IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 19 June 2024, accepted 10 July 2024, date of publication 16 July 2024, date of current version 29 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3429241

== RESEARCH ARTICLE

Development of a Modularized Undergraduate
Data Science and Big Data Curricular Using
No-Code Software Development Tools

HARRY D. MAFUKIDZE ', ACTION NECHIBVUTE', ABID YAHYA 2, (Senior Member, IEEE),
IRFAN ANJUM BADRUDDIN3, SARFARAZ KAMANGAR 3, AND MOHAMED HUSSIEN*

! Department of Applied Physics and Telecommunications, Midlands State University, Gweru, Zimbabwe

2Department of Electrical, Computer and Telecommunications Engineering, Botswana International University of Science and Technology, Palapye, Botswana
3Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia

4Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia

Corresponding author: Harry D. Mafukidze (mafukidzehd @staff.msu.ac.zw)

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work
through Large Research Project under grant number RGP.2/127/45.

ABSTRACT Over the last decade, Data Science has emerged as one of the most important subjects
that has had a major impact on industry. This is due to the continual development of scientific methods,
algorithms, processes, and computational tools that help to extract knowledge from raw data efficiently
and cost-effectively, compared with early-generation tools. Professional data scientists create code that
processes, analyses and extracts actionable insights from high volumes of data. This process requires a
deep understanding of mathematical principles, statistics, business knowledge, and computer science. But
most importantly, the data science development chain requires knowledge of a high-level programming tool
and its dependencies. This is a major problem in some aspects due to the steep learning curve. In this
paper, we describe and present a modularized Data Science curriculum for undergraduate learners that
relies on no-code software development tools as programming aids for non-computer science majors.
No-code development tools have been added to the traditional teaching pedagogy to improve students’
motivation and conceptual understanding of coding despite their limited programming skills. The study
aims to assess the impacts of visual programming languages on the performance of non-computer science
majors on programming problems. The study’s sample consists of 50 fourth-year students from the Faculty
of Science and Technology at the Midlands State University. A post-survey questionnaire and assessment
items were administered to the control and experimental groups. Results show that the students drawn
from the experimental group benefited from the use of a visual programming language. These results offer
evidence-based recommendations for incorporating high-performance no-code software development tools
in the formal curriculum to aid teaching and learning data science programming for students of diverse
academic backgrounds.

INDEX TERMS Curriculum, data science, education, no-code tools, visual programming languages.

I. INTRODUCTION
The recent technological advances in computing, coupled

sources of data. Consequently, this has also pushed the
demand for specialists, analysts, and engineers, who develop

with the increase in the demand to process high volumes
of data have led to the development of computer algorithms
that extract information and knowledge from different

The associate editor coordinating the review of this manuscript and

approving it for publication was Martin Reisslein

and maintain that code. An earlier report by McKinsey
Global Institute (MGI) in 2011 estimates that hundreds and
thousands of data-related jobs will be required in the next
few years [1]. This means that there is an absolute need
to train more data scientists to meet this ever-increasing
demand. To democratize training in this field, especially in

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

100939

https://orcid.org/0000-0001-8534-6139
https://orcid.org/0000-0003-3741-8315
https://orcid.org/0000-0001-7838-1884
https://orcid.org/0000-0003-1606-233X

IEEE Access

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

universities, a high-powered delegation comprising 25 under-
graduate faculty members from a variety of institutions across
the US met to develop a series of curriculum guidelines for
an undergraduate data science course [2]. Drawn from the
three major disciplines; mathematics, statistics and computer
science, the guidelines stipulate that a graduating student
majoring in data science must be proficient in subjects such
as computational and statistical thinking, mathematics, model
building, algorithms, data modelling and communication.
Such guidelines define the skills that learners are supposed
to have after completion of the course [3].

As the report by MGI states, data is now a key asset for
companies, and data analytics can improve the company’s key
operations or help launch new business models to expand the
markets. Considering this goal, there are two ways to achieve
this: (i) engaging professional data scientists, or (ii) up-
skilling existing professionals who are not data scientists with
the necessary data-based skills required to meet the needs
of industry. Producing data scientists is straightforward,
students would graduate with a major specialization in
data science and are then deployed in various industries.
On the other hand, developing data literacy skills in graduate
students who do not have the pre-requisite programming
experience may be challenging due to the steep learning
curve of text-based programming languages that have been
traditionally used to teach or learn the practical aspect of
data science. However, a different programming paradigm
has been developed over the years. They rely on visual,
drag-and-drop, no-code computer programming tools, where
instructions are encapsulated in blocks, instead of text-based
formal languages. Several blocks can then be connected
sequentially to solve a programming problem. As we can
expect, such no-code models offer several advantages,
especially to new learners. Mainly, it enables the learner to
focus on algorithm development, instead of struggling with
the intricacies of the structure or style of the programming
language.

This work is motivated by our experiences in teaching Data
Science as a module in the Department of Applied Physics
and Telecommunications under the Faculty of Science and
Technology at Midlands State University in Zimbabwe.
The Department offers a four-year Bachelor of Engineering
Degree in Telecommunication Engineering, where Data
Science is offered in the final year. In the module, students
learn the fundamentals of data science as well as the
applications of data science and big data in various domains.
The Department also offers a four-year Bachelor of Science
Degree In Industrial Physics and Instrumentation. Of late,
data science has emerged as students’ favourites, with the
majority of them implementing data science concepts in
their final year projects. However, we realized that although
our students have a strong Mathematical background, the
majority of them, especially those from BSc Industrial
Physics and Instrumentation often struggle with developing
practical computer code. As a result, this has affected
the majority of students who intend to apply data science

100940

concepts in their final year projects. To assist our students,
we came across VPLs, that have helped them develop
data-related projects without actually worrying about the
intricacies of coding.

The primary motive driving the present work is the need
to reduce the data science learning curve for non-majors,
especially on the practical side, that is mainly characterized
by heavy programming. Currently, minimum effort has been
made to formally merge data science education with this new
visual programming tool, despite their promising advantages.
As of now, the two fields have existed in parallel with each
other, thereby failing to provide an adequate broad-based cur-
riculum required to support professional development in data
science. This paper presents a data curriculum initiative using
No-Code tools (NCTs). The curriculum has been designed
in such a way that the knowledge base, course structure
and content are similar, in principle to the curriculum that
is based on traditional programming languages. It should
be noted, however, that the proposed curriculum has not
added or removed content from the existing data science
curriculum, rather, the present work proposes the integration
of emerging and flexible programming environments in
data science education initiatives. We define the appropriate
teaching and evaluation methods that are suitable for this type
of programming. The primary objectives of our work are to
integrate data science education with NCTs and accelerate
data science education using such tools to reduce the
amount of time required to up-skill a non-data professional.
We summarize the key contributions of our work as follows:

1) We describe key features and processes for visual
programming approaches.

2) We demonstrate the feasibility of no-code paradigms
as a potential aid for programming in data science
education.

3) We evaluate the performance of visual programming
environments, and demonstrate that they are compara-
ble with text-based programming languages in terms of
data science education.

4) We provide a survey on NCTs, as well as empirical
evidence on the use of NCTs in education.

5) We demonstrate, through experiments, that NCTs are
enablers of student success, especially non-computer
science majors in data science programming.

This paper is organized as follows; Section II describes
the data science curriculum initiative. The need for a
supplementary data science programming tool and the current
state of visual programming and data science education are
discussed. Furthermore, empirical evidence on the use of
VPLs in formalized educational environments is presented.
In Section III, we discuss the data science topics that can be
implemented using VPLs as well as develop assessment items
for Python and visual programming languages. Chapter IV
discusses the teaching methods suitable for visual program-
ming languages and Chapter IV discusses the assessment

VOLUME 12, 2024

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

IEEE Access

methods. Results of the experiments conducted are presented
in Chapter VI. Finally, we conclude the paper in Chapter VII.

Il. THE DATA SCIENCE CURRICULUM INITIATIVE

This Chapter addresses the major concerns raised in the
literature about existing coding practices in data science
education and discusses the goal of integrating visual
programming languages in coding data science algorithms.
Next, the section presents the basic architecture of VPLs,
as well as key competencies students must have in Data
Science. Lastly, the section concludes by offering empirical
evidence on the use of NCTs/VPLs in Education.

