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ABSTRACT Electric heat storage (EHS) located on the grid side can improve the flexibility of combined
heat and power (CHP) systems to reduce wind power curtailment (WPC), and its capacity is correlated
with investment costs. However, a significant amount of distributed electric heat storage (DEHS) on the
load side has already been funded and constructed by users and businesses. To effectively utilize DEHS for
diverse user types in different geographic locations, a generalized scheduling method is required to address
these issues. To fill the technology gap, an innovative optimal scheduling strategy for energy allocation
in DEHS is proposed. Firstly, to consider the heat comfort of DEHS users and their willingness to serve
grid scheduling, the equivalent energy allocation strategy (EEAS) and increased energy allocation strategy
(IEAS) are developed, respectively. Secondly, a general model is proposed to schedule DEHS for different
types of users. The electric heat time-shift characteristics of DEHS are used to reallocate the working time of
energy storage. Thirdly, numerical simulations are employed to validate the proposed strategy. The proposed
scheduling strategies of EEAS and IEAS contribute to the reduction of WPC. The WPC rates are reduced
by 14.04% and 29.49%, respectively, when compared to the conventional scheduling strategy of time-of-
use. Moreover, compared with EEAS, IEAS makes a significant contribution by providing 27.05% more
scheduling space for the grid, thus greatly improving its flexibility in consuming wind power. The WPC can
be reduced through the energy allocation of DEHS, while the flexibility of grid regulation is enhanced by
increasing the deviation of energy allocation.

INDEX TERMS Optimal scheduling, distributed electric heat storage, equivalent energy allocation strategy,
increased energy allocation strategy.

NOMENCLATURE
ABBREVIATIONS
BES Battery Energy Storage.
CHP Combined Heat and Power.
DEHS Distributed Electric Heat Storage.
EHS Electric Heat Storage.
EEAS Equivalent Energy Allocation Strategy.
HES Heat Energy Storage.
HPP Heat Power Plants.
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IEAS Increased Energy Allocation Strategy.
WPC Wind Power Curtailment.
WPP Wind Power Plants.

I. INTRODUCTION
A. MOTIVATION
With massive wind power generation connected to the power
grid, wind power accommodation has been a challenge for
optimal power system scheduling [1], [2]. Due to the coupling
characteristics between the electric and heat power output
from combined heat and power (CHP) systems, the wind
power accommodation is restricted [3]. It is urgent to adopt a
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method to tackle the problem of wind power accommodation
in the optimal scheduling of CHP. Since electric energy can
be converted into heat energy by electric heat storage (EHS)
during the load valley and released during the peak [4],
[5], [6]. The electric heat time-shift characteristics are
widely used to improve the flexibility of CHP and wind
power accommodation [7]. However, the current distributed
EHS, which is widely distributed in different geographical
locations, is not effectively utilized by the grid to consume
wind power. This is due to the diversity of user types involved.
The technology gap has not been filled in the existing studies.
Therefore, a method needs to be developed to schedule the
distributed electric heat storage (DEHS).

B. LITERATURE REVIEW
Various control strategies of EHS are implemented to provide
demand response service. EHS is typically integrated with
CHP to improve renewable energy penetration [8], [9].
Eggers et al. [10] establish an EHS demonstration plant in
Hamburg, Germany, and developed the idea of long-duration
energy storage. The EHS is used to profoundly alleviate the
instability of wind and solar energy. Ji et al. [11] present
a hybrid heating system using off-peak EHS, which is
conducive to realizing the graded utilization of energy and
improving the system’s energy efficiency. OhS et al. [12]
explore a configuration of the EHS dedicated S-CO2 recom-
pression cycle that can improve the flexibility of conventional
power plants, renewable energy curtailment, and securing
ancillary services. Wang et al. [7] combine EHS and heat
pumps in a CHP plant, and a regulation strategy is proposed
to minimize the wind power curtailment (WPC) in a region
with EHS and heat pumps. The WPC ratio is reduced from
20.31% to 13.04% and 7.51%, respectively. The results of the
above studies prove that the EHS contributes to wind power
accommodation. Furthermore, the EHS in the existing studies
is primarily located on the grid side, and the EHS is directly
scheduled by power plants or the grid without developing a
specific scheduling strategy. However, the investment costs
associated with the capacity of grid-side EHS increase the
operating costs of the system. Additionally, this part of the
EHS does not require further funding since it is built and
invested in by individuals and businesses, and it operates on
the load side for a long time. The above issues can be resolved
through the effective utilization of DEHS.

To study DEHS on the load side, Buttitta et al. [4] investi-
gate the effect of different control strategies applied to EHS
to provide demand response services. The strategies are rule-
based control, unconstrained model predictive control, and
constrainedmodel predictive control, respectively. Three case
results point to the need for policymakers and manufacturers
to focus on implementing advanced control for EHS systems.
These controls should be applied to households with varying
occupancy patterns, thereby making demand response initia-
tives more attractive to end users. These advanced controls
should also be considered for auxiliary thermal network

regulation (ATNR). Srithapon and Månsson [13] propose a
two-stage energymanagement strategy that schedules electric
vehicles in cooperation with heat pumps and EHS to enhance
the flexibility of energy communities located on the load side.
Rostamnezhad et al. [14] explain the total building electric
power load consisting of fixed and shiftable loads, which can
be transferred from peak hours to another time. For instance,
electric boilers, chillers, and pumps can be considered as
shiftable loads. Therefore, a unanimous consensus is obtained
in existing studies that load-side resources are effective in
improving system flexibility. However, a substantial number
of DEHS on the load side for different types of users are
not utilized [15], [16]. Therefore, this research presents a
DEHS-based energy allocation strategy.Working with DEHS
users, a scheduling protocol is developed that allows for these
variances by assigning DEHS operating time according to
variations in wind power output. Furthermore, the different
heat comfort needs of different DEHS consumers are
considered, leading to the creation of two optimal scheduling
strategies: the equivalent energy allocation strategy (EEAS)
and the increased energy allocation strategy (IEAS).

