [31].
All datasets are preprocessed to a uniform resolution of
800 × 320 pixels. Data augmentation techniques, such as
random affine transformations including translation, rotation,
scaling, and horizontal flips, are employed to enhance model
robustness. The optimization strategy involves the AdamW
optimizer [32] combined with a cosine decay learning rate
schedule, as also recommended by [8]. Our training protocol
specifies different epochs, learning rates, and batch sizes for
the CULane and TuSimple datasets: 15 epochswith a learning
rate of 6e-4 and a batch size of 24 for initial trials, followed
by 70 epochs at a learning rate of 1.0e-3 and a batch size of
40 for extended training. The weighting of the Angle Loss
across all datasets is set at 15, and the interplay between
the GLIoU Loss and Angle Loss is finely tuned through a
hyperparameter α, which governs their relative contributions
to the overall loss function:

Lcomb = α × LGLIoU + (1 − α) × LAngle. (29)

This meticulous setup ensures that each component of
our system is optimally configured to tackle the complex
task of lane detection across diverse and challenging driving
scenarios.

Based on our experiments, we define α as 0.98. In addition,
our network is implemented based on the PyTorch framework
and trained on a single GeForce RTX 4090 GPU.
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E. COMPARISON WITH THE BASELINES
1) CULANE DATASET
Our method’s performance on the CULane dataset is
presented here, along with comparisons to other state-
of-the-art techniques. When utilizing DLA34 [31] as the
backbone, we achieve an F1 score of 82.19 at F1@50 on
the CULane dataset, reaching a state-of-the-art level. As indi-
cated in Table 4, noteworthy results emerge when employing
ResNet18 [30] as the backbone. We obtain a score of 81.65 at
F1@50, surpassing CLRNet [8] (ResNet18) by 2.07 points.
This even outperforms CLRNet (ResNet101), underscoring
the substantial enhancement our global semantic approach
brings to lane localization and regression accuracy. Similarly,
in Table 4, using ResNet101 as the backbone leads to mF1
[8] and F1@75 scores that surpass CLRNet (ResNet101) by
3.04 and 3.83 points, respectively.

To provide a more comprehensive understanding of our
method’s performance, we conducted a detailed analysis of
the results presented in Table 4. The experimental process
involved training our GSENet model on the CULane dataset
using various backbone architectures and comparing the
results with the state-of-the-art CLRNet model.

Our GSENet demonstrates consistent improvement across
all metrics and scenarios. Notably, when using ResNet18 as
the backbone, we observe a significant increase in F1@50
from 79.58 to 81.65, representing a 2.60% improvement.
This enhancement is even more pronounced in challenging
scenarios such as ‘‘Crowded’’ and ‘‘Dazzle’’, where we
see improvements of 3.15% and 3.17% respectively. These
results indicate that our global semantic approach is particu-
larly effective in complex driving environments.

The performance gap widens further when compar-
ing our GSENet (ResNet101) with CLRNet (ResNet101).
We achieve a 2.50% improvement in F1@50, a 4.17%
increase in mF1, and a 3.33% boost in F1@75. These
consistent improvements across different evaluation metrics
underscore the robustness and effectiveness of our approach.

It’s worth noting that our method shows remarkable
performance in the ‘‘Cross’’ scenario, reducing the error rate
by 15.44%when usingResNet18 and 6.13%with ResNet101.
This significant improvement in a particularly challenging
scenario highlights the capability of our global semantic
enhancement approach in handling complex road structures.

These results collectively demonstrate that our GSENet
not only outperforms the current state-of-the-art in overall
metrics but also shows superior performance in challenging
scenarios, validating the effectiveness of our global semantic
enhancement approach in improving lane detection accuracy
and robustness.

Figure 5 illustrates the outcomes of lane detection,
highlighting significant differences. Competing methods
encounter hurdles in occlusions, curved lanes, and extreme
scenarios, resulting in subpar performance. In contrast,
our method excels, thriving in challenging scenarios. Its
robustness shines, effectively addressing difficulties and
yielding dependable, satisfactory lane detection results.

Figure 4 provides a visual comparison of lane detection
results from LaneATT, CLRNet, and our proposed GSENet
method. The images are selected from the CULane test set
and represent various challenging scenarios.

In analyzing these visual results, we observe that our
GSENet method consistently produces more accurate and
stable lane detections across different scenarios:

1. Occlusions: In the first row, where a vehicle partially
occludes the lane markings, our method successfully detects
and predicts the occluded lane segments, while LaneATT and
CLRNet show inconsistencies.

2. Curved lanes: The second row demonstrates our
method’s superior performance in detecting curved lanes.
GSENet accurately captures the lane curvature, while the
other methods struggle to maintain consistent detection along
the curve.

