
IEEE SYSTEMS, MAN AND CYBERNETICS SOCIETY SECTION

Received 16 May 2024, accepted 8 July 2024, date of publication 16 July 2024, date of current version 29 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3429230

Cooperative Deep Reinforcement Learning
Policies for Autonomous Navigation
in Complex Environments
VAN MANH TRAN AND GON-WOO KIM , (Member, IEEE)
Department of Intelligent Systems and Robotics, Chungbuk National University, Cheongju 28644, South Korea

Corresponding author: Gon-Woo Kim (gwkim@cbnu.ac.kr)

This work was supported in part by the Innovative Human Resource Development for Local Intellectualization Program through the
Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant funded by the Korean Government
(MSIT), under Grant IITP-2024-2020-0-01462, 50%; and in part by the Technology Innovation Program (or Industrial Strategic
Technology Development Program-ATC+) (Development of Service Robot Core Technology that can Provide Advanced Service in Real
Life) funded by the Ministry of Trade, Industry and Energy (MOTIE, South Korea), under Grant 20009546.

ABSTRACT A critical part of achieving robust and safe navigation for mobile robots is selecting
the right navigation policies trained through simulation to operate effectively in real-world situations.
Simulation-trained policies often struggle for mobile robot settings deployed in real-world navigation tasks,
leading to policy degradation and increased risk manners. To address these challenges, a cooperative deep
reinforcement learning policies (CDRL) framework is proposed, ensuring safe exploration and deployment
in unknown complex environments. The CDRL framework cooperates with exploration and exploitation
policies based on a policy-switching mechanism, which efficiently helps the robot escape the local optima.
Instead of transferring a single navigation policy, CDRL leverages cooperative navigation policies with
diverse reward functions, enabling them to adapt to unknown complex environments. The proposed technique
is based on an exploration distributional soft actor critic (E-DSAC) and soft actor critic (SAC) algorithms,
which enhances training efficiency. The deep reinforcement learning (deep RL) models in this framework
are represented by a mobile service robot that reaches target positions without requiring a map presentation.
Experimental results show that the proposed framework is proven to have safe and fast motions in terms of
navigation time and success rates. The sim-to-real transfer process of mobile service robots can be found
(https://youtu.be/vIxRqXidKIM).

INDEX TERMS Autonomous navigation, sim-to-real transfer, soft actor critic, distributional reinforcement
learning, service robot.

I. INTRODUCTION
Mobile service robots have gained popularity in modern
life, where they are utilized widely in handling a wide
spectrum of tasks from simplicity to superior human-level
decision-making. A fundamental challenge for these robots
is achieving autonomous navigation, particularly within
intricate indoor environments like museums, shopping malls,
and offices. To ensure safe and efficient navigation in

The associate editor coordinating the review of this manuscript and

approving it for publication was Laura Celentano .

such real-world scenarios, in-depth research on autonomous
navigation technologies is crucial for service robots [1].

A method known as map-based navigation, used for
autonomous navigation in specific environments where a
predefined map has been deployed, is well-established [2].
Various technologies and algorithms are integrated into
the map-based navigation system, including path planning,
Simultaneous Localization and Mapping (SLAM), and con-
trol [3]. However, the integrated system carries inherent
high potential risks, such as low map reliability in dynamic
environments, accumulative errors, and the demand for

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 101053

https://orcid.org/0009-0008-1678-1952
https://orcid.org/0000-0002-4797-0464
https://orcid.org/0000-0002-0915-7181

V. M. Tran, G.-W. Kim: CDRL for Autonomous Navigation in Complex Environments

intensive expert knowledge in integration, hyperparameter-
tuning, and implementation [4], [5]. Unlike conventional
map-based navigation, map-free navigation using deep RL
is a promising alternative that overcomes these shortcomings
associated with map dependence [6], [7].
Mappless navigation for mobile robots using deep RL

involves training a policy in simulated environments and
then deploying a policy in real-world scenarios. Instead
of directly training the robot system in real environments,
a deep RL model is commonly trained within virtual envi-
ronments, offering advantages in training time, efficiency,
and safety. However, the policy may fail to transfer into
real-world scenarios due to the inherent disparity between
simulation data and real-world environments (sim-to-real
gap) or the agent learning ability through reinforcement
learning algorithms in simulation. To bring the reality gap,
the randomization domain technique [8], [9] is utilized for
randomized parameters during training, which is commonly
deployed for transferring the deep RL model. On the
other hand, recent mapless navigation studies (e.g SAC
algorithm) [10], [11] leverage the backbone of the actor-critic
algorithmwith entropy regularization for training the agent in
simulation, increasing transferability to real-world scenarios.
Furthermore, distributional reinforcement learning [12], [13]
also achieves significant advancement and has the potential
to enhance the deep RL model for practical navigation tasks.

After in-depth investigations, a wide range of navigation
studies above focus on single policy transfers to learn
multiple navigation skills in environments, which connects to
themulti-objective task.Meanwhile, a single learningmethod
to transfer only a policy mastering all skills simultaneously
remains challenging [14]. Despite advancements made in
previous research, the challenge of the policy transfer from
simulation to real-world environments persists for robot
navigation missions. This necessitates the development of
a new strategy to address the remaining limitations of this
transferability issue.

To enhance the capabilities of the mapless navigation
tasks, the learned policy takes advantage of experience from
the training environment to operate in other environments,
which exemplifies the exploitation of robots [15], [16], [17].
Nevertheless, new environments include dead ends (local
optima) that may cause the robot to get stuck or trapped.
Therefore, the robot needs an additional policy to explore
its surroundings, enabling it to escape these dead ends.
In terms of exploration, a variety of previous methods
are used to increase learning ability during training, such
as epsilon greedy [18], upper confidence bound [19], or
Boltzmann exploration [20], and random network distillation
(RND) [21]. In particular, RND has achieved success in
exploration-demanding environments. In RND, a curiosity
measure proves to be a valuable technique for designing
the intrinsic reward for mobile robot navigation [22], [23].
Nonetheless, exploration strategiesmight help the robot avoid
dead ends in unfamiliar situations, but this might not lead it to

the target quickly. Hence, after escaping the stuck areas, the
robot could reach targets directly by using robot exploitation
experiences. For real-world navigation tasks, the robot
system should ideally exist in exploration and exploitation
modes for maximum efficiency. One of the interesting
strategies is hybrid hierarchical reinforcement learning [24],
which combines the exploration and exploitation modes into
hierarchical structures. However, this method should be taken
into account for continuous action space while continuously
training in new environments. Therefore, it is essential
to create a mechanism that seamlessly combines explo-
ration and exploitation policies to avoid constant retrain-
ing when realistic environments become larger and more
complex.