The above energy allocation strategy needs to be combined
with the scheduling protocol signed by the user to reallocate
the working time of energy storage for its DEHS. Therefore,
it is necessary to establish an optimal scheduling model for
energy allocation. Gomes and Vale [17] propose a costless
renewable energy allocation model that considers each
member’s individual participation in demand response. The
energy allocation model can distribute renewable energy in a
fair and costless manner. This reference solves the allocation
of community renewable energy among community mem-
bers’ buildings. Zare et al. [18] present a stochastic model
to solve the collaborative expansion planning of modern
multi-energy allocation networks. The electric vehicle charg-
ing stations are considered to optimize the charging time.
Talat et al. [19] develop a novel blockchain-based decen-
tralized green energy allocation system for trustless reliable
energy exchanges in a smart grid. The energy allocation
transfers energy by way of intermediaries, including smart
generation devices, intelligent controllers, central grid, and
others, in a decentralized manner. Ahn et al. [20] propose
distributed energy generation and energy allocation laws.
The law of energy allocation dictates that the charging
and discharging of batteries be applied in a distributed
process. These studies are entirely different from DEHS,
the scheduling of different types of users’ DEHS, the
greater the deviation between the scheduling results and
user expectations, the greater the flexibility of regulating the
DEHS. However, to increase user willingness to participate
in grid regulation and simultaneously consider heat comfort,
unique models of energy allocation strategy are needed to
solve this problem.

C. CONTRIBUTIONS AND PAPER ORGANIZATIONS
Due to the lack of an effective scheduling strategy, a sub-
stantial number of DEHS with electric heat time-shift
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TABLE 1. Comparison between the proposed method and other methods.*.

characteristics located on the load side are not utilized. To fill
the technology gap, this paper proposes an energy allocation
strategy of DEHS, the comparison between the proposed
method and other methods is shown in Table 1. The main
contributions of this paper are given as follows:

• To the best of our knowledge, this is the first time
that an energy allocation strategy of DEHS is proposed.
The load-side DEHS is utilized to improve wind power
accommodation and ensure user comfort;

• The models of EEAS and IEAS are established based
on scheduling protocols signed by users, which can
develop differentiated scheduling strategies based on the
heat demand of different types of users and improve the
willingness of users to participate in grid regulation;

• Compared with the conventional scheduling strategy
of time-of-use, the WPC rates of EEAS and IEAS
are reduced by 14.04% and 29.49%, respectively. The
scheduling results of the two strategies are quantified
using equation (41) to determine the contribution to
grid regulation. The evaluation index ϑ for EEAS and
IEAS is 2.07% and 2.63%, respectively. Compared
with EEAS, IEAS can provide 27.05% more scheduling
space for the grid to consume wind power.

The rest of this paper is organized as follows: The
combined electricity and heat systems with DEHS are
described in Section II. The energy allocation strategy
of DEHS is proposed in Section III. The modeling of
conventional power generation and electric and heat energy
storage is presented in Section IV. The numerical simulations
of three cases are validated in Section V. Section VI is the
conclusion.

II. SYSTEM MODELING WITH DEHS
The system structure of the combined electricity and heat
systems with DEHS is illustrated in Figure 1. The system
consists of two layers, the upper and the lower layers, which
are coordinated by a centralized communication network.
The scheduling centre is responsible for implementing
scheduling and control, as well as collecting and analyzing
electrical load data within the upper layer. The electrical load
data fromDEHS is uploaded to the database via switches, and
historical data stored in the database is employed to predict

the power output of DEHS. The operational constraints of
DEHS are provided to the scheduling centre to establish an
energy allocation model. Finally, the optimized scheduling
results are sent from the scheduling centre to DEHS through
switches.

The lower layer of this system comprises several com-
ponents, including wind power plants (WPP), heat power
plants (HPP), battery energy storage (BES) units, CHP plants,
heat energy storage (HES) systems such as hot water tanks,
electric load, heat load, and a diverse range of DEHS catering
to different types of users such as highway rest stops,
suburban houses, manufactories, and shopping malls. Heat
load is supplied by CHP and HES, with DEHS serving as
auxiliary regulation in urban heat networks. HES functions
to store excess heat energy generated by CHP, releasing it
during periods of increased heat load demand. Electric load
is powered by WPP, HPP, BES, and CHP, with BES storing
electricity during low load periods and releasing it during
peak demand. This electric energy is consumed by DEHS
to generate heat energy, which is subsequently stored within
DEHS. DEHS are categorized based on their allocation in
suburban and urban areas. In suburban regions, highway rest
stops, suburban houses, and manufactories are situated far
from the district heating network, relying solely on DEHS to
meet their heat demand. Conversely, in urban areas, the high
heat demand of shopping malls is met through a combination
of DEHS and district heating network.

As centralized electric heat storage units are often funded
and constructed by entities such as power grids, power
plants, or heating supply companies, the capacity of these
units is inherently linked to investment costs. Therefore,
the coordination of DEHS via a centralized communication
network can significantly enhance the electric heat storage
capacity, facilitate the integration of wind power, and
decrease electricity costs for DEHS users, thereby fostering
a mutually beneficial outcome.

III. ENERGY ALLOCATION STRATEGY OF DEHS
A. ASSUMPTION CONDITIONS OF ENERGY ALLOCATION
STRATEGY
The implementation of the energy allocation strategy ought
to take into account the willingness of DEHS users to
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FIGURE 1. The structure of combined electricity and heat systems with DEHS.

engage in grid regulation. Ensuring grid scheduling flexibility
while satisfying user heat storage demands necessitates
the establishment of a deviation within the scheduling
protocol. This deviation, pertaining to DEHS, represents the
difference1δx,n between the downward δx,n,down and upward
δx,n,up limits of the average error between scheduled and
predicted power. The magnitude of this deviation is inversely
proportional to the depth of grid regulation for DEHS, with
larger deviations resulting in higher scheduling subsidies for
users. It is assumed that participating users have already
entered into a scheduling protocol with the grid, and based
on their specific conditions, have chosen a deviation within
the protocol. Their DEHS operate as load-side resources,
responding to grid regulation. Given the regular patterns
in electricity consumption among DEHS users involved
in energy allocation scheduling, the historical load curve
of DEHS exhibits a different pattern of sudden increases
and decreases. It is assumed that DEHS participating in
the scheduling operates on an hourly basis, with only two
operational states: start and stop.