3. Extreme lighting conditions: In the third row, under
challenging lighting conditions, our method maintains robust
lane detection, whereas LaneATT and CLRNet exhibit more
erratic results.

4. Complex road structures: The fourth row shows a com-
plex intersection scenario. Our GSENet method accurately
detects multiple lanes and their intersections, outperforming
the other methods which show more fragmented or incom-
plete detections.

These visual results corroborate our quantitative findings,
demonstrating that GSENet’s global semantic enhancement
approach leads to more robust and accurate lane detection
across a variety of challenging scenarios. The ability to
maintain consistent performance under occlusions, in curved
lanes, and in complex road structures underscores the
effectiveness of our method in real-world driving conditions.

2) TuSimple DATASET
The performance of our method on the TuSimple benchmark
dataset is presented in Table 5. Notably, performance
distinctions among various methods are minimal, suggesting
the bottleneck in advancements on this dataset. Despite
its challenging nature, we achieve a noteworthy F1@50
score of 99.03, outperforming the current state-of-the-art by
1.14 points. Additionally, we attain state-of-the-art results in
the False Positives (FP) metric, demonstrating a substantial
8.47% enhancement compared to prior approaches.

To provide a more detailed analysis of our results on the
TuSimple dataset, we conducted experiments using different
backbone architectures and compared our GSENet with the
state-of-the-art CLRNet model.

Our GSENet consistently outperforms CLRNet across all
backbone architectures. With ResNet18, we achieve a 1.14%
improvement in accuracy (from 96.84% to 97.95%) and a
22.37% reduction in false positives (from 2.28% to 1.77%).
This significant reduction in false positives is particularly
noteworthy, as it indicates that our method not only improves
detection accuracy but also substantially reduces erroneous
detections.
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TABLE 4. Performance comparison on CULane dataset.

FIGURE 4. Comparative visualization of lane detection techniques: Displaying LaneATT, CLRNet, and Our Method on the
CULane Test Set.

TABLE 5. Performance comparison on TuSimple dataset.

When using ResNet34 and ResNet101 backbones,
we observe similar trends. With ResNet34, we see a 1.08%
increase in accuracy and a 12.78% decrease in false positives.
For ResNet101, the improvements are 1.05% in accuracy and
15.19% in false positive reduction.

It’s important to note that while the accuracy improvements
might seem incremental, they are significant given the high
performance baseline on this dataset. The TuSimple dataset
is considered nearly saturated, with most state-of-the-art
methods achieving accuracy above 96%. In this context,
our consistent improvement of over 1% in accuracy across
different backbones represents a substantial advancement.

Moreover, the consistent reduction in false positives across
all backbone architectures (ranging from 12.78% to 22.37%)
is a critical improvement. Lower false positive rates translate
to more reliable lane detection systems, which is crucial for
real-world applications in autonomous driving.

These results collectively demonstrate that our GSENet
not only pushes the boundaries of accuracy on the TuSimple
dataset but also significantly enhances the reliability of lane
detection by substantially reducing false positives. This dual
improvement in both accuracy and reliability underscores the
effectiveness of our global semantic enhancement approach
in addressing the challenges of lane detection.

TABLE 6. Domain adaptation results on BDD100K dataset.

F. DOMAIN ADAPTATION RESULTS
To evaluate the effectiveness of our Joint Adversarial Domain
Adaptation (JADA) approach, we conducted experiments
comparing the performance of our GSENet model with and
without domain adaptation. Table 6 presents the results of
these experiments.

As shown in Table 6, our JADA approach significantly
improves the performance of GSENet on the target domain
(BDD100K). Specifically:

• F1@50 score increased from 72.34 to 78.92, a substan-
tial improvement of 9.09%.

• mF1 score improved from 51.18 to 56.73, representing
a 10.84% increase.

• False Positive (FP) rate decreased from 3.85% to 2.91%,
a reduction of 24.42%.

These results demonstrate the effectiveness of our JADA
approach in adapting the lane detection model from the
source domain (CULane) to the target domain (BDD100K).
The significant improvements across all metrics indicate that
our method successfully mitigates the domain shift between
the two datasets, enabling better generalization to new driving
scenarios.

The reduction in false positive rate is particularly note-
worthy, as it suggests that our domain adaptation technique
not only improves overall detection accuracy but also
enhances the model’s ability to discriminate between true
lane markings and similar-looking non-lane features in the
target domain.
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TABLE 7. Ablation study results on CULane dataset.

These findings underscore the importance of domain
adaptation in real-world applications of lane detection
systems, where models trained on one dataset may need to
perform well on data from different geographical locations
or under varying driving conditions.

G. ABLATION STUDY
To validate the individual contributions of each component in
our architecture and ensure that they each play a critical role
in boosting detection performance, we carried out a series of
ablation studies on the CULane [6] dataset.