A. THE NEED FOR A SUPPLEMENTARY DATA SCIENCE
PROGRAMMING ENVIRONMENT

Data science is usually offered as an independent degree
spanning a few years. The course features specializations
in subjects such as data structures, algorithms, statistics,
computer science, machine learning, and mathematics. There
is a need, however, to present this course as a condensed
module to students specializing in different fields such as
Physics, Engineering, Telecommunications or any field of
specialization to make data-driven decisions without having
extensive computer programming skills. To support non-
computer science majors in this field, special considerations
must be made to teach these students to apply a range of
data science technical skills in their areas of specialization.
In short, this study contributes to the development of the
objectives, subject content, teaching methods, and evaluation
instruments, as well as effective data science learning
outcomes for non-computer science audiences. Further,
we explore activities and learning strategies that demonstrate
the data science workflow using visual tools. This requires
simplifying the domain problem, knowledge of data formats,
and the appropriate analytical techniques. To achieve this, the
following three major questions arise:

1) Do non-computer science learners and professionals
find no-code development tools helpful?

2) Do visual programming tools provide the necessary
tools to equip learners with the knowledge and skills
to solve data science problems?

3) How should test items be structured to assess and
evaluate data science education based on NCTs?

The goal of this project was to define a set of no-code
data science curriculum structures and guidelines to be
incorporated into current and future undergraduate modules
to support effective skill acquisition and analytical thinking
for non-computer science majors. The proposed work is
intended to address key unknowns such as what to teach
and how to teach data science using no-code development
tools. We examined a set of work-flows on five key areas
of data science summarized by Hastie et al. [4] as data
acquisition and storage, data pre-processing and cleaning,
exploratory data analysis (EDA), predictive modelling and
machine learning, data visualization and communication

VOLUME 12, 2024

Store
Manage
Generate —>» Collect —> Process —> Interpret
Analyze Insights

Visualize A/

Understand

Gather

FIGURE 1. The data science work-flow [8], [9]. The data science process
starts with the generation of data. This could be raw, real-world data or
synthetic data that is artificially created using mathematical models or
simulations to mimic real-world data. Next, according to Wing et al., not
all data generated will be used [8], so the following process concerns
systematically gathering of information from various sources. The
collected data is then processed. This may include conducting preparatory
steps on the raw data before analysis or modelling. Next, the data goes
through several stages, such as data cleaning, storage, transformation,
analysis, and visualization, all of which enable extraction of valuable
insights from the data.

using no-code software platforms. Potential tools include
(1) Orange developed by Demsar et al [5], (2) KNIME
from KNIME AG company [6], and Neural Designer from
Artelnics [7].

In this work, we present programming workflows imple-
mented in Orange [5], as well as a scaffolded project that
can be implemented using NCTs. This project highlights
the data-science life cycle as described by Wing [8] and
Zhang et al. [9], as shown in Figure 1, and it takes learners
through a practical-based learning experience, to assist them
in discovering patterns in the data, hence making valuable
insights.

B. CURRENT STATE OF VISUAL PROGRAMMING AND
DATA SCIENCE EDUCATION

1) VISUAL PROGRAMMING LANGUAGES

We intend to address the data science skills gap that exists,
especially during the current era of the rapid growth of data-
driven industries. We address this gap by outlining how an
emerging model of no-code computer programming tools
can support data science education, and help undergraduate
learners extract information from data in their relevant field.
Additionally, we hope that the uptake of such NCTs will help
in up-skilling existing data science tutors and professionals
alike in data-related roles in various industries. Determining
the strengths, limitations and the future of using such NCTs
will help us to achieve our objective. In this section, we survey
the literature for visual programming languages since they are
the same as NCTs, but different nomenclature.

A central feature of NCTs is that algorithms or functions
are encapsulated into containers called widgets. These are
the basic building blocks of the data analysis pipeline, and
they can be connected to create a visual workflow, as shown
in Figure 2. Although the appearance of a widget may vary
depending on the platform, their structure typically consists
of the following components, as shown in Table 1:

The classical definition of NCTs has been described
by early pioneers in the context of Visual Programming.

100941

IEEE Access

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

TABLE 1. Components of a widget.

Component Description

Title Text or label that provides a name or describes the
widget. This is usually placed at the top of the widget
for identification.

Input Port This receives input from data sources or other widgets
for processing. The data transmitted through the input
port must be in a form compatible with the widget.

Output Port This transmits the data processed to other components
in the workflow.

Settings Settings of a widget enable the user to configure the
parameters or options that control its functionality.

Visualization or | This typically refers to how the widget presents data

Output Area to the user.

Communication link

between widgets

Input Port: Input
of the second wid-
get

First widget Output of the sec-
\ ond widget
-
A B

\

Second widget

Output Port: Out-
put of the first wid-
get

FIGURE 2. Basic layout and connection of widgets in NCTs. Two widgets
are connected sequentially via a communication link that relays
information between the two. In this workflow, widget A processes the
data, and transmits it to the next widget connected to it through its
output port. The input of widget B receives this data, processes it further,
and transmits using its output port. Depending on the configuration,
multiple widgets could be connected to one widget to reveal several
instances of the data.

In 1986, Myers defined this as any system that could be
programmed by the user in 2D or multiple dimensions [10].
This requires environments that use graphical techniques to
aid the entire processes of programming and developing com-
puter applications [10], [11]. Unlike conventional text-based
languages, visual programming is motivated by the ideology
that graphical techniques, particularly pictures, can convey
more information concisely, compared with 1-dimensional
linear programming languages [11]. In addition, pictures
can break the language barrier, simplifying the process
of programming for users regardless of the language they
speak [11]. In summary, graphical tools provide two things;
(i) a visual environment for programming, and (ii) a language
interface for expressing visual information flow [12]. These
are some of the predominant factors that have influenced the
development of no-code programming languages.

To establish a common understanding, Kuhail et al.
[13] combined Myers [10] and Burnett and Bakers [14]
taxonomies to divide existing VPLs into four broad areas:
form-based languages, diagram based, icon-based, and block-
based. According to the authors, form-based programming
allows end-user programmers to configure a graphical

100942

form, whereby parameters are added or changed using
drop-down menus or windows. Diagram-based languages
enable end-user developers to connect basic shapes such
as rectangles, parallelograms, circles, etc by arrows, lines
or connectors to represent programming constructs. On the
other hand, icon-based languages rely on the use of icons
to visualize the organization, design and flow of a program.
Lastly, block-based languages enable end-user developers to
drag and drop components of a program in the form of blocks.
Several blocks can then be connected to define program
flow. In general, using visual or graphical expressions
as a way of writing computer programs greatly reduces
syntax errors, and is easily comprehended by users of
diverse backgrounds, since the human visual system and
visual information processing is greatly optimized for multi-
dimensional data [10].

Many VPLs have been developed in the literature.
However, a large number of those do not possess the features
of a true VPL. Although there is no consensus on what
makes up a complete VPL [15], certain criteria must be
met first to be considered a VPL. It is generally agreed that
the language of a visual programming environment must be
able to convey meaningful information for programming,
rather than just cosmetic graphics [12], or rich graphical user
interface features. To extend the criteria, Burnett and Baker
develop a classification scheme for VPL research papers [14].
In their work, they highlight a set of important features of
a VPL, which can then be used for comparison. A detailed
criteria is presented by Kiper et al. [15]. They suggest that
VPLs can be assessed based on visual nature, functionality,
ease of comprehension, paradigm support, and scalability.