An example is presented for the better understanding
of the reader. In a smart community, the DEHS system
serves approximately 1,000 residential users. Among these
residents, there are different groups such as the elderly,
housewives, office workers, and students, who have varying
demands and timeframes for heating. Additionally, there
is a small commercial centre and a school within the
community, which have higher requirements for the stability
and continuity of heating. Each resident’s home is equipped
with a DEHS device with a capacity of 10kWh. These devices
utilize advanced phase change materials as the heat storage
medium, enabling them to charge and store thermal energy
during the low-price nighttime period and release it during
peak daytime hours for household use. The specific operation
mode is as follows:

• During the low-price period of electricity at night, the
control system will activate the DEHS heat storage
mode. At this time, the DEHS in residents’ homes begins
to absorb electric energy from the power grid and convert
it into heat energy for storage;
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• During the peak price period of electricity in the
daytime, the control system will activate the heat release
mode of DEHS. At this time, DEHS begins to release
the stored heat energy to provide heating services for
residents’ homes, commercial centres, and schools.
Meanwhile, based on users’ heating needs and the power
grid load conditions, the control system will adjust the
heat release rate and temperature of the DEHS to ensure
the comfort and stability of heating;

• When the power grid load is too high or the production
of renewable energy is excessive, the central control
system will activate the demand response mechanism.
At this time, some DEHS will suspend charging or
reduce the heat release rate to reduce the power grid load
or consume excess renewable energy. Through this way,
the DEHS can participate in the scheduling and balance
of the power grid, improving the stability of the power
grid.

B. THE DESCRIPTION OF ENERGY ALLOCATION STRATEGY
The schematic diagram of the energy allocation strategy for
DEHS is presented in Figure 2. An example is selected
to illustrate the operation of DEHS, and the changes in
optimized scheduling based on time-of-use, EEAS, and
IEAS are explained. Figure 2 (a) displays a schematic
diagram based on time-of-use. According to the predicted
power curve, the DEHS is scheduled during 0:00-7:00,
14:00-15:00, and 21:00-24:00. However, with time-of-use
as the scheduling strategy, the DEHS is not scheduled

FIGURE 2. The schematic diagram of energy allocation strategy in DEHS.

during the 14:00-15:00 period. Due to peak and valley
price constraints, when volatile scenarios of WPC arise, the
regulatory flexibility of DEHS is restricted.

Figure 2 (b) is a schematic diagram of the EEAS.
According to the predicted power curve, the DEHS stops
operating from 7:00 to 8:00 and runs from 14:00 to 15:00,
respectively. Suppose the wind power output is still large
during the 7:00-8:00 period, further accommodation of wind
power is required. However, the time-of-use strategy is
not feasible, and thus, an energy allocation strategy needs
to be employed. This strategy can reallocate the task of
storing heat energy from 14:00 to 15:00 to the 7:00-8:00
period. Therefore, in contrast to time-of-use scheduling,
EEAS regulates the operational time of the DEHS without
altering the user’s heat energy storage requirements, thereby
enhancing the flexibility of wind power accommodation.

Figure 2 (c) is a schematic diagram of the IEAS. According
to the predicted power curve, the DEHS stops operating
during the periods of 2:00 to 3:00, 4:00 to 5:00, and 7:00
to 8:00. However, due to the increased deviations in the
scheduling protocol signed by DEHS users, not only is the
task of storing heat energy from 14:00 to 15:00 reallocated
to 7:00 to 8:00, but also DEHS runs storing heat energy
from 2:00 to 3:00 and 4:00 to 5:00. Therefore, compared
to the EEAS, the increased operating hours of DEHS,
within the range of scheduling deviations tolerable by users,
allows the system to improve the flexibility of wind power
accommodation.

C. THE FRAMEWORK OF ENERGY ALLOCATION STRATEGY
The framework of the energy allocation strategy is depicted
in Figure 3, where the inputs consist of electric and heat load
data along with predicted wind power. Within this model,
the determination of whether the deviation 1δx,n equals
zero dictates the allocation approach. Specifically, when

FIGURE 3. The model framework of energy allocation strategy.
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1δx,n is zero, EEAS is employed for DEHS. Conversely,
if 1δx,n exceeds zero, IEAS is implemented, with the excess
heat energy stored serving as a means to regulate the
heat network. By integrating conventional power generation
unit models with electric heat network constraint models,
optimal scheduling is achieved, aiming to mitigate WPC and
minimize operational costs within the system.

D. THE ENERGY ALLOCATION MODEL OF DEHS
1) OPERATION COST OF DEHS
The operating costs of DEHS require consideration of both
scheduling and user electricity costs, as presented in (1)-(5).
These include:

• The operating costs pertaining to peak and valley
electricity prices are designated as Ca

x,n,t , with the real
cost of electricity during peak and valley periods being
used to calculate DEHS scheduling costs;

• The operating cost associated with peak and valley
subsidies are represented by Cb

x,n,t . These subsidies are
awarded for the scheduling power of DEHS that exceeds
the user’s actual demand, taking into account the specific
peak and valley periods;

• The operating cost designated as Cc
x,n,t corresponds to

the penalty imposed for scheduling deficits. When the
scheduling result falls below the user’s actual demand,
leading to a reduction in heat comfort, a corresponding
penalty is levied;

• The operating cost related to the incentive for regulating
the heat network is denoted by Cd

x,n,t . Since the excess
energy stored in the IEAS of DEHS is utilized for heat
network regulation, the power generated by the IEAS
is already subsidized. Therefore, a consistent incentive
is implemented to reward users during the scheduling
periods.

CDEHS (
Px,n,t ,Hx,n,t

)
= Ca

x,n,t + Cb
x,n,t + Cc

x,n,t + Cd
x,n,t

∀x ∈ IDEHS, n ∈ Nx , t ∈ T (1)

where CDEHS (·) is the cost function of DEHS, Px,n,t and
Hx,n,t are the scheduled electric and heat power of the nth
DEHS of type x at time t . Ca

x,n,t , C
b
x,n,t , C

c
x,n,t and Cd

x,n,t
denote the operating costs of the nth DEHS of type x at
time t for four parts: peak and valley electricity prices, peak
and valley electricity subsidies, scheduling shortage penalty
and regulation heat network reward, respectively. Set IDEHS
represents the indices for the user types of DEHS, set Nx
represents the indices for users of type x in DEHS, and set
T represents the indices of scheduling periods.