In light of the aforementioned benefits and limitations,
a hybrid policy approach is proposed, the cooperative
deep reinforcement learning policies framework to address
mapless navigation challenges. Therefore, the technique
utilizes distributional soft actor-critic (DSAC) combined
with the intrinsic reward [21] encourages exploration to
train the exploration policy, which is called the E-DSAC
algorithm. The contributions of this paper are summarized as
follows:
• The cooperative deep reinforcement learning policies
framework combines exploration and exploitation poli-
cies, which not only prevent retraining as realistic
environments grow in size and complexity but also
improve the overall navigation performance of sim-to-
real transfer.

• This work presents a training strategy that integrates
a distributional value function with intrinsic reward.
Building upon the DSAC algorithm [25], the intrinsic
reward is designed by matching the loss between
the random target network and the predictor network
to enhance the exploration policy’s curiosity within
complex navigation tasks.

• The CDRL framework utilizes cooperative policies
transferred simultaneously from simulation with diverse
navigation skills in unknown environment structures,
ensuring the framework’s applicability in realistic envi-
ronments when deployed on physical robots operating in
unknown real-world environments.

The paper begins by describing related work in Section II,
and then the original work including SAC and DSAC
algorithms is presented in Section III. After that, Section IV
presents the proposed framework, including the design of
distinct rewards for each policy and the mechanism for
transitioning between exploration and exploitation based
on the local optima detection algorithm. Section V details
the training process, employing the SAC algorithm to train
the exploitation policy and the E-DSAC algorithm to train the
exploration policy. The results of experiments conducted in
both simulated and real-world environments are presented in
Section VI. Finally, Section VII provides concluding remarks
for this study.

101054 VOLUME 12, 2024

V. M. Tran, G.-W. Kim: CDRL for Autonomous Navigation in Complex Environments

II. RELATED WORK
A. SENSOR-BASED NAVIGATION BASED ON DEEP RL
The actor-critic method has been widely utilized across
various fields of robotics, including mapless navigation of
mobile robots [26], [27]. For instance, Fan et al. [6] proposed
the deep RL model with low-dimensional laser ranges to
observe local spaces and navigate to the target relative to
the mobile robot coordinate. Marchesini and Farinelli [28]
dealt with the mapless navigation problem by optimizing
deep deterministic policy gradient (DDPG) and proximal
policy optimization (PPO) algorithms. The model-free RL
algorithms continue to develop significantly as the inclusion
of the entropy term in the objective function eases training
complexity and enhances exploration compared to DDPG
or PPO [17], [29]. Besides, training deep RL agents is an
indispensable procedure in transferring policies into real-
world scenarios. The majority of studies are centered on the
improvement of navigation performance during the training
phase [30], [31]. However, the policy transferring finds it
difficult to evaluate unfamiliar environments, particularly in
real-world environments [32] like unstructured environments
or corridor environments. To overcome the above issues,
the sparse and dense reward functions combined with the
distributional value function are designed appropriately for
navigation policies. Although the reward shaping technique is
not new within the realm of reinforcement learning (RL), its
application, in conjunction with distributional RL, represents
an underexplored avenue to achieve exceptional learning
capabilities in mapless navigation.

B. DISTRIBUTIONAL REINFORCEMENT LEARNING FOR
MOBILE ROBOT NAVIGATION
Recent advances in distributional reinforcement learn-
ing have achieved state-of-the-art performance in arcade
game environments [33], [34] and robotic benchmarks
[13], [35], [36]. An exemplary instance of this is the
combination of distributional RL and SAC, resulting in
significant advancement in risk-sensitive control tasks. For
distributional RL, Rezaee et al. [37] estimated the distribution
of stochastic outcomes to handle uncertainty for motion
planning. Choi et al. [38] designed a distributional RL
agent to learn an uncertainty-aware policy, which reduces
cost-of-collision compared with conventional RL. By taking
advantage of a distributional framework, Liu et al. [13]
utilized the value of conditional value at risk (CVaR) fore-
casting intrinsic uncertainty to perform drone autonomous
navigation tasks. Those previous studies adjusted risk policy
levels based on CVaR methods (e.g. α subset), which is
difficult to optimize parameters in large environments [39].
Regularizing risk-sensitive policies in distributional RL poses
a significant challenge due to the requirement of intensive
expert knowledge under real practical, real-world scenarios
that encompass both static obstacles and unexpected dynamic
obstacles (e.g. human motions). It can be seen that the
extensive expansion of the DSAC algorithm’s application to

mapless navigation for mobile robots is a key challenge that
should be carefully taken into account. Therefore, instead of
regularizing risk-sensitive policy, the deployment of multiple
policies is a new proposed approach to solve autonomous
navigation tasks in large complex environments.

III. PRELIMINARIES
A. PROBLEM FORMULATION
In mapless navigation populated with unknown obstacles, the
robot requires a decision-making process to reach the target
position. This framework must leverage the robot’s internal
state information alongside sensor data from its surrounding
environment. The environment can be represented as a
Markov decision process. At time t = 1, 2, . . . ,T , the
robot chooses action at according to state st , and receives
observed reward r(st , at). The interaction between the
robot and the environment can be represented by a tuple
(s1, a1, s2, a2, . . . , sT), where the terminal state sT happens
when the robot reaches the target or the distance from the
obstacle is less than rm. The objective in traditional RL is to
find the optimal collision-free policy π∗ that maximizes the
expected cumulative return. The action value functionQπ can
be represented as follows:

Qπ (s, a) = Eπ

[
∞∑
t=0

γ tR (st , at)

]
(1)

B. SOFT ACTOR CRITIC
The off-policy SAC algorithm is described according to
the actor-critic framework [40] with the entropy [41]. For
mapless navigation, the deep RL model is trained with an
emphasis on entropy to facilitate the training process. For this,
we choose SAC [42] as one of the algorithms to train mobile
robots for mapless navigation. To maximize a trade-off
between the expected return and entropy H (π (· | st)) =
−

∫
|A| π (a | xt) logπ (a | xt) da simultaneously in continu-

ous action space. The objective of the policy is:

J (π) = Eπ

[
∞∑
t=0

γ t [R (st , at)+ αH (π (· | st))]

]
(2)

the factor α > 0 regulates the impact of the entropy.
In SAC, three networks are used, of which two critic Q
networks, parameterized by ϕ1 and ϕ2, and the output of the
actor network generates the action. The past state transitions
(st , at , r, s′, d) are stored in replay buffer D. The loss
function minimizes the mean squared bootstrapped estimate
(MSBE):

L(ϕ1,2) =
1
|M|

∑
(st ,a,r,st+1,d)∈M

(
Qϕ1,2 (st , at)− ŷ(r, st+1)

)2
(3)

VOLUME 12, 2024 101055

V. M. Tran, G.-W. Kim: CDRL for Autonomous Navigation in Complex Environments

where M presents the mini-batch sampling from D. The
target ŷ (r, st+1) includes clip Q value and entropy term:

ŷ (r, st+1) = r + γ
(
min
j=1,2

Qϕ̂j (st+1, ãt+1)

− α logπφ (ãt+1|st+1)
)

(4)

where ãt+1 ∼ πφ (ãt+1|st+1) is sampled from current
policy πφ . The policy is a Gaussian distribution that has
been re-parameterized, incorporating a squashing function to
ensure actions fall within a specified range:

aφ (st , ξt) = tanh(µφ(st)+ σ (st) · ξt)) (5)

where ξt ∼ N (0, I) is independent sampled noise andµφ(st)
and σφ(st) are the mean and standard deviation of policy. The
parameters of the policy are updated bymaximizing the future
return with entropy regularization.

max
φ

E
s∼D,ξ∼N

(
min
j=1,2

Q(st , aφ(st , ξt))

− α logπφ(aφ(st , ξt)) | st)
)

(6)

C. DISTRIBUTIONAL SOFT ACTOR CRITIC
Whereas traditional RL aims to maximize the expected
cumulative rewards, distribution RL focuses on distributional
information of value function [43], which is based on the
distributional Bellman equation:

Zπ (s, a) D
= R(s, a)+ γZπ

(
s′, a′

)
(7)

where U D
= V indicates that random variables U and V have

identical distributions. Equation (8) defines a recursive rela-
tionship among three random variables Zπ

(
s′, a′

)
,Zπ (s, a)

and R(s, a). The distributional Bellman operator, denoted by
T πD , can be expressed as follows:

T πD Z (st , at) :
D
= R(s, a)+ γZπ

(
s′, a′

)
(8)

By combining the distributional RL and entropy frame-
work, distributional SAC [25] relies on a distribution over
the returns, using quantile regression to estimate value
distribution. Moreover, DSAC utilizes not only the random
return Zπ : S × A → Z , but also the soft random return
based on SAC, given by:

Zπ (s, a) :D=
∞∑
t=0

γ t
[
R (st , at)− α logπφ (at+1 | st+1)

]
(9)

For the two quantiles τ̂i and τ̂j, the temporal difference error
is achieved:

δtij = rt + γ
[
Z τ̂i
θ̄1,2
(st+1, at+1)− α logπφ̄ (at+1 | st+1)

]
− Z

τ̂j
θ1,2
(st , at) (10)

where Z
τ̂j
θ1,2

is the critic network output, which is an estimate

of the τ -quantile of Zπ (s, a), and Z τ̂i
θ̄1,2

is the target critic.

θ̄ and φ̄ are target critic network and target policy network
parameters. To train the critic, the quantile fractions τi, τj ∼
U ([0, 1]) are sampled independently to minimize the Huber
quantile regression loss:

ρλ
τ

(
δij

)
=

∣∣τ − I
{
δij < 0

}∣∣ Lλ
(
δij

)
λ

Lλ
(
δij

)
=


1
2
δ2ij, if

∣∣δij∣∣ ≤ λ

λ

(∣∣δij∣∣− 1
2
λ

)
, otherwise

(11)

where I is the indicator function, ρτ̂j is weighted by the
target distribution fractions (τi+1 − τi) and λ is a smooth
coefficient for gradient-clipping. The critic network is trained
to minimize the loss function:

LZ (θ) =
N−1∑

i=0,j=0

(τi+1 − τi) ρ
λ
τ̂j

(
δtij

)
(12)

where N represented independent quantiles sampled for
both target and local networks. The action value function is
achieved by taking expectations as:

Q(s, a) =
1
N

N−1∑
i=0

(τi+1 − τi) min
k=1,2

Z τ̂iθk (st , at) (13)

The loss function policy network is updated by using
gradient descent:

Lπ (φ) =
1
|M|

∑
st∈M,ξt∼N

(
min
j=1,2

Q(st , aφ(st , ξt))

− α logπφ(aφ(st , ξt)) | st)
)

(14)

The target networks are updated with a smoothing factor ι:

φ̄← ιφ + (1− ι)φ̄ (15)

θ̄1,2← ιθ1,2 + (1− ι)θ̄1,2 (16)

IV. COOPERATIVE POLICIES TRANSFERRING
FRAMEWORK
Mappless navigation presents significant challenges for
mobile robots. The robot must simultaneously explore the
unknown environment to avoid local optima (dead ends
or corners) and move toward the goal without collision.
Therefore, the CDRL framework is proposed to cooperate
with policies that move the robot efficiently and safely in
complicated environments. Figure 1 describes an end-to-
end navigation system to take laser data, robot pose, and
goal position as the system input. With pre-defined goal
information, the framework processes laser scan data to create
observation states for navigation policies. The exploration
and exploitation policies are switched dynamically to com-
pute a sequence of commands that navigate the robot to the
goal in unaware environments.

101056 VOLUME 12, 2024

V. M. Tran, G.-W. Kim: CDRL for Autonomous Navigation in Complex Environments

FIGURE 1. The CDRL framework for a service robot. The exploitation
policy is used for fast motion and simple target position while the
exploration policy is aimed at safe obstacle avoidance and map
exploration.

A. EXPLOITAION POLICY
1) STATE SPACE
The state of the agent includes the number of 2D laser
scans N , the updated distance d , and orientation angle α for
more effective feature extraction. The ultimate state is defined
as follows:

s = {sl | N , d, α} ∈ S (17)

where d indicates the updated distance between the robot and
the target in polar coordinates, and α depicts the orientation
angle of the goal to the robot’s current heading.

2) ACTION SPACE
The robot’s actions can be defined as continuous choices.
Continuous control commands for a differential velocity
controller are defined as: at = (vt ,wt), where vt ∈ [0, 0.5]
is the linear velocity of the agent, and wt ∈ [−1, 1] is the
angular velocity.

3) REWARD FUNCTION
The behaviors of the agent are reshaped as the reward
function including sparse and dense reward components.
Based on the previous work [44], the reward function of the
exploitation policy is redesigned to ensure navigation effi-
ciency, which is comprised of the dense reward component
and sparse reward component. The exploitation reward can
be defined as:

Rexploit (st) = Rgoal (st)+ Rcol (st)+ Rd (st)+ Roriented (st)

(18)

The sparse reward component is calculated by returning the
goal reward Rgoal (st) = +500 if the robot reaches the radius
of the goal and a large punishment score with Rcol (st) =
−500 is given if the distance between the robot’s center and
obstacles less than fixed safety distance ri. pt and pt−1 are the
robot’s pose at the current and previous timestamp, and g is
the position of the goal. The dense reward includes Rd and
Roriented described in equation (21) and equation (22), which
reflects both distance and orientation aspects.