Although this field has received considerable interest in
the past, work is ongoing to address inherent problems that
have plagued early generations of visual programming tools.
In the past, researchers had faced difficulty developing large
programs or processing large datasets [12]. This problem
has been solved by recent advances in computer graphics,
abstraction and cloud computing. It is now possible to fit
a lot of blocks, icons or diagrams on the same computer
screen. Users are now able to navigate large programs
through the use of multiple sheets. The wide uptake of cloud
computing, and related services has played a crucial role in
processing large datasets efficiently, and hence improves the
functionality of visual programming tools. In other spheres,
early researchers have cited a lack of functionality as another
major drawback of early visual programming tools. Indeed,
even some modern VPLs are hindered by this problem.
Besides the lack of functionality, novice programmers may
face limited or no room at all to develop and integrate
customized program elements due to; proprietary software
and the steep learning curve of the tool. Another aspect that
characterized early generations of VPLs is inefficiency. This
was a major challenge due to slow program execution [12],
and large memory requirements. However, this is no longer
a problem, nowadays, as most tools leverage web-based
online environments to deliver programming tools with high

VOLUME 12, 2024

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

IEEE Access

@ Exercisel ows - Orange - o x
File Edit View Widget Window Options Help
7| pata
Transform
| | Visuaize ous
Model 0 i &
73| Evauate Fie df Scatter Plot
2 | Unsupervised %

Data Table

Select a widget to show its descripton.

see , or open the

R # T 271

FIGURE 3. Screenshot of the Orange Development Environment showing
widget repository and workspace. The workflow shown here presents a
scatter plot of the dataset provided by the file widget.

computational performances. Most platforms are developed
using high-level programming languages such as C/C++
which are widely known for managing memory capacity well.

a: PERFORMANCE OF VISUAL PROGRAMMING LANGUAGES
A key question that arises is the need to evaluate the
performances of VPLs against set metrics. A deficiency in
the literature, however, is an apparent lack of benchmarks for
comparing VPLs against text-based programming languages.
This is mainly due to the different architectures, and operating
principles of the programming environments. As already
discussed, VPLs can be assessed based on attributes such as
(i) visual nature, (ii) functionality, (iii) ease of comprehen-
sion, (iv) paradigm support, and (v) scalability [15]. There
is a need, however, to develop cross-platform evaluation
metrics to assess how VPLs fair against well-established and
well-supported high-level programming languages such as
C/C++, Python, JAVA, MATLAB etc. On the other hand,
it is possible to generate or export text-based code such as
Python or C/C++ from VPLs and run on supported hardware
or platforms just like any program written natively in that
code. This also paves the way for students to transition from
VPL-based to text-based programming.

These, and many more improvements, especially in
graphical techniques and data management, have motivated
the uptake of such tools in modern software development, and
we believe that they will be the cornerstone of data science
education for years to come.

2) ORANGE AS A VISUAL PROGRAMMING ENVIRONMENT
FOR DATA SCIENCE EDUCATION

The developers describe the Orange software as fruitful
and fun, offering a visual programming environment that
facilitates the implementation of the entire data science
programming chain with only a few steps. Aided by a vast
library of functions encapsulated in graphical blocks called
widgets, Orange allows users to drag and drop widgets
from different categories such as Data, Transform, Visualize,
Model, Evaluate, and Unsupervised, among others to build a

VOLUME 12, 2024

TABLE 2. Some of the widgets that can be used to build programming
workflows in the Orange software.

Category Widgets

Data. File, CSV File Import, Datasets, SQL Table, Data Ta-
ble, Paint Data, Data Info, Rank, Edit Domain, Color,
Feature Statistics, Save Data.

Transform Data Sampler, Select Columns, Select Rows, Trans-
pose, Merge Data, Concatenate, Select by Data Index,
Unique, Aggregate Columns, Group by, Pivot Table,
Apply Domain, Preprocess, Impute, Continuize, Dis-
cretize, Randomize, Purge Domain, Melt, Formula,
Create Class, Create Instance, Python Script.

Visualize Tree Viewer, Box Plot, Violin Plot, Distributions, Scat-
ter Plot, Line Plot, Bar Plot, Sieve Diagram, Mo-
saic Display, FreeViz, Linear Projection, Radviz, Heat
Map, Venn Diagram, Silhouette Plot, Pythagorean
Tree, Pythagorean Forest, CN2 Rule Viewer, Nomo-

gram

Model Constant, CN2 Rule Induction, Calibrated Learner,
kNN, Tree, Random Forest, Gradient Boosting, SVM,
Linear Regression, Logistic Regression, Naive Bayes,
AdaBoost, PLS, Curve Fit, Neural Network, Stochas-
tic Gradient Descent, Stacking, Save Model, Load

Model.

Test and Score, Predictions, Confusion Matrix, ROC
Analysis, Performance Curve, Calibration Plot, Per-
mutation Plot

Evaluate

Unsupervised | Distance File, Distance Matrix, t-SNE, Correlations,
Distance Map, Hierarchical Clustering, k-Means, Lou-
vain Clustering, DBSCAN, Manifold Learning, Out-
liers, PCA, Neighbors, Correspondence Analysis, Dis-
tances, Distance Transformation, MDS, Save Distance
Matrix, Self-Organizing Map.

data science workflow. Some of the widgets that can be used
are shown in Table 2. Several VPLs exist, and to select the
“best” VPL, Dobesova et al. conducts a comparative study
to evaluate the performance of Orange software in teaching
machine learning tasks in the Department of Geoinformatics
at Palacky University Olomouc [16]. They show that the
graphic representation of the program workflow, as well as
the design procedures in the Orange application, is simple to
use and its visual language is semantically transparent [16]
compared with others. Multiple works in the literature
corroborated their statement [17], [18], [19], [20], and this
motivated our work to apply Orange as a programming aid
to our final-year students. An example workflow is shown in
Figure 3.

3) DATA SCIENCE EDUCATION

The concept of data science is not entirely new, in fact, the
evolution of data science can be attributed to the interdis-
ciplinary integration of various subjects such as statistics,
mathematics, computer science and domain knowledge [21].
To put into perspective, Conway [22] drafted what is to be
known as the “data science Venn diagram”, as shown in
Figure 4. This is a diagrammatic representation illustrating
the interdisciplinary nature of data science.

100943

IEEE Access

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

Domain
knowledge

Computer
Science

Data
Science

Machine
Learning

Mathematics &
Statistics

FIGURE 4. Data science Venn diagram. The field of data science lies at the
intersection of three primary fields; domain knowledge, computer
science, and mathematics & statistics [22].

From the Venn diagram in Figure 4, it is quite evident that
the three fields existed independently before the introduction
of the data science nomenclature. It is only after the efforts
of several authors such as John Tukey [23], Chambers [24],
Cleveland [25] among others, who called for the establish-
ment of an interdisciplinary field that was based on the
expansion of statistics and integration with computer science
and domain knowledge [26], [27].

We have witnessed a rapid increase in the field of data
science over the past few years. The explosion of data,
advances in technology and the demand for data science
professionals are some of the major drivers behind this rapid
increase [28]. To bridge the gap between professional data
scientists and the data deluge, there have been concerted
efforts along two fronts to expedite data analytic training.
First, traditional educational institutions such as colleges and
universities throughout the world have introduced several
specializations in data science at various levels of education.
Apart from the mainstream formal data science education,
there has also been a significant push through massive online
open courses (MOOCs). The latter model offers several
online data-related programs, often for free, in collaboration
with tutors at major universities. This ensures customized and
flexible learning modes, which greatly appeal to learners who
are already working and might not have the time to commit
to a full-time or part-time formal educational system. Despite
the learning mode, every graduating data scientist must be
proficient with certain skills and knowledge, what we shall
refer to in this report as “‘key competencies in data science”.

a: KEY COMPETENCIES IN DATA SCIENCE

Studies on the core competencies required for the graduating
data scientist are scattered throughout the literature. However,
the work by Donoho, in their report on the 50 years of
data science articulates unambiguously the six data activities

100944

that can be studied or taught in a data science course: (i)
data exploration and preparation, (ii) data representation and
transformation, (iii) computing with data, (iv) data modelling,
(v) data visualization and presentation, and (vi) science about
data science [27].

The curriculum of data science courses offered by many
educational institutions throughout the world often revolve
around these activities. They may be different in wording or
nomenclature, but the fundamentals do not differ. Further,
Hazzan et al. suggested that such data activities promote
computational thinking, statistical/mathematical thinking,
and data thinking, which all have cognitive abilities [29].
In the report, “A Guide to Teaching Data Science”, Hicks et
al. present the five basic guiding principles for developing a
data science curriculum [26]. They suggest that: (i) the course
must be organized around a set of diverse case studies, (ii)
computing must be integrated into every facet of the course,
(iii) reliance on mathematical notation must be minimized,
while promoting abstraction, (iv) the course activities must be
structured to mimic a data scientist’s experience, and lastly,
(v) the importance of critical thinking must be demonstrated
through examples [26].