Ca
x,n,t = ξ at Px,n,t ∀x ∈ IDEHS, n ∈ Nx , t ∈ T (2)

Cb
x,n,t = ξbt

∣∣Px,n,t − Ppx,n,t
∣∣ εqx,n,t

∀x ∈ IDEHS, n ∈ Nx , t ∈ T (3)

Cc
x,n,t = ξ ct

∣∣Px,n,t − Ppx,n,t
∣∣ (1 − ε

q
x,n,t

)
∀x ∈ IDEHS, n ∈ Nx , t ∈ T (4)

Cd
x,n,t = ξdt

∑
t∈T H

p
x,n,t −

∑
t∈T Hx,n,t

βx,n

∀x ∈ IDEHS, n ∈ Nx , t ∈ T (5)

where ξ at , ξbt , ξ ct and ξdt are the electricity prices of the
four parts at time t , respectively. εqx,n,t is the binary variable
associated with scheduling shortage of the nth DEHS of
type x at time t . Ppx,n,t and H

p
x,n,t are the predicted electric

power and heat power of the nth DEHS of type x at time t .
βx,n is the electric heat conversion efficiency of the nth
DEHS of type x. ε

q
x,n,t = 1 if

(∑
t∈T Px,n,t ≥

∑
t∈T P

p
x,n,t

)
,

ε
q
x,n,t = 0 if

(∑
t∈T Px,n,t <

∑
t∈T P

p
x,n,t

)
.

2) ENERGY ALLOCATION CONSTRAINTS OF ELECTRIC
POWER
The scheduling deviation constraints pertaining to both EEAS
and IEAS within DEHS are presented in (6).

δx,n,down ≤

∑
t∈T

∣∣Px,n,tεx,n,t − Ppx,n,t
∣∣

24
≤ δx,n,up

∀x ∈ IDEHS, n ∈ Nx (6)

where δx,n,down and δx,n,up are the downward and upward
limits of the deviation of the nth DEHS of type x. εx,n,t is the
binary variable associated with start-stop of the nth DEHS of
type x at time t , εx,n,t ∈ {0, 1}, start is 1, stop is 0.

To reflect the discrepancy between the scheduled power
and the demand power of DEHS users, the scheduling result
deviation coefficient is devised, serving as a guiding metric
for district heating network regulation. Its calculation is
detailed in (7).∑

t∈T Px,n,t∑
t∈T P

p
x,n,t

= αx,n ∀x ∈ IDEHS, n ∈ Nx (7)

where αx,n is the ratio of the total amount of scheduling and
demand for the nth DEHS of type x, αx,n > 1 indicates
that the total scheduling exceeds the demand, whereas
αx,n ≤ 1 signifies that the scheduling is less than or
equal to the demand. Additionally,

∑
t∈T P

p
x,n,t represents the

aggregate of the predicted power for DEHS, a fixed value
determined through day-ahead prediction.

The scheduling power constraint of DEHS is expressed
as (8).

Px,n,min ≤ Px,n,tεx,n,t ≤ Px,n,max

∀x ∈ IDEHS, n ∈ Nx , t ∈ T (8)

where Px,n,min and Px,n,max are the minimum and maximum
electric power limits of the nth DEHS of type x.

3) ENERGY ALLOCATION CONSTRAINTS OF HEAT POWER
The IEAS of DEHS for regulating the heat network is
constrained by (9) and (10).

Hp
x,n,t = βx,nP

p
x,n,t ∀x ∈ IDEHS, n ∈ Nx , t ∈ T (9)

0 ≤ Hx,n,t ≤ Hp
x,n,t ∀x ∈ IDEHS, n ∈ Nx , t ∈ T

(10)
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When the deviation coefficient αx,n exceeds 1, the excess
heat energy stored in DEHS is utilized, and the scheduling
heat power is subject to the constraint presented in (11).∑

t∈T H
p
x,n,t −

∑
t∈T Hx,n,t

βx,n
≤

(
αx,n − 1

) ∑
t∈T

Ppx,n,t

∀x ∈ IDEHS, n ∈ Nx (11)

IV. MODELING OF TRADITIONAL POWER GENERATION,
ELECTRIC AND HEAT ENERGY STORAGE
A. MODELING OF HPP
1) OPERATION COST OF HPP
The fuel cost of HPP, which is employed for regulating
electric power, is expressed in (12).

CHPP (
Pf ,t

)
= ξf ,0

(
Pf ,t

)2
+ ξf ,1Pf ,t + ξf ,2

∀f ∈ IHPP, t ∈ T (12)

where CHPP (·) is the cost function of HPP. Pf ,t is the
scheduled electric power of the f th HPP at time t . ξf ,0, ξf ,1
and ξf ,2 are the operating cost coefficients of the f th HPP,
respectively. Set IHPP represents the indices of HPP.

2) CONSTRAINTS OF HPP
The minimum and maximum power output limits, as well
as the ramp rate constraints of the HPP, are detailed in (13)
and (14).

Pf ,min ≤ Pf ,t ≤ Pf ,max ∀f ∈ IHPP, t ∈ T (13)

Rf ,down × 1t ≤ Pf ,t − Pf ,t−1 ≤ Rf ,up × 1t

∀f ∈ IHPP, t ∈ T (14)

where Pf ,min and Pf ,max are the minimum and maximum
electric power limits of the f th HPP. Rf ,down and Rf ,up are
the downward and upward ramp rate limits of the f th HPP.
1t is the scheduling interval.

B. MODELING OF CHP AND HES
1) OPERATION COSTS OF CHP AND HES
The fuel cost of CHP, along with the operational and
investment costs pertaining to the charge and discharge
processes of HES, are presented in (15) and (16).

CCHP (
Pb,t ,Hb,t

)
= ξb,0

[
Pb,t + vbHb,t

]2
+ ξb,1

[
Pb,t + vbHb,t

]
+ ξb,2 ∀b ∈ ICHP, t ∈ T (15)

CHES
(
H+

k,t ,H
−

k,t

)
= ξk,0

(
H+

k,t + H−

k,t

)
+

[(
ξk,1Hk,rated + ξk,2Sk,max

)
/Tk

]
∀k ∈ IHES, t ∈ T (16)

where CCHP (·) is the cost function of CHP. Pb,t and Hb,t
are the scheduled electric and heat power of the bth CHP at
time t , respectively. ξb,0, ξb,1 and ξb,2 are the operating cost
coefficients of the bth CHP, respectively. vb is the reduction
in power generation when the bth CHP extracts per unit of

heat with a constant air intake. Set ICHP represents the indices
of CHP. CHES (·) is the cost function of HES. H+

k,t and H
−

k,t
are the charge and discharge heat power of the kth HES at
time t , respectively. ξk,0, ξk,1 and ξk,2 are the operation and
maintenance, rated power and capacity cost coefficients of
the kth HES. Hk,rated, Sk,max and Tk are the rated power,
maximum storage capacity and service life of the kth HES.
Set IHES represents the indices of HES.