1) COMPREHENSIVE ABLATION ANALYSIS
The results of our extensive ablation studies are shown in
Table 7. We began by evaluating the impact of introducing
the Angle Loss to our baseline model [8]. This modification
led to an increase in the F1@50 score from 80.47 to
81.28. Subsequent experiments revealed that employing a
single hyperparameter α to mediate the balance between
GLIoU Loss and Angle Loss significantly benefits the
model’s performance. This strategic adjustment improved the
F1@50 score from 80.47 to 80.88. Details concerning
the optimization of hyperparameter α are further discussed
in the supplementary materials.

To continue with our component-wise enhancements, the
addition of the Top Layer AuxiliaryModule (TLAM) resulted
in a notable rise in the F1@50 score from 80.88 to 81.23.
This improvement underscores the efficacy of leveraging
self-attention [25] mechanisms at the top-level feature map
to substantially augment the model’s capability in capturing
and utilizing global contextual information.

The final stage of our ablation study involved integrating
the Global Feature Extraction Module (GEM) alongside
the previously incorporated improvements. The inclusion of
GEM pushed the F1@50 score up to 81.28, affirmatively
demonstrating GEM’s pivotal role in refining the overall
detection performance of our system. This layered approach
to feature enhancement distinctly highlights how each
component strategically builds upon the previous to achieve
a synergistic improvement in lane detection accuracy.

To provide a more detailed analysis of our ablation
study results, we conducted a step-by-step evaluation of
each component’s contribution to the overall performance
of our GSENet model. The experimental process involved
incrementally adding each component to the baseline model
and measuring the performance on the CULane dataset.

1. Baseline Model: Our baseline model, which is based on
CLRNet [8], achieved an F1@50 score of 80.47.

2. Addition of Angle Loss: Incorporating the Angle Loss
led to an improvement in F1@50 from 80.47 to 80.68, a
0.26% increase. This improvement suggests that the Angle
Loss helps the model better capture the geometric properties
of lanes, leading to more accurate predictions.

3. Integration of GLIoU Loss: When we added the GLIoU
Loss and optimized its balance with the Angle Loss using
the hyperparameter α, we observed a further improvement in
F1@50 to 80.88. This represents a 0.25% increase from the
previous step and a 0.51% improvement over the baseline.
The GLIoU Loss appears to enhance the model’s ability to
predict more precise lane boundaries.

4. Incorporation of TLAM: The addition of the Top
Layer Auxiliary Module (TLAM) resulted in a significant
jump in performance, with F1@50 increasing to 81.23. This
0.43% improvement over the previous step (and 0.94% over
the baseline) demonstrates the effectiveness of TLAM in
capturing global contextual information, which is crucial for
accurate lane detection in complex scenarios.

5. Final Integration of GEM: The inclusion of the Global
Feature Extraction Module (GEM) as the final component
pushed the F1@50 score to 81.28. While this represents
a smaller increment of 0.06% over the previous step,
it brings the total improvement over the baseline to 1.01%.
This suggests that GEM provides complementary global
information that further refines the lane detection results.

These results collectively demonstrate the effectiveness
of each component in our proposed GSENet. Each addition
contributes to performance improvement, with TLAM pro-
viding the most substantial boost. The cumulative effect of
all components results in a significant 1.01% improvement
in F1@50 over the baseline, which is considerable given
the high performance baseline in lane detection tasks. This
comprehensive ablation study validates our design choices
and highlights the synergistic effect of combining these
components for enhanced lane detection performance.

2) DETAILED ABLATION ANALYSIS OF RESIDUAL BLOCKS
WITHIN TLAM
In our investigation into the structural components of the
Top Layer Auxiliary Module (TLAM), we specifically focus
on the integration of residual blocks [30] utilized prior
to the application of self-attention mechanisms [25]. This
study, the results of which are comprehensively detailed in
Table 8, seeks to determine the optimal count of residual
blocks necessary to maximize the semantic capabilities of the
feature maps. The efficacy of TLAM in enhancing feature
representations hinges significantly on the balance of residual
blocks integrated.

To provide a more detailed analysis of the impact of
residual blocks within the TLAM, we conducted experiments
varying the number of residual blocks from 0 to 4, and
compared the results with a baseline model without TLAM.
The experiments were performed on the CULane dataset,
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TABLE 8. Impact of residual block quantity in TLAM.

focusing on overall performance metrics (F1@75, F1@50,
mF1) and specific challenging scenarios (‘No line’ and
‘Shadow’).

Our results demonstrate a nuanced dependency of model
performance on the number of residual blocks:

1. Baseline (No TLAM): The model without TLAM serves
as our baseline, with F1@50 of 80.44 and mF1 of 55.82.

2. 0 × blocks: Implementing TLAM without any residual
blocks shows a slight decrease in performance (F1@50:
80.41, mF1: 55.81), suggesting that some feature refinement
is necessary before self-attention.