These guiding principles and activities have formed the
cornerstone of data science education for years. They have
been able to develop data literacy among students to gain
actionable insights and extract meaning from data. However,
In our view, one aspect that is often neglected in this process
is the challenge of developing computational thinking skills
among students. The challenge recognized here is the need to
simplify the development of computer code that supports the
entire processes of data analysis, especially for non-computer
science majors. Teaching programming has traditionally
relied on text-based languages, which has been cited by
many novice programmers as one of the barriers to entry
in programming [30], and consequently data science. Here,
we believe that using engaging learning environments, such
as NCTs, for programming will make developing computer
code manageable to a larger number of students, while still
developing key competencies in data science as text-based
programming languages.

4) EMPIRICAL EVIDENCE ON THE USE OF NCTS/VPLS IN
EDUCATION
This section seeks to establish the usefulness of NCTs to
early-stage learners and professionals. Then determines if
VPLs provide the necessary tools to equip learners with
the knowledge and skills required to solve programming
problems. Finally, the section establishes the effectiveness
of NCTs in facilitating the understanding of complex pro-
gramming concepts. To address these questions, we conduct
a short survey to review works that have implemented VPLs
in any formal educational activities, from junior to tertiary
education.

A significant effort to document the benefits of visual
programming languages, compared with textual languages

VOLUME 12, 2024

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

IEEE Access

is reported in [30]. In their work, Kelleher et al. survey
a variety of graphics-oriented programming languages that
can be used for different application areas. They cite syntax
and program style as primary barriers to programming and
demonstrate that simplifying the mechanics of programming,
especially for novice programmers, greatly reduces the
barrier to learning to program. Later in 2007, the authors
considered using storytelling to motivate programming [31].
In their later work, they attribute a falling interest in
Computer Science in the US to the uninspiring courses taught.
To inspire middle-school girls’ interest in programming,
they use the Storytelling Alice programming environment to
create custom 3D animated movies from in-built characters
and environments. Their results show most of the participants
were able to create a sequential program in Storytelling Alice
within just two hours of programming, while 87% were
able to create a program with multiple flow control mech-
anisms. Based on these results, the authors concluded that
offering computer programming in the form of storytelling
encouraged the target group to learn to develop computer
programs.

To support self-directed learning among young learners in
developing computer programs, Maloney et al. developed the
Scratch programming language and environment [32]. Mal-
oney’s programming environment allows students, especially
primary ages to create engaging projects such as animated
stories, games and simulations [32]. A distinguishing feature
of Scratch is that program flow is constructed sequentially
by joining together building blocks that represent actions or
flow control mechanisms. Its primary goal is to introduce
programming education to learners who have little or
no programming experience. This goal has motivated the
worldwide use of the tool, and by 2010, the program had
been offered in nearly fifty languages and had supported
almost two million users. By January 2024, the number of
subscribers has risen to over one hundred million registered
users [33], signifying the importance of graphical-based
teaching of computer programming. The program has been
so popular that it has been incorporated into formal education
streams, targeting early-stage programmers in different
fields.

A pilot study by Friss et al. at ORT Uruguay University
during the 2nd semester of 2007 experimented with Scratch in
two scenarios. They incorporated Scratch in; (i) a university
course and (ii) vocational studies environments to improve
students’ capabilities in computer science courses [34].
In their work entitled Scratch: Applications in Computer
Science 1, the authors conduct formative and summative
assessments on a group of students who were randomly
selected from the class. They administered scratch, over three
weeks with the control group solving the same programming
tasks manually. For their results, 88% of students who had
used the Scratch programming environment described their
learning experiences as ‘“‘motivating” or “‘easy’”’, while 80%
of the control group described their learning experiences as
“normal” or “difficult”.

VOLUME 12, 2024

In perhaps an interesting and related application area,
Estevez et al. introduced Artificial Intelligence to high-school
students using Scratch. Their work is motivated by a strong
need to grasp the attention of young learners through the use
of interactive graphical programming tools in computational
sciences, which is usually characterized by a lack of appeal
of the presentations [35]. In their work, they teach young
learners two basic methods of Artificial Intelligence: data
clustering, and artificial neural networks learning. They
selected 37 students and followed a scaffolded teaching
approach, where they provided a pre-built template for the
students to fill the gaps among lines of code. Just like
the authors in the previous work, Estevez’s approach also
conducts a formative and summative assessment of the target
group. A quantitative analysis of the results reveals that the
students acquired confidence to understand the fundamentals
of Artificial Intelligence algorithms, and its holistic view.

A case study by Ase et al. to teach engineering modules
using computer-aided animations was conducted at the
University of Hertfordshire. The study focused on applying
visualization and 3D animations in automotive engineering
courses to help improve conventional teaching resources.
They explore the benefits of automation, with particular
emphasis on 3D computer-aided animation tools for auto-
motive studies. This is an innovative paradigm shift from
the conventional methods of delivery that are based on 1D
flowcharts, schematics and static objects. In their results,
they report that over 61% of the students reported a better
understanding of automotive engineering modules taught
using animations.

We have provided empirical evidence where VPL tools
have been applied successfully in education. Results show
that such programming environments are helpful to early-
stage learners, they have the necessary tools to foster learning.
Furthermore, it has been shown that such tools grasp the
attention of learners, promote their motivation to learn,
and improve their learning experiences, without focusing
on the mechanics and intricacies of programming, which
have been shown to be a barrier to programming. With
these results, we are convinced that such tools can also be
integrated with data science education to improve problem-
solving, creativity, motivation, collaboration and data science
communication at the tertiary level.

Ill. DATA SCIENCE PROGRAMMING USING NCTs

The following Chapter discusses the sections of the data
science curriculum and develops section-specific assessment
items for evaluating Python coding against NCT workflows
as shown in Table 4 — Table 12.

It should be noted, however, that the chapters for this
proposed curriculum have been adapted from the conven-
tional data science curriculum, as found in modern textbooks
such as [4] and [36], and teaching has been modified to
support data science education using no-code programming
environments. This was done to ensure learners would be
exposed to the same content that is offered in a conventional

100945

IEEE Access

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

TABLE 3. Overview of the proposed curriculum: The proposed data science curriculum using NCTs, including the aims, knowledge area and learning
objectives in nine chapters. The design follows a typical data science structure for majors, except that the practical component does not rely on textual

programming.

Curiculum aims

Students will be able to:

1. understand the foundations of data science concepts, principles, and methodologies using NCTs.

2. Develop proficiency in NCTs and platforms used in data science, such as Orange, Neural Designer, or KNIME.

3. Develop practical data analysis skills by working hands-on with real-world datasets

4. Develop key competencies in data exploration, data transformation, and predictive modelling using NCTs.

5. Develop critical thinking and problem-solving skills in data science to help identify patterns, draw insights, and make data-driven decisions

6. Present their findings and insights to data science and non-data science audiences through visualizations and reports

Topic Learning Content

1. Introduction to Practical Data Science and NCTs
2. Data Collection and Preparation
3. Data Visualization

4. Unsupervised Learning

Introduction to popular no-code data science tools and platforms
Understanding data types, formats, and sources
Creating interactive and informative visualizations

Clustering algorithms (K-means, hierarchical clustering, DBSCAN.)

- Introduction to supervised learning algorithms (classification and regression)

5. Supervised Learning

- Training and evaluating models

- Techniques for creating and selecting relevant features

6. Feature Engineering and Selection

- Feature transformation and scaling

7. Model Deployment
8. Time Series Analysis

9. Introduction to Machine Learning Automation

Deploying models
Forecasting and trend analysis

Using no-code AutoML platforms for rapid model development

data science curriculum while being taught in dynamic and
interactive learning environments. This curriculum can also
be used by tutors who want to study introductory data science
using such tools.