2) CONSTRAINTS OF CHP
The electric and heat power constraints, as well as the ramp
rate limitations of CHP, are presented in (17)-(20).(

Pb,min − vb,0Hb,t
)

≤ Pb,t ≤
(
Pb,max − vb,2Hb,t

)
∀b ∈ ICHP, t ∈ T (17)

vb,1
(
Hb,t − Hb,med

)
≤ Pb,t ∀b ∈ ICHP, t ∈ T (18)

0 ≤ Hb,t ≤ Hb,max ∀b ∈ ICHP, t ∈ T
(19)

Rb,down × 1t ≤ Pb,t − Pb,t−1 ≤ Rb,up
× 1t∀b ∈ ICHP, t ∈ T (20)

where Pb,min and Pb,max are the minimum and maximum
electric power limits of the bth CHP, vb,0 and vb,2 are the
minimum and maximum reduction of the bth CHP, vb,1 is
the reduction of the bth CHP, Hb,med and Hb,max are the
corresponding heat power when the bth CHP generates the
minimum electric power and the maximum heat power limit
of the bth CHP, Rb,down and Rb,up are the downward and
upward ramp rate limits of the bth CHP.

3) CONSTRAINTS OF HES
The specifics of HES’s heat power and heat energy storage
capacity restrictions are covered in (21)-(27).

Sk,t = βkSk,t−1 + H+

k,t − H−

k,t ∀k ∈ IHES, t ∈ T
(21)

0 ≤ Sk,t ≤ Sk,max ∀k ∈ IHES, t ∈ T (22)

H+

k,t + Sk,t−1 ≤ Sk,max ∀k ∈ IHES, t ∈ T (23)

H−

k,t − Sk,t−1 ≤ 0 ∀k ∈ IHES, t ∈ T (24)

0 ≤ H+

k,t ≤ Hk,ratedε
+

k,t ∀k ∈ IHES, t ∈ T (25)

0 ≤ H−

k,t ≤ Hk,ratedε
−

k,t ∀k ∈ IHES, t ∈ T
(26)

ε+

k,t + ε−

k,t ≤ 1 ∀ε+

k,t , ε
−

k,t ∈ {0, 1}, k ∈ IHES, t ∈ T
(27)

where Sk,t is the heat energy storage capacity of the kth HES
at time t , βk is the heat energy storage efficiency of the kth
HES, ε+

k,t and ε−

k,t are the binary variable associated with
charge and discharge of the kth HES at time t , ε+

k,t + ε−

k,t ≤

1 stipulates that the kth HES is incapable of performing both
charging and discharging operations concurrently at time t .
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C. MODELING OF WPP
1) OPERATION COST OF WPP
The operational cost of WPP serves as a penalty for WPC,
as indicated in (28).

CWPP (
Pg,t

)
= ξg,0

(
P̄g,t − Pg,t

)
∀g ∈ IWPP, t ∈ T (28)

whereCWPP (·) is the cost function ofWPP,Pg,t is the electric
power of the gth WPP at time t , ξg,0 is the WPC penalty cost
of the gth WPP at time t , P̄g,t is the predicted wind power
output of the gth WPP at time t . Set IWPP represents the
indices of WPP.

2) CONSTRAINT OF WPP
The upper limit of WPP output power is shown in (29).

0 ≤ Pg,t ≤ P̄g,t ∀g ∈ IWPP, t ∈ T (29)

D. MODELING OF BES
1) OPERATION COST OF BES
The costs associated with the charge and discharge opera-
tions, as well as the investment costs of BES, are detailed
in (30).

CBES
(
P+
q,t ,P

−
q,t

)
= ξq,0

(
P+
q,t + P−

q,t

)
+

[(
ξq,1Pq,rated + ξq,2Sq,max

)
/Tq

]
∀q ∈ IBES, t ∈ T (30)

where CBES (·) is the cost function of BES. P+
q,t and P−

q,t
are the charge and discharge electric power of the qth BES
at time t , respectively. ξq,0, ξq,1 and ξq,2 are the operation
and maintenance, rated power and capacity cost coefficients
of the qth BES. Pq,rated, Sq,max and Tq are the rated power,
maximum storage capacity and service life of the qth BES.
Set IBES represents the indices of BES.

2) CONSTRAINTS OF BES
The constraints pertaining to the rated electric power and
capacity of BES are presented in (31)-(37).

Sq,t = βqSq,t−1 + P+
q,t − P−

q,t ∀q ∈ IBES, t ∈ T (31)

0 ≤ Sq,t ≤ Sq,max ∀q ∈ IBES, t ∈ T (32)

P+
q,t + Sq,t−1 ≤ Sq,max ∀q ∈ IBES, t ∈ T (33)

P−
q,t − Sq,t−1 ∀q ∈ IBES, t ∈ T (34)

0 ≤ P+
q,t ≤ Pq,ratedε+

q,t ∀q ∈ IBES, t ∈ T (35)

0 ≤ P−
q,t ≤ Pq,ratedε−

q,t ∀q ∈ IBES, t ∈ T (36)

ε+
q,t + ε−

q,t ≤ 1 ∀ε+
q,t , ε

−
q,t ∈ {0, 1}, q ∈ IBES, t ∈ T (37)

where Sq,t is the electric energy storage capacity of the qth
BES at time t , βq is the electric energy storage efficiency of
the qth BES, ε+

q,t and ε−
q,t are the binary variable associated

with charge and discharge of the qth BES at time t , ε+
q,t +

ε−
q,t ≤ 1 stipulates that the qth BES is incapable of performing
both charging and discharging operations concurrently at
time t .

E. OPTIMIZATION OBJECTIVES, ELECTRIC-HEAT
NETWORK CONSTRAINTS
1) OPTIMIZATION OBJECTIVE
The objective function for day-ahead optimal scheduling,
aimed at mitigatingWPC and minimizing system operational
costs, is presented in (38).