Rd (st) = c1
(∥∥∥pt−1 − g

∥∥∥− ∥∥pt − g
∥∥)

(19)

Roriented (st) = k
(
π − ∥α∥

π
+ cos(α)

)
(20)

where c is constant, π is a mathematical constant. If the
robot gets to the target or the robot collides with obstacles.
We choose ri = 0.4 m, c1 = 0.2, k = 2.

4) NETWORK ARCHITECTURE
The architecture of the actor network comprises 107 inputs
including 105 laser scans from the 2D LiDAR sensor,
deviation angles, and updated current distance calculated
by the odometry module. At the input of neural network
structures, the state of the network is normalized, and the
layer normalization technique is used for stabilizing the
training process. The normalized state is fed via three full
layers with rectified linear unit activation functions. Inspired
from [44], The actor network shown in Figure 2 is constructed
by decreasing the network size over each layer, leading to
optimizing computation and keeping the simple network and
rich presentations. After using a re-parameterized trick, the
output of the actor network is the distribution of the bound
angular and linear velocity.

FIGURE 2. Actor network, critic network, and quantile critic network.

B. EXPLORATION POLICY
State Space, Action Space, Network Architecture: Trans-
ferring the exploitation policy directly to real-world envi-
ronments increases collision rates during navigation toward
the target position. Thus, an additional exploration policy
is proposed within the CDRL framework to solve this
challenge. This complementary policy fosters safe navigation
by enabling the agent to explore the unseen environment and
adapt to unforeseen obstacles, while still keeping efficient
movement toward the destination. Both the exploitation
and exploration policies utilize identical representations
for the state space, action space, and neural networks.
However, the objectives of the individual navigation policies

VOLUME 12, 2024 101057

V. M. Tran, G.-W. Kim: CDRL for Autonomous Navigation in Complex Environments

are distinct. The exploitation policy prioritizes achieving
the goal efficiently, favoring shorter paths. Conversely, the
exploration policy focuses on ensuring safe curiosity-driven
exploration. The reward function of the exploration policy
can be formulated as follows:

Rexplore(st) = Ri(st)+ Re (st) (21)

While the extrinsic reward Re (st) based on external envi-
ronmental knowledge remains important, intrinsic reward
Ri(st) plays a crucial role in predicting current states. This
capability fosters the agent’s curiosity about the environment,
driving further exploration. To design intrinsic rewards for the
explorative policy, we utilize the two networks to define
the error between the network f̄ψ that predicts features of
the observations and a fixed randomly initialized neural
network fψ , using this error as an exploration bonus in
RND [21]. These network structures are the same as the actor
network. The exploration bonus can be defined as:

Ri(st) =
∥∥fψ (st+1, a)− f̄ψ (st+1, a)∥∥22 (22)

For the external reward, the safe behaviors of the agent are
reshaped to ensure safety and navigation efficiency by adding
safety reward (Rs) from equation (20).

Re (st) = Rgoal (st)+ Rcol (st)+ Rd (st)

+ Roriented (st)+ Rs (st) (23)

The safety reward can be defined as:

Rs (st) = −c2(1−
rl
2ri

), if ri < rl < 2ri (24)

where c2 is a hyper-parameter, rl is the minimum distance
from the robot’s centroid to its surrounding environments
measured by the LiDAR. We choose c2 = 30.

C. NAVIGATION STRATEGY BASED ON
POLICY-SWITCHING MECHANISM
While an exploitation policy of the robot system, capitalizing
on past experiences, can achieve efficient navigation in famil-
iar settings, the robot may struggle with unforeseen obstacles
like local optima (e.g., long walls or dead zones). To address
this challenge, the framework employs a mechanism to select
the right navigation policy for each situation. This could
involve an exploration policy prioritizing the safe exploration
of new environments when the exploitation policy encounters
limitations.

πCDRL =

{
πexploit, if δexplore ≤ 0.5
πexplore, otherwise

(25)

A policy-switchingmechanism is designed, which depends
on the probability of selecting the exploration policy given the
current state and the detection of potential local optima. The
probability can be defined as:

δexplore =
1

1+ e−β(Slocal_optima−µ)
(26)

where β is the coefficient, µ is the threshold value.
Slocal_optima indicates the local optima score, which fluctuates
from 0 to 100, (β, µ, Slocal_optima ∈ Rn×1

+). The local optima
score is calculated based on safety distance (dmin_safe), open
path distance (dopen_path), and maximum change of heading
angle (αmax). dopen_path indicates an open path distance when
the robot sees the potential path. The open path zone is
defined as an angle of 30 degrees in front of the robot. The
above parameters were validated through a series of trials to
ensure their appropriateness. When Slocal_optima is below the
threshold µ, the robot is likely not in local optima, and the
exponent becomes negative, resulting in δexplore close to zero,
favoring exploitation behavior and effectively transitioning
the policy towards exploitation. On the other hand, when
δexplore surpasses the threshold, potential local optima has
been identified, promoting exploration behavior, effectively
resulting in a switch to the exploration policy. The coefficient
β controls the steepness of the transition between the two
policies. A higher value of β makes the transition sharper,
while a lower value results in a smoother transition. The local
optima detection is illustrated in algorithm 1.

Algorithm 1 Local-Optima Detection
1: // Extract relevant information from the state: L,1, α
2: L = [l1, l2, . . . , ln] ▷ LiDAR has n number of laser

beams
3: 1d =

∥∥pt − g
∥∥ ▷ distance from robot to the goal

4: α ▷ heading_angle
5: // Define threshold: dmin_safe, αmax , dopen_path
6: Slocal_optima← 0 ▷ Initialize local optima score
7: if Slocal_optima ≤ Slocal_optima_max then
8: if min(L) < dmin_safe then
9: Slocal_optima← Slocal_optima + 2 ▷ Increase score

if obstacle is detected
10: end if
11: if min(Lopen_path) < dopen_path then
12: Slocal_optima← Slocal_optima − 1 ▷ Increase score

if obstacle is detected
13: end if
14: // Analyze agent’s behavior (heading angle)
15: if α ≥ αmax then
16: Slocal_optima← Slocal_optima + 1
17: end if
18: else
19: Slocal_optima = Slocal_optima_max
20: end if
21: if Slocal_optima ≤ 0 then
22: Slocal_optima = 0
23: end if
24: return Slocal_optima

V. LEARNING NAVIGATION POLICY
In this section, we will investigate how to train two navigation
policies (exploitation and exploration policy), using different
RL algorithms. To train this exploitation policy, we employ

101058 VOLUME 12, 2024

V. M. Tran, G.-W. Kim: CDRL for Autonomous Navigation in Complex Environments

the SAC algorithm, which is well-suited for leveraging
experience from the simulation environment. For exploration
policy, we combine the distributional value function with
intrinsic and extrinsic rewards to encourage the exploration
of novel states and guide the agent toward the goal position.