A. CHAPTER 1: INTRODUCTION TO PRACTICAL DATA
SCIENCE AND NCTs
As shown in Table 3, the proposed curriculum begins with an
overview of practical data science approaches using NCTs.
This introduction takes learners through the fundamental
concepts of the application of data science and gives a
detailed discussion of the working principles of NCTs.
Additionally, this introductory part discusses the importance
of data science in industry, the opportunities, challenges,
future and the impacts of data science education using highly
abstractive frameworks. The learning objective of the first
module is to understand the most popular NCTs, in addition
to basic knowledge of data science and its applications,
especially in the student’s application area. At the end of the
first chapter, new learners must have developed a thorough
understanding of data science, and its application areas, along
with the knowledge of visual tools for developing data-centric
frameworks.

Table 4 shows some of the assessment items for the
introduction to practical data science and NCTs chapter.

100946

TABLE 4. Assessment items for Chapter 1.

Python-based Assessment Items VPL-based Assessment Items

— Discuss the applications of data
science in different areas.

— Discuss the applications of data
science in different areas.

—Download and install Python and
the related packages for machine
learning.

— Download and install Orange.

Here, the main emphasis is on introducing NCTs to the
learners and installing the software locally on their machines.

B. CHAPTER 2: DATA COLLECTION AND PREPARATION
The following chapter is by far the most critical. In fact,
some texts in the literature cite this phase as the most
time-intensive [37]. The data collection and preparation
phase requires a substantial investment of time, money, and
resources due to the intricacies of data, planning and design
processes, and ethical and legal considerations. It should be
noted, however, that data collection is not platform-specific.
It is the same across different platforms. On the other hand,
data preparation is different. It requires extensive knowledge
of the data structure and procedures to sort, and prepare it for
subsequent stages.

VOLUME 12, 2024

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

IEEE Access

TABLE 5. Assessment items for Chapter 2.

TABLE 6. Assessment items for Chapter 3.

Python-based Assessment Items

VPL-based Assessment Items

— Write Python code that takes a
dataset, and performs appropriate
transformations to clean and pre-
pare the dataset such as removing

— Use suitable widgets to load the
dataset into your workflow, clean
the data and visualize the dataset.

Python-based Assessment

Items

VPL-based Assessment Items

— Write a Python script that uses
matplotlib to create basic plots of
the dataset such as scatterplots,

— Drag and drop data visualiza-
tion widgets such as scatter plots,
bar plots or distributions into your

rows with missing values or adding
missing values.

Therefore, the curriculum for data collection and prepa-
ration focuses on students understanding the various data
types, formats, and pre-processing stages that are performed
on datasets using NCTs, especially very large datasets.

The starting point of any data-related problem is the
collection of usable, representable and unbiased data. This
is a critical process that requires (1) a prior understanding of
the problem at hand, (2) formulating research questions, and
(3) a thorough comprehension of the subsequent objectives of
the data analysis [38]. Several authors in the literature discuss
various principles and procedures that must be followed to
ensure data integrity, however, that is beyond the scope of
this work. A comprehensive overview is provided by [39].
In this chapter, we will only focus on working with the data
that has already been collected. However, the rule of thumb
is to ask “What data?”’. Navigating this space will require
identifying the relevant data sources and planning the data
collection and processing methods. On the contrary, research
shows that a lot of students and novice data scientists often
struggle with this part [40], hence the use of NCTs to simplify
the data collection and preparation process.

Table 5 shows some of the assessment items for the data
collection and preparation chapter. The primary focus is to
take learners through the processes of collecting data and
preparing it for the subsequent steps.

The learning outcomes of this chapter have been developed
as follows: (i) identify the sources of data for a particular
project, (ii) evaluate the reliability of data sources and the data
collection procedures, (iii) collect that data from different
sources and (iv) clean and pre-process the data to detect and
handle inconsistencies such as missing values, and outliers.

C. CHAPTER 3: DATA VISUALIZATION

Data visualization is considered to be one of the most
important topics in data science [41]. As such, a lot of empha-
sis has been placed on the development of programming
languages, visualization libraries and frameworks to enable
data-driven decision-making. Recent efforts are in huge graph
visualization with big data infrastructure [42].

The concept of data visualization can be traced back
centuries to ancient Greek mathematicians who utilized
latitude and longitude information to visualize geographic
information [43]. Subsequent developments in coordinate
systems and Cartesian graphs by scientists, mathematicians
and philosophers in the 17" Century are widely considered
to have laid the foundations of modern data visualization

VOLUME 12, 2024

bar graphs or histograms workspace to visualize the data.

techniques [44]. However, it is in the 20" Century that data
visualization rose to prominence due to major developments
in computer graphics, technology, scientific visualization,
personal computers, and software tools [43]. The continual
developments in software tools into the 21* Century,
especially open-source tools, enabled users to create custom
visualizations using simple, yet powerful data visualization
libraries such as Pandas, Matplotlib and Seaborn [45], among
others.

The objectives of the data visualization stage in the
data processing pipeline vary depending on a lot of fac-
tors. However, any data-proficient student must be able
to effectively communicate insights and findings, support
informed decision-making, and identify patterns, trends, and
correlations derived from the data analysis, irrespective of the
platform. NCTs support data visualization through the use of
widgets that create visual elements such as scatter plots, line
plots, histograms, bar charts, and heat maps, among others.
At the end of this chapter, learners must be able to confidently
create interactive and informative visualizations that (1)
facilitate the understanding of relatively straightforward or
complex data and (2), provide a holistic view of the data, thus
facilitating more informed knowledge discovery.

Table 6 shows some of the assessment items for the data
visualization chapter. Here, the focus is on using relevant
widgets to visualize relations in the data.

D. CHAPTER 4: UNSUPERVISED LEARNING

The subject of unsupervised learning rose from a strong
need to detect anomalies or discover hidden structures or
trends in unlabeled datasets. A central feature of these
algorithms is that they do not require prior knowledge
or output labels of the datasets. In other words, they do
not require training datasets to learn data dependencies,
instead, they learn features on their own from uncategorized
data on the fly. This chapter aims to study a range of
unsupervised machine learning algorithms for clustering such
as K-means, hierarchical, and density-based spatial clustering
of noisy datasets. The chapter proceeds with a discussion
on dimensionality reduction techniques. These are a set of
algorithms that reduce the number of variables or features,
creating a lower dimensional representation of the dataset.
Principal component analysis is widely used for this. Lastly,
the chapter explores algorithms for anomaly detection. This
is a very critical and broad area that has witnessed significant
research over the years due to its capability of detecting

100947

IEEE Access

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

TABLE 7. Assessment items for Chapter 4.

TABLE 8. Assessment items for Chapter 5.

Python-based
Items

Assessment

VPL-based Assessment Items

Python-based Assessment

Items

VPL-based Assessment Items

— Write a Python script that
uses the k-means clustering algo-
rithm from the scikit-learn library
to identify distinct clusters in a
dataset.

— Load an example dataset us-
ing the file widget and connect
it to the k-means clustering wid-
get to identify distinct clusters in
the dataset. Adjust the settings

of the k-means clustering widget
and use the scatter plot widget to
display the clustering results.

unusual or inconsistent data points in various applications.
These algorithms can be applied in areas such as network
security, fraud detection, and quality control, among others
to distinguish between normal and unexpected behaviour.
Finally, at this stage, we are only interested in three learning
outcomes for this chapter. Students must; (i) understand
unsupervised learning algorithms, (ii) apply unsupervised
learning models on real-world data and (iii) evaluate the
performance of unsupervised learning algorithms.

Table 7 shows some of the assessment items for the
unsupervised learning chapter. Learners can work with
different widgets such as k-means, DBSCAN, and PCA,
among others, to identify distinct clusters in the dataset.

E. CHAPTER 5: SUPERVISED LEARNING
Unlike unsupervised learning algorithms that do not require
prior knowledge of the data, there exists another learning
paradigm that requires knowledge of the class labels to make
predictions or decisions. Supervised learning algorithms
require a lot of training data that consists of input features and
their corresponding output labels. The goal is to put related
objects with identical features in the same class or label. The
algorithms then learn these features or study the patterns or
relationships between members of the same class. Training is
realized through an iterative process of adjusting the model’s
parameters based on minimizing the training error. Several
supervised learning algorithms have been developed in the
past, and some of the most popular include neural networks,
linear regression, support vector machines, and decision
trees, among others. After model training and evaluation, the
model is now ready to make predictions on new or unseen
datasets. It is a common goal for a well-trained model to make
accurate predictions on new datasets. The overarching aim
of this chapter is to take students through the entire process
of training, testing/validating, making predictions/inferences
and deploying supervised learning algorithms using NCTs.
Table 8 shows some of the assessment items for the
supervised learning chapter. These questions test the student’s
ability to create models that learn from the data.