MinC =

∑
t∈T

∑
x∈IDEHS

∑
n∈Nx

CDEHS (
Px,n,t ,Hx,n,t

)
+

∑
t∈T

∑
f ∈IHPP

CHPP (
Pf ,t

)
+

∑
t∈T

∑
g∈IWPP

CWPP (
Pg,t

)
+

∑
t∈T

∑
b∈ICHP

CCHP (
Pb,t ,Hb,t

)
+

∑
t∈T

∑
k∈IHES

CHES
(
H+

k,t ,H
−

k,t

)
+

∑
t∈T

∑
q∈IBES

CBES
(
P+
q,t ,P

−
q,t

)
(38)

2) ELECTRIC NETWORK BALANCE CONSTRAINT
To uphold a harmonious equilibrium between the grid and the
load within the electrical network, it is imperative to fulfil the
constraint stated in (39).∑
f ∈IHPP

Pf ,t +

∑
b∈ICHP

Pb,t +

∑
g∈IWPP

Pg,t −

∑
q∈IBES

P+
q,t

+

∑
q∈IBES

P−
q,t −

∑
x∈IDEHS

∑
n∈Nx

Px,n,t = PLt ∀t ∈ T (39)

where PLt is the electric load at time t .

3) HEAT NETWORK IMBALANCE CONSTRAINT
Due to the heat inertia of the circulating water in the heat
network and structures, the heat load is maintained within a
specified range to fulfil the heating demands of users. The
restriction about the heat network imbalance is explained
in (40).

κlowHL
t ≤

∑
b∈ICHP

Hb,t −

∑
k∈IHES

H+

k,t +

∑
k∈IHES

H−

k,t

+

∑
x∈IDEHS

∑
n∈Nx

Hx,n,t ≤ κupHL
t ∀t ∈ T (40)

where κlow and κup are the lower and upper limits of the
thermal inertia regulation ratio of the district heating network
and the building, and the κlow and κup are 0.9 and 1.1,
respectively. HL

t is the heat load at time t .

F. QUANTIFICATION OF SCHEDULING RESULTS FOR
DIFFERENT DEVIATION
To assess the influence of load-side resources on the depth
of grid regulation, a quantitative analysis is conducted
on the varying contributions of DEHS to grid regulation.
References [21] and [22] analyze the regulation of peak loads
and wind power accommodation capacity, providing insights
into the grid’s interaction with load-side resources. Building
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on these findings, an evaluation index ϑ is introduced to
measure load-side resource management. The evaluation
index ϑ in this paper is only based on previous research
work [21], [22], and no improvements have been made to this
index. This index represents the sum of the scheduling power
contributed by the four types of DEHS users, normalized by
the total power accommodated by wind power. Therefore, the
simulation case yields the contribution value of DEHS to grid
regulation for wind power accommodation. The evaluation
index ϑ is formally expressed in (41).

ϑ =

∑
t∈T

∑
x∈IDEHS

∑
n∈Nx

Px,n,t/
∑
t∈T

∑
g∈IWPP

Pg,t

∀x ∈ IDEHS, n ∈ Nx , g ∈ IWPP (41)

V. CASE STUDIES
The simulation data are obtained from the actual operational
records of DEHS in a provincial power grid. The simulations
are performed on a machine equipped with an Intel Core i5
CPU and 8 GB of memory. The modeling process is facili-
tated by MATLAB-R2018a and the YALMIP toolbox, with
the IBM CPLEX optimizer used to solve the Mixed-Integer
Quadratic Programming model.

A. THE SIMULATION STRUCTURE AND DATA
The structure diagram of the simulation structure of the
combined electricity and heat systems with DEHS is repre-
sented in Figure 4. The simulation framework encompasses
HPP1 and HPP2, CHP1 and CHP2, WPP, BES, HES1 and
HES2, along with DEHS units tailored for four user: highway
rest stops IDEHS1 , suburban houses IDEHS2 , manufactories
IDEHS3 , and shopping malls IDEHS4 . For each user type x ∈

{1, 2, 3, 4}, i.e., Nx = 4, resulting in a total of 16 DEHS
units. The detailed simulation data for HPPs, HESs, CHPs,
BES, and DEHS, as referenced in the literature [15], [23],
[24], [25], are shown in Table 2.

FIGURE 4. The structure diagram of the simulation structure of the
combined electricity and heat systems with DEHS.

The curves for predicted wind power, electric and heat
load are depicted in Figure 5. Given the positive correlation
between human activities and electric load, as well as the
inverse relationship between heat load and environmental

FIGURE 5. Curves of predicted wind power, electric and heat load.

temperature, it is observed that the peak of electric load
occurs during periods opposite to that of heat load.

The predicted power curves for the four types of DEHS
users are presented in Figure 6. To derive these curves,
the prediction method combining the upper-lower approach
with the iterative dichotomiser 3 algorithm from our prior
research is employed. For a comprehensive understanding of
the prediction method, the reader is advised to refer to [15].

FIGURE 6. The predicted power of four types of DEHS users.

B. VALIDATION OF ENERGY ALLOCATION STRATEGY
To validate the effectiveness of the energy allocation
strategy for DEHS, a comparative analysis of three cases is
undertaken, as detailed subsequently.

• Case 1: Optimal scheduling of DEHS based on the
conventional time-of-use prices strategy, the DEHS
responds to grid demands to absorb wind power
according to time-of-use prices. The operating cost of
DEHS is calculated using peak and valley electricity
prices Ca

x,n,t , C
b
x,n,t = Cc

x,n,t = Cd
x,n,t = 0.

• Case 2: Implementation of EEAS for DEHS, the DEHS
is controlled based on the deviation of scheduling
protocol δx,n,down = δx,n,up = 0. Since EEAS does
not regulate the heat network, the operating cost of
DEHS does not include the regulating the heat network
incentive Cd

x,n,t = 0.
• Case 3: Implementation of IEAS for DEHS. Improving
the depth of regulation of DEHS based on Case 2.
One-fifth of the DEHS heat storage capacity can be
used as the regulation range when the DEHS user
allows the 1δx,n to fluctuate within a certain range. The
deviation of scheduling protocol is set to δx,n,down = 0,
δx,n,up = 0.2.
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TABLE 2. The simulation data.

The comparison and specification of the three cases are
shown in Table 3.

1) COMPARISON OF ELECTRIC POWER OPTIMAL
SCHEDULING RESULTS
The scheduling results depicting the electric power output of
generator units and BES for the three cases are exhibited in
Figure 7 and Tables 4, 5, 6. In the tables, the negative and
positive values for BES represent charging and discharging,
respectively. The aggregate scheduling of electric power
from HPPs, CHPs, WPP, and BES is observed to surpass
the electric load demand in every instance, with the excess
being attributed to wind power. However, the implementation
of DEHS energy allocation scheduling in Cases 2 and 3,
achieved by synchronizing the DEHS start-up time with
WPP’s output wind power, results in different patterns.
Notably, Case 3 exhibits the highest consumption of WPP
wind power during the scheduling periods of 1:00-7:00,
whereas Case 1 displays the lowest. Additionally, constraints
pertaining to operating costs, heat load demands, and the
capacity of individual energy storage units within the
scheduling model contribute to variations in the scheduled
power of HPPs, CHPs, and BES. Therefore, a horizontal
analysis is conducted to compare the scheduled electric power
of these units across each moment, revealing the disparities
and advantages of the scheduling strategies employed in the
three cases.