3. 1 × block: With one residual block, we see a minor
improvement in mF1 (55.93) but F1@50 (80.46) remains
close to the baseline.

4. 2 × blocks: This configuration shows the best overall
performance, with the highest F1@75 (63.22) and F1@50
(80.60) scores. It also performs best in the challenging ‘No
line’ scenario (54.97).

5. 3 × blocks: While this configuration shows the best
performance in the ‘Shadow’ scenario (82.69), its overall
performance is slightly lower than the 2-block configuration.

6. 4 × blocks: Adding a fourth block leads to decreased
performance across most metrics, suggesting potential over-
fitting or loss of fine-grained details.

These results indicate that a dual-block configuration
strikes the most effective balance between enhancing global
semantics and retaining necessary detail. The improvement
is particularly notable in challenging scenarios like ‘No line’
conditions, where the 2-block configuration outperforms the
baseline by 2.35%.

This study underscores the importance of carefully tuning
the TLAM structure. While adding residual blocks generally
improves performance over the baseline, excessive blocks can
be detrimental. The optimal 2-block configuration enhances
the model’s ability to capture global context while preserving
local details, crucial for accurate lane detection across various
scenarios.

3) COMPREHENSIVE EXAMINATION OF ANGLE LOSS
WEIGHT VARIABILITY
Our in-depth ablation studies, as outlined in Table 9, focus
on optimizing the weight parameter of the Angle Loss to
elucidate its influence on model accuracy. These studies
reveal that a judiciously calibrated weight for the Angle Loss
is crucial for maximizing model performance, particularly
under complex detection conditions.

TABLE 9. Evaluation of angle loss weight variations.

To provide a more comprehensive analysis of the impact
of Angle Loss weight on our model’s performance, we con-
ducted experiments with varying weight values (0, 10, 15,
20, 25) on the CULane dataset. We evaluated the model’s
performance using standard metrics (F1@75, F1@50, mF1)
and focused on challenging scenarios (‘Cross’ and ‘Curve’).

The empirical results demonstrate a clear trend:
1. No Angle Loss (Weight 0): This serves as our baseline,

with F1@50 of 80.45 and mF1 of 55.82. Performance in
‘Cross’ and ‘Curve’ scenarios is relatively poor.

2. Low Weight (10): A small weight shows improvement
across all metrics, with F1@50 increasing to 80.62 and mF1
to 55.95. There’s also notable improvement in the ‘Cross’
scenario.

3. Optimal Weight (15): This configuration yields the best
results across all metrics. F1@75 improves by 0.87%, F1@50
by 0.25%, and mF1 by 0.71% compared to the baseline.
Crucially, performance in challenging scenarios improves
significantly, with a 24.64% reduction in errors for ‘Cross’
scenarios and a 3.17% improvement in ‘Curve’ scenarios.

4. High Weight (20): While still outperforming the
baseline, this configuration shows decreased performance
compared to the optimal weight, suggesting that the Angle
Loss is beginning to dominate other important loss compo-
nents.

5. Very High Weight (25): This configuration shows a
decline in performance across most metrics, even falling
below the baseline in some cases. This indicates that
overemphasis on the Angle Loss can be detrimental to overall
performance.

These results highlight the critical role of properly
calibrated Angle Loss in enhancing model robustness and
precision, particularly in complex traffic environments. The
optimal weight of 15 strikes a balance between guiding the
model to learn angular relationships between lane points and
allowing other loss components to contribute effectively.

The substantial improvements in challenging scenarios
(‘Cross’ and ‘Curve’) with the optimal weight setting
demonstrate the Angle Loss’s effectiveness in helping the
model handle complex road geometries. This underscores the
potential of finely tuned Angle Loss to significantly enhance
overall system effectiveness in real-world driving conditions.

V. CONCLUSION
This research introduces the Global Semantic Enhance-
ment Network (GSENet), a novel architecture designed to
address lane detection challenges in complex scenarios.
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By integrating the Global feature Extraction Module (GEM)
and Top Layer AuxiliaryModule (TLAM), GSENet enhances
the extraction of global semantic features. We further
developed two innovative loss functions: the Angle Loss and
the Generalized Line Intersection over Union (GLIoU) Loss,
specifically tailored for complex detection environments. Our
comprehensive theoretical analyses demonstrate the TLAM
module’s effectiveness in handling intricate lane detection
scenarios and the GLIoU Loss’s superiority in optimizing
lane point predictions while maintaining global consistency.
Experimental validation on the widely recognized CULane
and TuSimple benchmark datasets confirms GSENet’s sig-
nificant performance improvements over existing methods,
establishing new standards in the field. This superior
performance can be attributed to the sophisticated handling of
global semantic information and the strategic application of
our novel loss functions, enabling more accurate and reliable
lane detection across diverse conditions.
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