F. CHAPTER 6: FEATURE ENGINEERING AND SCALING
The next chapter in the curriculum covers feature engi-
neering and selection using no-code tools. This is another

100948

— Write a Python script that uses
the scikit-learn library to create
a linear regression model and fit
it into a given dataset. Apply the
model to new data to make pre-
dictions.

— Write a Python script that
implements the SVM algorithm
from the scikit-learn library to
build a supervised machine learn-
ing model.

— Implement the confusion ma-
trix from the sklearn library to
evaluate the quality of classifica-
tion algorithms on a sample data

— Create a workflow that uses
the Linear Regression widget to
build a model that learns a lin-
ear function from the dataset. The
settings of the linear regression
widget can be changed to include
or exclude regularization param-
eters. You can use the Data Table
widget to view the calculated lin-
ear regression coefficients.

— Create a workflow that uses the
SVM widget to train the model
on a sample data set. Use the file
widget to import the data and the
scatter plot widget for visualiza-
tion. The settings of the SVM
widget can be changed to select
a suitable kernel and optimization
parameters.

— Experiment with different wid-
gets such as Test and Score, Pre-
dictions, and Confusion Matrix,
among others to observe the per-

set. formance of learning algorithms
on a sample data set.

important practice that involves creating or selecting better
representations or informative features in the dataset for
machine learning algorithms. A major advantage of selecting
features that carry more information is that the overall
performance of the machine-learning model is improved.
In addition to that, the overall computational cost and
memory requirements are reduced due to an overall reduction
in the number of variables. This is another research area
that has received considerable attention, and progress has
led to the development of algorithms that use computational
methods for automatic feature engineering and selection.
On another front, deep neural networks learn the relevant
features automatically, and this has wide applications in
image, video or speech processing. Although automated
feature engineering has shown considerable success in the
literature, there is a need for data science learners to grasp the
background knowledge of such an important aspect. As such,
the goal of this chapter is to equip students with the skills of
creating and selecting valuable features from the data, along
with feature transformation and scaling using NCTs.

Table 9 shows some of the assessment items for the feature
engineering and scaling chapter. The questions ask learners
to create new features from the dataset.

G. CHAPTER 7: MODEL EVALUATION AND DEPLOYMENT

After model development, a natural question that typically
follows is “How good is that model?” Although this is a
trivial question, there is a strong need to know if the model can
make accurate predictions on unseen data. If poorly trained,
machine learning models tend to memorize the training data

VOLUME 12, 2024

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

IEEE Access

TABLE 9. Assessment items for Chapter 6.

TABLE 11. Assessment items for Chapter 8.

Python-based
Items

Assessment

VPL-based Assessment Items

Python-based Assessment

Items

VPL-based Assessment Items

— Write a Python script that uses
numpy and pandas to construct
new features from existing data.

— Use various transformation and
combination widgets to create
new features for learning algo-
rithms.

TABLE 10. Assessment items for Chapter 7.

Python-based Assessment Items

VPL-based Assessment Items

— Deploy your model as a web ap-
plication using Python and Stream-
lit.

— Use the Save Model widget to
export your model in Python pickle
format. The model can be loaded
directly into Python for classifica-
tion and subsequent deployment.

very well, leading to poor predictions on new samples. This
is a huge problem, especially in safety-critical applications,
or the development of new algorithms. Answering this
question requires a scientific methodology that addresses a
specific question: “How do we evaluate the generalization
performance of machine learning models?

The next chapter in the curriculum discusses concepts of
model evaluation and deployment using NCTs. In simplest
terms, model evaluation refers to the process of determining
the performance of models using certain metrics or other
approaches. Typical evaluation metrics include but are not
limited to accuracy, precision, recall, and F1 score [46]. At the
end of this chapter, students must be able to assess machine
learning models using various metrics and techniques, along
with deployment in real-world scenarios.

Table 10 shows some of the assessment items for the model
evaluation and deployment chapter.

H. CHAPTER 8: TIME SERIES ANALYSIS

The content so far has only focused on modelling the spatial
relationships in the data. There is a certain area, however, that
studies the temporal dependencies in the data. For example,
problems such as power output forecasting, predicting stock
prices, weather prediction, energy usage, fuel consumption
monitoring, and many more, require historical data at
pre-determined intervals over a longer period to predict
future values. Time Series Analysis gives insights into
the behaviour or trends of time-varying observations. This
involves studying the temporal sequence of features using
statistical techniques, recurrent neural networks with memory
blocks, or 3-dimensional deep learning models. Several
architectures with different mechanisms for time series data
exist, and their performance has been widely documented
in multiple texts in the literature [47], [48]. Since this is a
large area with so many application scenarios, this curriculum
hopes to equip students with the knowledge of forecasting and
trend analysis of sequential data.

VOLUME 12, 2024

— Use the pandas package to
read a time series dataset into a
dataframe, and use the matplotlib
package to visualise the series.
Identify and analyse long-term
trends in the data.

— Write Python code that imple-
ments a Recurrent Neural Net-
work (RNN) model from ten-
sorflow to forecast future values
based on historical data.

— Use the Time Series widgets
to identify and analyse long-term
trends in the data, and use the
Line Chart widget to visualize the
time series sequence.

—Use the Time Series widgets to
forecast future values from his-
torical data.

TABLE 12. Assessment items for Chapter 9.

Python-based
Items

Assessment

VPL-based Assessment Items

— Write Python code that uses the
h2o library to automatically build
and optimize machine learning

— Use no-code tools to automati-
cally build and optimize machine
learning models.

models.

Table 11 shows some of the assessment items for the time
series analysis chapter. The questions determine the student’s
ability to extract temporal information from the data.

I. CHAPTER 9: INTRODUCTION TO MACHINE LEARNING
AUTOMATION

The last component in this curriculum deals with machine
learning automation. This is a particularly interesting subject
that uses computer algorithms and tools to perform tasks
such as data preparation, feature engineering, best model
selection, training, and hyperparameter tuning, among others.
This came from an urgent need to address a pertinent question
in the literature: ‘“How can users design more efficient
and effective machine learning models?”” Although this is
a broad question, an answer to this has led to the removal
of “human-in-the-loop”, since some aspects of the machine
learning workflow rely on a trial and error basis, for example,
determining the best learning rate for the training dataset.
The aim of automating machine learning workflows is to
speed up the development and subsequent deployment of
machine learning models. This is helpful, especially to novice
data science professionals, however, human expertise is still
crucial in the process. At the end of this chapter, students
must be able to leverage the power of NCTs to develop and
implement automated machine learning workflows and use
the knowledge they have gained to interpret the results.

In this section, we have presented a nine-chapter syllabus
that takes students through the entire data analytic workflow
using NCTs. The data science curriculum based on NCTs is
not in any way different from the conventional curriculum.
Students still learn the basics of data science, but using a dif-
ferent tool for programming. The structure follows traditional

100949

IEEE Access

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

content that consists of an introduction to data science,
data collection, data visualization, unsupervised learning,
supervised learning, feature engineering, model evaluation
and deployment, time series analysis, and machine learning
automation. In that regard, we believe that more emphasis
should be placed on developing teaching, assessment and
evaluation methods suitable for NCT-based education.

Table 12 shows some of the assessment items for the
machine learning automation chapter. The emphasis is on
testing student’s abilities to automate the entire process of
machine learning.

IV. TEACHING METHODS

A key pillar in the curriculum is teaching. In this Chapter,
we review the teaching methods that are suitable for NCTs
and provide relevant examples of their implementation.
We discuss lecture-based, instructor-led problem-based and
project-based learning approaches about their strengths, and
weaknesses and further give an example of implementing
project-based learning on a sample fall detection project.