The scheduling electric power of HPPs for three cases is
shown in Figure 8. Given the constraints posed by operating
costs, heat load demand, and the output wind power of
WPP, both HPP1 and HPP2 operate at their minimum output
power in all three cases. Additionally, during the scheduling
periods of 1:00-9:00 and 17:00-24:00, the combined electric
power output of HPP1 + HPP2 fluctuates to reflect changes
in the electric load due to the decreased demand for

FIGURE 7. The scheduling results of electric power for three cases.

electric load and the increasing output of wind power.
This synchronicity creates an opportunity to accommodate
additional wind power. The electric power output of the
HPP1 and HPP2 remains consistent across the three cases,
which can be obtained from Tables 4-6.
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TABLE 3. Comparison and specification of the three cases.

TABLE 4. The electric power scheduling results of case 1.

TABLE 5. The electric power scheduling results of case 2.

TABLE 6. The electric power scheduling results of case 3.

FIGURE 8. The scheduling electric power of HPPs for three cases.

The comparison of CHP scheduling electric power across
the three cases is presented in Figure 9. With variations

in wind power, the operational time and energy storage
periods of DEHS are reallocated to periods without wind
curtailment. While the time-of-use scheduling strategy of
Case 1 is influenced by both wind power output and system
operational costs, it does not schedule all DEHSs to reduce
costs when wind power decreases, such as at 4:00, in order
to meet electric load demand and accommodate wind power.
Therefore, Figure 9 reveals that the CHP scheduling power
curve is higher in Cases 2 and 3 than in Case 1 during
each scheduling period. Additionally, compared to Case 2,
due to the increased scheduling power of DEHS based on
EEAS in Case 3, the combined power of CHP1 + CHP2 in
Case 3 is more significant than in Case 2 from 3:00 to 24:00.
These results suggest that implementing energy allocation for
DEHS enhances the flexibility of CHP regulation.
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FIGURE 9. The simulation results of CHPs scheduling electric power for
three cases.

2) COMPARISON OF HEAT POWER OPTIMAL SCHEDULING
RESULTS
The simulation results of the heat power output of CHPs
and HESs across three cases are exhibited in Figure 10 and
Tables 7, 8, 9. In the tables, the negative and positive values
for HES represent charging and discharging, respectively.
It is evident that, in all three cases, the scheduled heat
power generated by CHPs, HESs, and DEHS is sufficient to
fulfil the heat load demand. Notably, during the scheduling
period of 8:00-15:00, when the wind power output from the
WPP decreases, CHPs refrain from reducing their output
to enhance the grid’s accommodation capacity for wind
power. Therefore, the heat power scheduling for each unit
remains stable within this period, as depicted in Figure 10.
However, the variations in heat power during other scheduling
periods are influenced by the different scheduling strategies
employed in each case. Specifically, in Case 2, the DEHS
solely consumes electrical energy to generate heat for
user heating without assisting in district heating network
regulation. Conversely, in Cases 1 and 3, the heat energy
stored in DEHS of users in urban areas is released into the
district heating network to facilitate heat network regulation.
Notably, Case 3’s heat power scheduling is smaller than
Case 1’s since IEAS schedules extra user demand heat energy
in Case 3, whereas DEHS reacts to the grid in Case 1. These
scheduling results underscore the DEHS’s ability to regulate
the district heating network and further demonstrate that,
compared to Case 1, Case 3 offers superior heat comfort for
users.

The comparison of CHPs scheduling heat power for three
cases is shown in Figure 11. Given that CHPs operate under
backpressure steam conditions and are susceptible to the
electric-heat coupling relationship among units, the electric
power scheduling for CHPs in Cases 2 and 3 exceeds that of
Case 1. Therefore, as reflected in Figure 11, the heat power
curves scheduled for these two cases surpass those of Case 1.
The scheduling results reveal that, in contrast to conventional
scheduling strategies, the enhanced flexibility in regulating
CHPs effectively addresses variable scenarios of wind power
output from the WPP and fluctuations in load demand within
the electric heat network.

FIGURE 10. The simulation results of CHPs and HESs output heat power
for three cases.

FIGURE 11. The comparison of CHPs scheduling heat power for three
cases.

3) COMPARISON OF DEHS OPTIMAL SCHEDULING RESULTS
The predicted and scheduled power of DEHS in Case 1 is
depicted in Figure 12. A comparison of the scheduled and
predicted electric power for DEHS user 1 reveals that the
former stands at 4 × 7 MW, while the latter amounts to
4 × 11 MW, as seen in Figure 6. In contrast, the scheduling
power of DEHS user 2 is diminished by 4 MW at 6:00 when
contrasted with the predicted power. Similarly, the scheduled
electric power for DEHS user 3 is reduced by 4 MW at 4:00,
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TABLE 7. The heat power scheduling results of case 1.

TABLE 8. The heat power scheduling results of case 2.

TABLE 9. The heat power scheduling results of case 3.

FIGURE 12. The predicted and scheduled power of DEHS in Case 1.

6:00, 22:00, and 24:00, respectively, in comparison to the
predicted power. Notably, only for DEHS user type 4 does the
scheduling power align with the predicted power. Therefore,
comparing of the scheduling results across the four DEHS
users indicates that the time-of-use based scheduling power
falls short of meeting user demand.

The predicted and scheduled power of DEHS in Case 2 is
presented in Figure 13. Given the reduced wind power output

FIGURE 13. The predicted and scheduled power of DEHS in Case 2.

during the hours of 11:00 to 15:00, there is no WPC during
this period. Therefore, the optimized scheduling for DEHS
user 1 reallocates the working hours originally designated
for energy utilization at 14:00 and 15:00 in Figure 6 to
4:00 and 7:00 in Figure 13. Similarly, the working hours
for DEHS user 2 at 15:00 and 16:00 in Figure 6 are
reallocated to 22:00 and 24:00 in Figure 13. Notably, the
scheduling power for DEHS user 3 and 4 remains equivalent
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to their predicted power, respectively. Overall, the total
DEHS scheduling electric power in Case 2 aligns with
the predicted power depicted in Figure 6. These findings
demonstrate that, in comparison to EEAS with time-of-use
scheduling, user demand can be effectively met, and wind
power accommodation is enhanced during off-peak hours.