1) EXPLOITATION POLICY
To train the exploitation policy for efficient navigation,
we carefully leverage the reward function with the SAC
algorithm. The specific implementation utilizes the off-policy
SAC framework, which incorporates entropy bonus [41]
within the actor-critic architecture [40]. For mapless navi-
gation, the deep RL model is trained with a self-adjusting
entropy coefficient, allowing it to balance exploration and
exploitation and thereby facilitating the training process.
To train the policy for efficient navigation to the destination
regarding both navigation time and distance, the SAC algo-
rithm proves highly effective in training robots in simulated
environments. However, the policy inherently poses a risk of
high collision rates when transferring to environments with
new features (section VI-B). Additionally, employing the
SAC algorithm to train the agent helps mitigate issues related
to approximating value distribution of the DSAC algorithm
in real-world scenarios, as mentioned in work [25]. In terms
of the critic network shown in Figure 2, the network structure
is the same as the actor network, and the Q-value is generated
through a linear activation function.

2) DISTRIBUTIONAL EXPLORATION POLICY
To train the exploration policy, we use the soft action-state
distributional value function to encourage the exploration
of actions produced by the actor network. Based on the
DSAC algorithm [25], we propose the Exploration-DSAC
(E-DSAC) framework. In DSAC, when updating the param-
eter of the target value network based on the actions
generated by the target policy network, the actions are
generated based on previous experience with a soft update
mechanism. However, this approach can lead to the policy
being overly reliant on stereotypical actions and losing the
stochasticity and curiosity for exploration during training.
To train the exploration policy, the E-DSAC algorithm
introduces two key modifications compared to the DSAC
algorithm. First, we replace the soft update of the target
policy network with actions produced by a random policy
network. This eliminates randomness in the target value
updates and encourages the exploration of diverse states.
Second, we update the target distributional value function
based on random actions with extrinsic and intrinsic rewards.
The intrinsic reward is calculated by matching the loss
between the target network and the predictor network, where
the target network is randomly initialized and the predictor
network is trained on data from the agent. This ensures the
target value function remains aligned with the exploration
goals and guides the agent towards novel experiences. The
E-DSAC algorithm is illustrated in Algorithm 2.

Algorithm 2 E-DSAC for Mapless Navigation
Input: s, a, s0, γ ∈ (0, 1), N , κ

1: Initialize parameters of policy network φ
2: Initialize two quantile Z-function θ1, θ2 and target

quantile Z-function parameterized θ̄1, θ̄2
3: Initialize RND predictor and prior parameter ψ
4: Quantile fractions τi, i = 0, . . . ,N , τj, j = 0, . . . ,N
5: Initialize replay memory D
6: while size(N) < MEMORY_SIZE do
7: The robot interact with environment a0 ∼ πφ(·|s0)
8: Get next observation st+1 and reward R
9: Store the transition (Sk ,Ak ,Rk ,Sk+1) to D
10: end while
11: for epoch = 0, training batch do
12: Sample a mini-batch B = (s, a) from D
13: Update RND predictor weights ψ with gradient

descent using loss function of equation (29)
14: end for
15: for epoch = 0 training batch do
16: Sample a batch of transitionsM from D
17: Get δtij using equation (10)
18: Update θk by minimizing lossLZ (θ) in equation (12)
19: Calculate Q(s, ã) using equation (13)
20: Update φ minimizing lossLπ (φ) using equation (14)
21: Soft update to target network: θ̄k using equation (17)
22: end for
23: Store neural network weight φ

The predictor neural network f̄ψ parameterized by ψ is
trained by performing gradient descent to minimize the
expected MSE:

L =
1
B

∑
s∈D

∥∥fψ (s, a)− f̄ψ (s, a)∥∥22 (27)

The architecture of the quantile critic network used by
implicit quantile network (IQN) [33] is shown in Figure 2.
The outputs of the quantile critic network are sets of quantile
values that indicate the return distribution. Compared to
the critic network used for the SAC algorithm, the quantile
critic network uses multiplicative form, which combines
state feature and the cosine function to embed τk with
k ∈ {1, . . .N = 32}. The cosine function is defined as:

φj(τk) := ReLU (
n−1∑
i=0

cos(π iτk)wij + bj) (28)

The Hadamard product is implemented between the embed-
ding φj(τk) and the second fully connected layer output of
state features. Additionally, layer normalization is added to
keep the training process more stable.

VI. EXPERIMENTS AND RESULTS
In this section, we validate our methodology through a
comprehensive analysis with an existing approach to find the
balance between safe, fast behaviors and the high success

VOLUME 12, 2024 101059

V. M. Tran, G.-W. Kim: CDRL for Autonomous Navigation in Complex Environments

rate of navigation tasks. SAC and E-DSAC algorithms are
trained for the single policy for mapless navigation. Then,
the CDRL framework is deployed and compared with each
pure single policy in simulation. After that, a comparison of
our CDRL framework with the Entropy-threshold policy is
evaluated for sim-to-sim scenarios. Finally, we implement
several real-world experiments to demonstrate the potential
efficient navigation for real-time systems.

A. TRAINING SETUP
While training the agent in a simplified simulation offers
significant time efficiency compared to a realistic setting [28],
it comes with the drawback of removing natural elements.
This removal makes the transfer of policies in the real world
more challenging and could even fail. We therefore choose
the Gazebo simulation integrated with Robot Operating
System (ROS) Noetic for the comparative analysis. For the
analysis, arbitrary targets are configured randomly in the
Gazebo environments including visible and occlusion targets
in complex scenarios for robot mapless navigation. a service
robot and a training environment are depicted in Figure 3.
Each target position is generated randomly after the end of
the episode. The whole training process is conducted on
a Gazebo simulation with a 10Hz control frequency. The
simulation resets (after 0.1s) when the robot’s collision occurs
in the virtual environment. The training is conducted with
two platform robot models (the service robot and the pioneer
P3DX) equipped with a planar LiDAR for approximately
1300 episodes. The simulation is conducted on a computer
with core™ i7-8700 CPU and Geforce RTX 2060 Ti GPU.

FIGURE 3. The service robot model (left image) and the virtual
environment in 3D robotics simulator for training SAC and DSAC
algorithms.

To investigate the impact of reward shaping on the
navigation of mobile robots, we train exploitation policy
with the SAC algorithm [42] and exploitation policy with
the E-DSAC algorithm. Additionally, we also train the
DSAC algorithm [25] for the single policy with the reward
function listed in [44], which primarily consists of sparse
reward and does not include safety reward Rs. Figure 4
shows that the learning process of the exploitation policy
outperformed the other two methods, but it exhibited the
phenomenon of ‘‘overfitting’’ after a long training time. One
can observe that applying the distributional value function

FIGURE 4. The evolution of learning curve of SAC and E-DSAC algorithms
under different reward functions.