There are several approaches to learning, and each
approach produces different outcomes [49]. Since the new
data science curriculum is composed mainly of theoreti-
cal and practical aspects, we believe that a combination
of multiple learning strategies is more suitable to teach
programming for data science using NCTs. We suggest a
combination of lecture-based, instructor-led problem-based
and project-based learning approaches. In the past, lecture-
based learning has been the primary mode of instruction
at most tertiary institutions. This instructional approach
traditionally involves a classroom set-up, where the lecturer
leads the class and presents information while the students
listen and take notes [50]. This model is relevant in this
curriculum since the students need organized and structured
background information and literature from the lecturer to
understand the basics. Although this mode offers efficient
delivery of information, it continues to be the subject of
criticism in various disciplines [51], [52]. Zhao and Potter
argue that lecture-based learning is mainly lecturer-centred,
and promotes the superficial acquisition of knowledge [52].
We believe that this criticism is valid, to a larger extent, if the
entire curriculum is based solely on this delivery method.

To reduce the gap between lecture material and practice,
problem-based learning led by an instructor is envisioned
to complement deficiencies in an all lecture-based learning
model. Problem-based pedagogy is an instructional method
that has origins in the medical field and has been reported
to foster active learning by creating a need to solve an
authentic problem [53]. This is a mainly student-centred
pedagogical approach where the starting point is to solve a
context-specific problem that the students can handle [53].
Problems can then be solved by the students in small
collaborative groups, often led by a lecturer [54]. This area
has had a long history and has received a lot of attention
in the literature. Different authors have proposed distinctive
guidelines for implementing and assessing problem-based

100950

TABLE 13. Methods of creating project-based learning workflow.

Reference | Methods

Grant Presents an anatomy of project-based learning.

(60] 1) Introduction (The introduction presents the subject
area and provides background to the project.)

2) Task

3) Resources

4) Process

5) Guidance and scaffolding

6) Collaborative learning

7) Reflection

Krajcik Project-based learning has the following features:

[61] 1) Start with a driving question

2) Students explore the driving question

3) Collaborative engagement between students and
teachers to find solutions to the question

4) Students are scaffolded with learning technologies
that help them participate

5) Students create tangible products that address the
driving question

learning in schools. In this curriculum, we adopt the
seven-step method described by Graaff et al. to help students
analyze the problem [55]. These are (i) clarify the concepts,
(ii) define the problem, (iii) analyze the problem, (iv) find
the explanation, (v) formulate the learning objective, (vi)
search for further information and (vii) report and test new
information [55]. This is envisaged to intrinsically motivate
students, improve communication and effective collaborative
skills, and provide a more enjoyable learning experience [56].

Project-based learning is another student-centred approach
to learning with particular emphasis on investigating
real-world systems and collaboration to gain knowledge [57].
Although it shares similar characteristics with other instruc-
tional approaches such as Problem-Based learning, here
the focus is on the use of projects to promote learn-
ing [58]. Condliffe argues that solving projects stimulates
learning [59]. This is aided by working on and implementing
the design principles that are being taught. Table 13 outlines
the methods of creating project-based learning workflows,
as described by two prominent authors, Grant [60] and
Krajcik [61]. Figure 5 presents an anatomy of a project-based
learning approach inspired by Grant [60]. This discusses
several steps that can be implemented using NCTs such
as Orange. We believe Grant offers a stronger approach to
project-based learning due to important and relevant stages.
We also provide an example of implementing project-based
learning using NCTs on a project to develop a real-time fall
detection and monitoring system for the elderly.

All these three instructional approaches will be adopted in
this curriculum to help new learners develop skills in data
science. In this curriculum, each chapter will begin with
conducting lectures, following the conventional lecture-based
method. As students understand the concepts, problem-based
learning is gradually introduced, and it covers the rest of the
chapter. Towards the end of the module, students are given

VOLUME 12, 2024

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

IEEE Access

a project to solve individually, or in groups. An example
project, along with the implementation layout is shown in
Figure 5.

V. ASSESSMENT METHODS

This Chapter addresses five important questions: (i) how
do you assess learners who use graphical tools for pro-
gramming?, (ii) who has reported on the use of visual
programming languages, especially in higher and tertiary
education scenarios?, (iii) has it been successful? (iv) what
were their recommendations?, and (v) how can this impact
our curriculum design?

The question of student assessment, especially in general
Andragogy, has been addressed thoroughly throughout the
literature [63], [64], [65]. This is mainly conducted to
evaluate how well students have performed against a set of
learning outcomes at various stages of learning. This provides
quantifiable evidence that can then be used by both students
and lecturers to evaluate the knowledge and skills gained
through learning [66]. In [67], Llamas-Nistal et al. discussed
the two main categories of assessment as continuous, and
summative assessment. Continuous assessment is usually
carried out during the instructional process to gather and
analyze information on student’s performance [68]. On the
other hand, summative assessment is carried out towards or
at the end of the learning process to evaluate cumulative
knowledge and skills gained [68].

According to the computing curriculum developed in
2013 by the Association for Computing Machinery — IEEE-
Computer Society, the generic learning outcome of any
programming course is to design, implement, test, and
debug a program that incorporates some basic programming
constructs [69]. This is a guideline that has been used
by many authors in the literature to assess students in
programming and has been used as a basis to judge the
coding abilities of first-year computer science students [70].
Assessing students who use graphical tools for programming
is not in any way different from assessing students who
use conventional programming tools. With VPL tools, tutors
can also test students’ main learning outcomes such as
designing, implementing, testing, and debugging a program
that incorporates basic to advanced programming constructs.
Here, students will connect various widgets of a VPL
to demonstrate program sequence, selection functions, and
iteration loops. Afterwards, the tutor will run their programs
to evaluate these concepts.

A. VPL-BASED CURRICULUM ASSESSMENT AND
EVALUATION

1) PARTICIPANTS

Participants were students enrolled in the Department of
Applied Physics and Telecommunications and the Depart-
ment of Computer Science under the Faculty of Science
and Technology at Midlands State University. Students were
enrolled in one of the 3 Degree programs: BEng Honors

VOLUME 12, 2024

Elderly people are susceptible to falls as they age. This raises a
strong need to detect such falls early and provide timely medical
assistance. In the literature, several authors have addressed this
need using different methods such as invasive and non-invasive
techniques. Generally, invasive techniques involve attaching one
or more sensors on the person, thereby giving detailed, high-
resolution information about their movements. On the other hand,
non-invasive techniques do no attach sensors on the subject, they
instead use remote sensors to observe the parameters of a person
from a distance. This gives valuable information about the person
relative to the environment. The goal of this project is to develop
a real-time fall detection and monitoring system for the elderly.

Introduction

|
|
You will develop a prototype that uses four sensors; (i) accelerome- !

% ter, (ii) gyroscope, (iii) magnetometer and (iv) barometer to capture !
éﬁ the motion signals. After that you will develop machine learning !
algorithms to detect and classify the movements. !

|

] Fall detection system for the elderly - FallAlID: An open dataset
4 of human falls and activities of daily living for classical and
§ deep learning applications. The dataset contains 26 420 samples
2] collected using three data-loggers worn on the waist, wrist and
~ neck of the subjects. [62].

\
|
§ (1) Data acquisition, (2) Data cleaning, (3) EDA, (4) Modeling and 3
§ (5) Deployment. !
A |

!

| (1) What is the goal of your monitoring system? (2) How can you
| place your sensors on the person for optimal operation? (3) How
-) would you collect, store, and process sensor readings in real time?
. é (4) How can your fall detection system differentiate between a
. @ fall and other movements? (5) How will the alerting system work?
. (6) Which machine learning algorithm is suitable for these sensor
! 5 readings? (7) How can you deploy your model? (8) Develop the
! project from the provided template.

1
i
|

! \
| |
! .E (1) Present your prototype to a group of fellow students and lectur- !
! g @ e, demonstrating its functionality. Also highlight your project’s !
I % = strengths and weaknesses, and discuss the data science concepts !
| = :cg included in your prototype. I
DS 3 |
\ /
Y/ \Y
| = |
| =] |
B |
| 131 8 . .
! é (1) Write a short report documenting your project. !
7]
- |
1 I
| |

FIGURE 5. Project-based learning implementation on a sample project.
The capstone project was developed as an example to assist students
through the workflow. The starting point is an introduction that presents
the subject area and provides the background of the project. Next, the
task presents several activities to be accomplished. The resources outline
the materials required to do the project. For this example, we used the
fall dataset for the elderly [62]. This is followed by processes, scaffolding,
collaborative learning and finally, reflection.