FIGURE 14. The predicted and scheduled power of DEHS in Case 3.

The predicted and scheduled power of DEHS in Case 3 is
depicted in Figure 14. A comparison of the optimized
scheduling results between IEAS in Figure 14 and EEAS in
Figure 13 reveals several notable differences. Specifically,
in Figure 14 (a), the scheduling power at 21:00 is augmented
by 4 MW in comparison to Figure 13 (a). Similarly,
in Figure 14 (b), the scheduling power is increased by 4 × 5
MW at 4:00, 7:00, and between 21:00 to 23:00, exceeding
the corresponding levels in Figure 13 (b). Furthermore,
Figure 14 (c) demonstrates an increase of 4 × 3 MW in
scheduling power at 7:00, 8:00, and 21:00, surpassing the
values observed in Figure 13 (c). Lastly, in Figure 14 (d), the
scheduling power at 21:00 is elevated by 4 MW, exceeding
the level shown in Figure 13 (d). These scheduling results
clearly illustrate that, within the permitted regulation margin,
the IEAS adjusts the working hours to fluctuations in wind
power, thereby enhancing the flexibility of DEHS scheduling
and optimizing wind power accommodation.

According to the scheduling results in Figures 13 and 14,
the deviation δx,n in Cases 2 and 3 are 0 and 0.2, respectively.
To analyze the impact of δx,n on the depth of grid regulation,
the contribution value of the DEHS to the grid regulation
of wind power accommodation is obtained, the evaluation
index ϑ for Cases 2 and 3 are 2.07% and 2.63%, respectively.
These two indices represent the ratio of the wind power
accommodated by DEHS through the application of EEAS
and IEAS strategies, compared to the baseline wind power
accommodation capacity. Compared with Case 2, Case 3 can
provide 27.05% more scheduling space for the grid to

consume wind power when the DEHS simulation capacity is
the same. The proposed IEAS optimized scheduling strategy
can effectively increase the accommodation of wind power,
which is beneficial for both grid operators and thewind power
industry.

4) COMPARISON OF WPC AND OPERATING COSTS
The curves depicting the predicted and scheduled wind power
for the three cases are presented in Figure 15. Notably,
during the 1:00-3:00 period, the absorbed wind power in
Case 3 surpasses that of Cases 1 and 2. Similarly, in the 5:00-
7:00 period, both Cases 3 and 2 exhibit higher wind power
accommodation than Case 1. The hierarchy of wind power
accommodation among the three cases stands as follows:
Case 3 > Case 2 > Case 1. This finding further attests
to the efficacy of the energy allocation strategy employed
within DEHS.

FIGURE 15. The curves of predicted and scheduled wind power for three
cases.

The comparison of simulation results for three cases is
presented in Table 10.

TABLE 10. The comparison of costs and WPC rates for three cases.

In Case 1, the scheduling of DEHS is solely based on time-
of-use, determining its operating cost exclusively through
peak and valley prices. Conversely, in Cases 2 and 3,
the energy allocation strategy of DEHS is implemented,
incorporating subsidies provided by the grid to users in the
calculation of operating costs. Therefore, the total operating
costs reported in Table 10 for Cases 2 and 3 exceed those
of Case 1. Furthermore, the implementation of IEAS in
Case 3 results in a higher scheduling of wind power and a
more significant regulation of DEHS by the grid. This leads to
increased subsidies from the grid to users in Case 3 compared
to Case 2. Despite the higher operating costs in Cases 2 and 3,
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the WPC rates for these cases are reduced by 14.04% and
29.49%, respectively.

Specifically, it is emphasized that the costs of the user and
system operator in this paper are not distinguished. The cost
of DEHS is incorporated into the overall consideration. The
DEHS costs for the three cases in Table 10 are 6,182.38 $,
10,163.49 $, and 15,232.48 $, respectively. The scheduling
cost of DEHS is gradually increasing, thereby raising total
costs. Suppose the costs of users and system operators are
separated, and the DEHS cost excludes the electricity cost
of users. In that case, the total cost of the proposed method
decreases, which can be proved by the decrease in the wind
penalty cost for the three cases as shown in Table 10, where
the WPC costs are 10,970.17 $, 9,812.56 $, and 7,932.34
$, respectively. This study demonstrates that the optimized
scheduling of combined electricity and heat systems with
DEHS, without the distinction between user and system
operator costs, can be reduced in terms of WPC. With regard
to distinguishing between the profit of users and system
operators, this will be taken as a basis, leveraging the energy
allocation of DEHS as an auxiliary service for electricity
market trading.

VI. CONCLUSION
An optimal scheduling strategy for energy allocation of
DEHS is proposed to enhance the accommodation of wind
power. DEHS is widely distributed on the load side, and
the diverse heat demand of users needs to be taken into
account. Therefore, the heat comfort of DEHS users and
their willingness to serve the grid are considered, and the
energy allocation strategy is further divided into EEAS and
IEAS. The proposed energy allocation strategy is verified
using a 6-bus system. The general model of energy allocation
can reallocate the working time of DEHS according to the
variation of wind power.

The study is compared by three simulation cases. Com-
pared with the conventional scheduling strategy of time-
of-use, the WPC rate of EEAS is reduced by 14.04%,
and the WPC rate of IEAS is reduced by 29.49%. The
evaluation index ϑ for EEAS and IEAS is 2.07% and 2.63%,
respectively. IEAS can provide 27.05% more scheduling
space for the grid to consume wind power compared to
EEAS. Grid regulatory flexibility is enhanced by the energy
allocation of DEHS, and the WPC is reduced, which is
beneficial for both grid operators and the wind power
industry.

This study mainly focuses on the energy allocation of
DEHS. However, the system may encounter more complex
factors, such as changes in user demand, fluctuations in
electricity prices, and other factors that could potentially
affect the strategy. Based on the potential limitations of
this study, an interesting direction is open for future study.
To further explore the economic aspects of this method
and consider the impact of multiple factors on scheduling
strategies, the energy allocation of DEHS is traded as an
auxiliary service in the electricity market.
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