FIGURE 5. Static environment structures for testing including
environment (a), (b), (c) from left to right side respectively. Environment
(d) is a dynamic environment.

TABLE 1. Success rate and collision rate for 50 runs in testing
environment (success rate/collision rate).

in a complex training environment makes policy learning
slower due to the approximation issue. For the exploration
policy trained by the E-DSAC algorithm, the agent can
learn the concept of ‘‘curiosity’’ about environments without
relying on previous experience. Another important note is
that the reward components should be carefully designed
due to the impact of agent learning during the training
process. The parameters for training utilized are described in
Table 3 with the simulation time progressing at three times
the real-time simulation speed.

B. SIMULATION EVALUATION
1) CDRL FRAMEWORK AND SINGLE POLICY
The proposed CDRL framework could achieve a success
rate in reaching the target, and reduce the collision rate

101060 VOLUME 12, 2024

V. M. Tran, G.-W. Kim: CDRL for Autonomous Navigation in Complex Environments

FIGURE 6. The trajectories visualization of SAC, E-DSAC, and CDRL is presented in 6 cases from (a)-(f). When transferring the
policy to another simulation environment, the path of SAC shows navigation task failures while E-DSAC and CDRL paths
complete navigation to the target position. Visually, CDRL demonstrates a shorter path than E-DSAC.

through a comparison with two native policies (exploitation
policy and exploration policy) sampled by SAC and E-DSAC
algorithms respectively. We tested 2 robot models (pioneer
and service robot) in 3 static complex environments and
a dynamic environment shown in Figure 5 over 50 runs.
The first environment (a) is most similar to the training
environment. Environment (b) presents different structures,
while environment (c) is a complex environment, including
corridors and dead-end corners. The comparison results are
shown in Table 1, where the CDRL framework used for the
pioneer model and service robot model achieved the highest
success rate over the environment (a) (94%), (c) (98%), and
(d) (92%) while also exhibiting the lowest collision rate. The
exploitation policy used for the service robot and pioneer
models could not reach the target in environments (b) and (c).
Although the exploration policy obtained the highest success
rate in the environment (b), the exploration policy could not
be deployed in the environment (c) and got only a 45%
success rate in the environment (d). Moreover, the difference
in structure between the testing environment (c) and the
training environment makes the single policy (trained by SAC
and E-DSAC algorithms) difficult to navigate toward the goal
position.

As shown in Figure 6, the visualized trajectories for
each environment demonstrate the trade-off between safety
and efficiency. The exploration policy navigates safely to
the target. However, it tends to be overly conservative to
create a longer trajectory. In contrast, the exploitation policy

TABLE 2. Simulation results of 6 cases in static environments with
navigation time(NT) and navigation distance(ND).

focuses on finding the shortest path with fewer states than
the exploration policy to the goal. However, this focus often
led to collisions during navigation. We observed that the
CDRL framework generated a shorter free-collision path
compared with the exploration policy and still guaranteed
safe navigation. Table 2 presents the navigation time and
navigation distance corresponding to six cases in Figure 6.
In most cases, the time and distance traveled by the CDRL
framework are more efficient (shorter is better) than those
of the exploration policy when navigating to the same
destination. While the exploitation policy shows the shortest
path and travel time, it results in collisions during the
movement process.

2) CDRL FRAMEWORK AND ENTROPY-THRESHOLD POLICY
In this section, we evaluate our method with an Entropy-
Threshold Policy called H-Entropy [45] as the baseline in

VOLUME 12, 2024 101061

V. M. Tran, G.-W. Kim: CDRL for Autonomous Navigation in Complex Environments

FIGURE 7. Trajectories of CDRL framework, H-entropy method, exploitation policy trained by SAC, and exploration policy trained by E-DSAC
in a dense static obstacles environment.

FIGURE 8. The quantitative results in the dense static obstacles environment with 10, 25, and 50 navigation times. The proposed method
is evaluated with four metrics: success rate, collision rate, navigation times, and path length.

comparison to two typical environments, including the dense
static obstacle environment and the dynamic environment.
Entropy is directly proportional to the action space, indicating
the stochastic nature of actions undertaken by an agent
navigating in unfamiliar environments. Higher entropy signi-
fies increased action unpredictability of the action, enabling
policies to explore uncharted regions instead of getting stuck
in local optima due to new features (e.g. long walls or wall
corners). Following equation (29), the entropy can be defined:

Hk = − ln
1
|A|

∑
a

πk (a | st) lnπk (a | st) (29)

where |A| is the cardinality of the state space. Then, ifHexploit
is less then Hexplore, the πexploit is selected, otherwise the
action will be generated by πexplore:

πk (a | st) =

{
πexploit (a | st) if Hexploit < Hexplore

πexplore (a | st) otherwise

(30)

Figure 7 shows the trajectories of not only the CDRL and
H-entropy frameworks but also exploration and exploitation
policies trained by E-DSAC and SAC algorithms respec-
tively. Figure 8 indicates that the CDRL framework achieved

FIGURE 9. Path trajectories of CDRL framework, E-DSAC, and SAC policy
in a corridor environment (23 × 8 m2).

a high success rate with the H-entropy method, and also got
better navigation performance regarding navigation time and
path length compared with exploration policy.

C. TESTING REAL-WORLD SCENARIOS AND TASK
DESCRIPTION
The robot utilizes a low-cost YDLIDAR G6 sensor, which
is sensitive to light and temperature. The robot utilizes
120 degrees of field of view (FOV) with a maximum
measuring 5 m, and an angular resolution of 0.25◦.

101062 VOLUME 12, 2024

V. M. Tran, G.-W. Kim: CDRL for Autonomous Navigation in Complex Environments

FIGURE 10. Real-world experiment, (a): a corridor scenario; (b): an office-like environment with natural human motions.

TABLE 3. Training hyperparameters and CDRL framework parameters.

TABLE 4. Testing results in two real-world environments in terms of total
navigation distance(TND), total navigation time(TNT), and the number of
reaching goals (NoG).

Target localization: RTAB-Map [46] is used to build a grid
map of the testing scenario and ROSAMCL [47] is to localize
the robot in this map. It is imperative to emphasize that this
map is solely employed for calculating the target position and
is not employed by motion planning. The target position in
the robot frame could be calculated using the robot and goal
coordinates on the map. The computer mounted on the robot
is a mini PC with an Intel Core i7 5700U Processor.

We implemented the CDRL framework on the mobile
service robot on ROS2 foxy [48] to validate sim-to-real
transfer and generalize the performance of the navigation
tasks. The robot is tested in two real-world scenarios includ-
ing an office-like environment and a corridor environment
shown in Figure 10. While Figure 9 depicts the robot’s
navigation from a dense-static obstacles room to the lobby in
the corridor environment, Figure 11 shows the process robot’s

FIGURE 11. Path trajectories of CDRL framework, E-DSAC, and SAC policy
in an office-like environment (20 × 20 m2).

navigation toward the target with dynamic obstacles (e.g.
human motions) in the office-like environments. To mark the
target position accurately on the map, we used teleoperation
to navigate the robot to the wanted points A, B, and C, and
then come to the starting point. At each target, the coordinate
is collected for the mapless navigation process. The target
error is 0.2 meters. After reaching one target, the robot would
wait for 1 second to show it successfully reached this target
rather than occasionally traversing this target when moving
to the other target. The testing result is illustrated in Table 4,
which proves the promising results of the CDRL framework
in terms of navigation time, navigation distance, and success
rate.

VOLUME 12, 2024 101063

V. M. Tran, G.-W. Kim: CDRL for Autonomous Navigation in Complex Environments

VII. CONCLUSION
To implement efficient navigation tasks, the paper tackles
mapless navigation in unaware scenarios by introducing the
CDRL framework that enables the mobile service robot
to escape dead ends and reach the target position faster
with a high success rate. Here, we lay greater emphasis
on each policy that is appropriate to the complexity of the
environment. The CDRL framework chooses the right deep
RL policy to navigate safely and efficiently in environments
without re-training. The actions generated from the CDRL
framework also encourage exploration when transferring the
deep RL models to unaware environments. With evaluation
in simulation and real-world scenarios, the framework shows
more close-to-optimal trajectories than a naive policy transfer
and fast motion by considering surrounding obstacles.
However, our method still has a limitation. Mathematically,
the policy-switching equation is not flexible because of the
hyperparameter tuning. Expert knowledge is used to set the
threshold µ based on environment complexity, its impact
across varying environments warrants further exploration.
We aim to address the varying µ as an open subject for future
research.

REFERENCES
[1] K. Zhu and T. Zhang, ‘‘Deep reinforcement learning based mobile

robot navigation: A review,’’ Tsinghua Sci. Technol., vol. 26,
no. 5, pp. 674–691, Oct. 2021. [Online]. Available: https://api.
semanticscholar.org/CorpusID:235516106

[2] N. Buniyamin, W. A. J. W. Ngah, N. Sariff, and Z. Mohamad, ‘‘A simple
local path planning algorithm for autonomous mobile robots,’’ Int. J. Syst.
Appl. Eng. Develop., vol. 5, no. 2, pp. 151–159, 2011.

[3] D. H. T. Kim, T. N. Manh, C. N. Manh, N. D. Nguyen, D. P. Tien,
M. T. Van, andM. P. Xuan, ‘‘Adaptive control for uncertain model of omni-
directional mobile robot based on radial basis function neural network,’’
Int. J. Control, Autom. Syst., vol. 19, no. 4, pp. 1715–1727, Apr. 2021.

[4] L. C. Santos, A. S. Aguiar, F. N. Santos, A. Valente, J. B. Ventura,
and A. J. Sousa, ‘‘Navigation stack for robots working in steep slope
vineyard,’’ in Proc. SAI Intell. Syst. Conf., vol. 1. Cham, Switzerland:
Springer, 2021, pp. 264–285.

[5] K. Zheng, ‘‘RoS navigation tuning guide,’’ in Robot Operating System
(ROS), vol. 6. Springer, 2021, pp. 197–226.

[6] T. Fan, X. Cheng, J. Pan, D. Manocha, and R. Yang, ‘‘Crowd-
Move: Autonomous mapless navigation in crowded scenarios,’’ 2018,
arXiv:1807.07870.

[7] T. Fan, P. Long, W. Liu, and J. Pan, ‘‘Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex
scenarios,’’ Int. J. Robot. Res., vol. 39, no. 7, pp. 856–892, Jun. 2020.

[8] C. Xiao, P. Lu, and Q. He, ‘‘Flying through a narrow gap using end-
to-end deep reinforcement learning augmented with curriculum learning
and Sim2Real,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 5,
pp. 2701–2708, May 2023.

[9] X. Chen, A. Ghadirzadeh, J. Folkesson, M. Björkman, and P. Jensfelt,
‘‘Deep reinforcement learning to acquire navigation skills for wheel-
legged robots in complex environments,’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2018, pp. 3110–3116.

[10] J. Choi, K. Park, M. Kim, and S. Seok, ‘‘Deep reinforcement learning
of navigation in a complex and crowded environment with a limited
field of view,’’ in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 5993–6000.

[11] T. Chaffre, J. Moras, A. Chan-Hon-Tong, and J. Marzat, ‘‘Sim-to-
real transfer with incremental environment complexity for reinforcement
learning of depth-based robot navigation,’’ 2020, arXiv:2004.14684.

[12] X. Lin, J. McConnell, and B. Englot, ‘‘Robust unmanned surface vehicle
navigation with distributional reinforcement learning,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2023, pp. 6185–6191.

[13] C. Liu, E.-J. van Kampen, and G. C. H. E. de Croon, ‘‘Adaptive
risk-tendency: Nano drone navigation in cluttered environments with
distributional reinforcement learning,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2023, pp. 7198–7204.

[14] S. Takamuku and R. C. Arkin, ‘‘Multi-method learning and assimilation,’’
Robot. Auto. Syst., vol. 55, no. 8, pp. 618–627, Aug. 2007.

[15] J. Gao, W. Ye, J. Guo, and Z. Li, ‘‘Deep reinforcement learning for indoor
mobile robot path planning,’’ Sensors, vol. 20, no. 19, p. 5493, Sep. 2020.

[16] N. D. Toan and K. G. Woo, ‘‘Mapless navigation with deep reinforce-
ment learning based on the convolutional proximal policy optimization
network,’’ in Proc. IEEE Int. Conf. Big Data Smart Comput. (BigComp),
Jan. 2021, pp. 298–301.

[17] J. C. de Jesus, V. A. Kich, A. H. Kolling, R. B. Grando,
M. A. D. S. L. Cuadros, and D. F. T. Gamarra, ‘‘Soft actor-critic for
navigation of mobile robots,’’ J. Intell. Robotic Syst., vol. 102, no. 2, p. 31,
Jun. 2021.

[18] L. Shani, Y. Efroni, and S. Mannor, ‘‘Exploration conscious reinforcement
learning revisited,’’ inProc. Int. Conf. Mach. Learn., 2019, pp. 5680–5689.

[19] R. Kumaraswamy, M. Schlegel, A. White, and M. White, ‘‘Context-
dependent upper-confidence bounds for directed exploration,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp. 1–7.

[20] N. Cesa-Bianchi, C. Gentile, G. Lugosi, and G. Neu, ‘‘Boltzmann
exploration done right,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30,
2017, pp. 1–11.

[21] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, ‘‘Exploration by random
network distillation,’’ 2018, arXiv:1810.12894.

[22] L. Pan, A. Li, J. Ma, and J. Ji, ‘‘Learning navigation policies for mobile
robots in deep reinforcement learning with random network distillation,’’
in Proc. 5th Int. Conf. Innov. Artif. Intell., Mar. 2021, pp. 151–157.

[23] H. Yin, S. Su, Y. Lin, P. Zhen, K. Festl, andD.Watzenig, ‘‘Random network
distillation based deep reinforcement learning for AGV path planning,’’
2024, arXiv:2404.12594.

[24] Y. Zhou, E.-J. van Kampen, and Q. Chu, ‘‘Hybrid hierarchical rein-
forcement learning for online guidance and navigation with partial
observability,’’ Neurocomputing, vol. 331, pp. 443–457, Feb. 2019.

[25] X. Ma, L. Xia, Z. Zhou, J. Yang, and Q. Zhao, ‘‘DSAC: Distribu-
tional soft actor critic for risk-sensitive reinforcement learning,’’ 2020,
arXiv:2004.14547.

[26] H. Shi, L. Shi, M. Xu, and K.-S. Hwang, ‘‘End-to-end navigation strategy
with deep reinforcement learning for mobile robots,’’ IEEE Trans. Ind.
Informat., vol. 16, no. 4, pp. 2393–2402, Apr. 2020.

[27] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and
R. Hadsell, ‘‘Learning to navigate in complex environments,’’ 2016,
arXiv:1611.03673.

[28] E. Marchesini and A. Farinelli, ‘‘Discrete deep reinforcement learning
for mapless navigation,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2020, pp. 10688–10694.

[29] L. Yang, J. Bi, and H. Yuan, ‘‘Dynamic path planning for mobile robots
with deep reinforcement learning,’’ IFAC-PapersOnLine, vol. 55, no. 11,
pp. 19–24, 2022.

[30] H. Niu, Z. Ji, F. Arvin, B. Lennox, H. Yin, and J. Carrasco, ‘‘Accelerated
sim-to-real deep reinforcement learning: Learning collision avoidance
from human player,’’ in Proc. IEEE/SICE Int. Symp. Syst. Integr. (SII),
Jan. 2021, pp. 144–149.

[31] F. Leiva and J. Ruiz-del-Solar, ‘‘Robust RL-based map-less local planning:
Using 2D point clouds as observations,’’ IEEE Robot. Autom. Lett., vol. 5,
no. 4, pp. 5787–5794, Oct. 2020.

[32] M. Luong and C. Pham, ‘‘Incremental learning for autonomous navigation
of mobile robots based on deep reinforcement learning,’’ J. Intell. Robotic
Syst., vol. 101, no. 1, p. 1, Jan. 2021.

[33] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, ‘‘Implicit quantile
networks for distributional reinforcement learning,’’ in Proc. Int. Conf.
Mach. Learn., 2018, pp. 1096–1105.

[34] W. Dabney, M. Rowland, M. Bellemare, and R. Munos, ‘‘Distributional
reinforcement learning with quantile regression,’’ in Proc. AAAI Conf.
Artif. Intell., vol. 32, no. 1, 2018, pp. 2892–2901.

[35] C. Bodnar, A. Li, K. Hausman, P. Pastor, and M. Kalakrishnan,
‘‘Quantile QT-opt for risk-aware vision-based robotic grasping,’’ 2019,
arXiv:1910.02787.

[36] V. M. Tran and G.-W. Kim, ‘‘Mapless navigation with distributional
reinforcement learning,’’ J. Korea Robot. Soc., vol. 19, no. 1, pp. 92–97,
Feb. 2024.

101064 VOLUME 12, 2024

V. M. Tran, G.-W. Kim: CDRL for Autonomous Navigation in Complex Environments

[37] K. Rezaee, P. Yadmellat, and S. Chamorro, ‘‘Motion planning for
autonomous vehicles in the presence of uncertainty using reinforcement
learning,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Sep. 2021, pp. 3506–3511.

[38] J. Choi, C. Dance, J.-E. Kim, S. Hwang, and K.-S. Park, ‘‘Risk-conditioned
distributional soft actor-critic for risk-sensitive navigation,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2021, pp. 8337–8344.

[39] J. Martin, M. Lyskawinski, X. Li, and B. Englot, ‘‘Stochastically dominant
distributional reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn.,
2020, pp. 6745–6754.

[40] S. Fujimoto, H. van Hoof, and D. Meger, ‘‘Addressing function approx-
imation error in actor-critic methods,’’ in Proc. Int. Conf. Mach. Learn.,
2018, pp. 1587–1596.

[41] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, ‘‘Reinforcement learning
with deep energy-based policies,’’ in Proc. Int. Conf. Mach. Learn.,
Aug. 2017, pp. 1352–1361.

[42] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, and S. Levine, ‘‘Soft actor-critic algorithms
and applications,’’ 2018, arXiv:1812.05905.

[43] M. G. Bellemare, W. Dabney, and R. Munos, ‘‘A distributional perspective
on reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2017,
pp. 449–458.

[44] L. Tai, G. Paolo, and M. Liu, ‘‘Virtual-to-real deep reinforcement learning:
Continuous control of mobile robots for mapless navigation,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017, pp. 31–36.

[45] A. Sestini, A. Kuhnle, and A. D. Bagdanov, ‘‘Policy fusion for adaptive and
customizable reinforcement learning agents,’’ in Proc. IEEE Conf. Games
(CoG), Aug. 2021, pp. 1–8.

[46] M. Labbé and F. Michaud, ‘‘RTAB-map as an open-source LiDAR and
visual simultaneous localization and mapping library for large-scale and
long-term online operation,’’ J. Field Robot., vol. 36, no. 2, pp. 416–446,
Mar. 2019.

[47] T. Stahl, A. Wischnewski, J. Betz, and M. Lienkamp, ‘‘ROS-based
localization of a race vehicle at high-speed using LiIDAR,’’E3SWebConf.,
vol. 95, Feb. 2019, Art. no. 04002.

[48] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, ‘‘Robot
operating system 2: Design, architecture, and uses in the wild,’’ Sci. Robot.,
vol. 7, no. 66, May 2022, Art. no. eabm6074.

VAN MANH TRAN received the B.S. degree in
automation and control from Hanoi University of
Science and Technology, in 2020. He is currently
pursuing the master’s degree with the Department
of Control and Robot Engineering, Chungbuk
National University, South Korea. His research
interests include robotics, reinforcement learning,
motion planning, and control systems.

GON-WOO KIM (Member, IEEE) received the
M.S. and Ph.D. degrees from Seoul National
University, South Korea, in 2002 and 2006,
respectively. He is currently a Professor with the
Department of Intelligent Systems and Robotics,
Chungbuk National University, South Korea. His
research interests include navigation, localization,
and SLAM for mobile robots and autonomous
vehicles.

VOLUME 12, 2024 101065