100951

IEEE Access

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

in Telecommunication Engineering Degree, BSc Honors
Degree in Industrial Physics and Instrumentation and BSc
Honors Degree in Computer Systems Engineering. The study
targeted final-year students who were working on completing
their dissertation projects. Three classes from six different
semesters over three years were studied. Class sizes ranged
from 10 to 25 students. Most participants were male. All
participants completed a first-year introduction to computer
programming module. Participants from the Telecommu-
nications Engineering and Industrial Physics Degrees had
studied at least two computer science-related modules,
and are thus considered non-majors. Participants from the
Computer Science Degree have vast computer programming
experience, after having studied at least 20 computer science
modules, and are thus considered majors.

2) METHODS

The research process focused on implementing and assessing
the effectiveness of three pedagogical methods, a lecture-
based model [50], [51], [52], instructor-led problem-based
model [53], [54], [56], and the project-based model [57],
[58], [59], [60], [61] using VPLs on data science problems.
The research was implemented in two interventions. The
first intervention motivated this research, and it took place
over six semesters covering three years from March 2021 to
January 2024. Here, the study focused on qualitatively
observing students from BEng Honors in Telecommunication
Engineering class and BSc Honors in Industrial Physics and
Instrumentation class on their ability to implement final-year
dissertation projects using VPLs (project-based learning).
Post-interviews were conducted to determine the usefulness
of VPLs in solving data science and related programming
problems.

The second intervention centred on two academic
semesters from August 2023 to January 2024 of pedagogical
practice in data science education using the lecture-based
model and instructor-led problem-based model. Here, the
study focused on quantitatively observing students from
the three classes on the VPL assessment items mentioned
previously in Chapter III and post-study questionnaires.

VI. RESULTS

This Chapter presents the results of qualitative and quan-
titative data analysis of the first intervention performed on
the effectiveness of VPLs in teaching programming aspects
of data science. Specifically, the first research question,
“Do non-computer science learners and professionals find
no-code development tools helpful?”, is addressed by quali-
tatively assessing the performance of students in successfully
implementing a data science-related project using VPLs.
The second research question, “Do visual programming
tools provide the necessary tools to equip learners with the
knowledge and skills to solve data science problems?” is
answered through questionnaires on students’ experiences
with the VPL. Finally, the third research question, ‘“How
should test items be structured to assess and evaluate

100952

< Students’ views on the use of VPLs in programming data science

It 2 |} e 4 mm S

MNumber of students

Questionnaire Number

FIGURE 6. Students’ summaries of the responses to the questionnaire.

data science education based on NCTs?” is answered by
quantitatively assessing the performance of students on
sample assessment items.

A. STUDENT'S PERFORMANCE ON VPL-BASED
PROJECT-BASED LEARNING

The first research question is centred on the applica-
tion of qualitative analysis, observing the performance of
non-computer science students in implementing a final-year
dissertation project based on VPLs. Students were observed
throughout the development of the project, which allowed us
to evaluate the usefulness of VPLs. There were two groups of
students, the control group using Python code to develop and
implement a dissertation project, and the experimental group
using VPLs to develop and implement a slightly different
dissertation project. Results from observations revealed that
students who used Python code to build a project took longer
to complete, seeking assistance and asking a lot of questions
from lecturers, fellow students, online forums and tutorials.
On the other hand, students who used VPLs completed their
projects with minimum help. From the results, it can be stated
that NCTs or VPLs are useful, especially for students who do
not have vast programming experience.

B. VPLS’ ABILITY TO SOLVE DATA SCIENCE PROBLEMS
The second research question is focused on establishing
students’ views and experiences on the use of VPLs in
solving data science programming problems. To address this
question, quantitative data was collected from post-study
questionnaires. The questionnaires consisted of 10 questions,
as shown in Table 14 measuring students’ opinions, experi-
ences and motivation toward the use of VPLs in data science
education. A [1 — 5] numerical rating scale [71] “maximum”
(5), “minimum” (1) was used. 50 students completed the
post-study questionnaire.

From the responses to the questions in Table 14, 77% of
the experimental group students admitted to struggling with
writing their code using Python or C/C++ before the study,
while only 4% demonstrated proficiency in developing code.
88% of the students found the VPL tool to be easy to use,

VOLUME 12, 2024

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

IEEE Access

TABLE 14. Questions regarding students’ views and experiences on the
use of VPLs in their data science projects.

‘ Number ‘ Question

1 How proficient were you with writing your own code in
Python or C/C++?

2 As a student with minimum programming experience, how
would you rate the ease of use of VPLs for programming
compared to Python?

3 Did the VPL improve your understanding of data science
concepts?

4 Did the VPL facilitate the implementation of data science
algorithms in your project?

5 In your opinion, how important are VPLs as programming
tools for data science?

6 How satisfied are you with the widgets of the VPL?

How likely are you to continue using VPLs for program-
ming?

8 Would you recommend using VPLs for programming data
science concepts, especially for non-computer science ma-
jors?

9 Did the VPL provide a wide range of widgets and flexibility
for your project?

10 Finally, how satisfied are you with using VPLs for coding in
your data science project?

and 80% said VPLs facilitated the implementation of data
science algorithms in their projects. An impressive 96% of the
students from the experimental group highly recommended
using VPLs for programming to their fellow students who
did not have vast programming experience. The responses are
summarised in Figure 6.

C. ASSESSMENT AND EVALUATION OF DATA SCIENCE
PROGRAMMING USING PYTHON AND NCTs

The third research question uses the second intervention
which centres on quantitatively assessing and evaluating the
performance of students from the three classes; BEng Honors
in Telecommunication Engineering class, BSc Honors in
Industrial Physics and Instrumentation class and the BSc
Honors in Computer Systems Engineering class in Python
and VPL assessment items. The control group is drawn
from the BSc Honors in Computer Systems Engineering
class while the experimental group is drawn from the non-
majors (BEng Honors in Telecommunication Engineering
and the BSc Honors in Industrial Physics and Instrumentation
classes).

Code snippets of the assessment items of the two groups
were analyzed to assess their performance in developing code
using Python against VPLs. All sessions were supervised, and
they were conducted in a typical computer laboratory setup.
An analysis of the results is given in Table 15

The benefits of using visual programming languages
to develop code were also confirmed in how students
performed in VPL-based assessment items against standard
Python-based assessment items. The performance of the
students from the two groups was tested by a Two-Sample
t-Test and found significant differences between the control
group and the experimental group. The results obtained a

VOLUME 12, 2024

TABLE 15. t-Test - Statistical analysis of the performance of
non-computer science majors (Physics and Telecommunications students)
on Python-based and VPL-based assessment items.

Experimental Control group
group score score
Mean 71.76 46.28
Variance 39.37 165.79
Observations 50 50
Hypothesized Mean Difference | 0
df 71
t Stat 12.57
P(T <= t) one-tail p < 0.0001
t Critical one-tail 1.67
P(T <= t) two-tail p < 0.0001
t Critical two-tail 1.99

t-value of 12.57, at a 0.05 significance level and a probability
‘p < 0.0001°. The results are shown in Table 15.

This provides sufficient evidence to suggest that the use of
visual programming languages increased students’ abilities to
develop code for solving data science challenges.

VII. CONCLUSION
As the data industry grows exponentially, so does the need
to train new professionals or upskill existing professionals
with data-related skills and new knowledge. This paper
has structured a modularized undergraduate curriculum for
data science education using no-code programming tools.
Modular in the sense that it makes only one component
of a course and the learning content is spread across one
university semester. Guided by well-established educational
philosophies, this curriculum adopts effective teaching
and learning methods that are interactive and student-
centred. Students benefit mainly from the advantages of
graphical-based tools for learning programming and also the
theoretical concepts of data science, which are delivered
using the conventional lecture-based approach. The main
teaching methods identified for the new method of learning
data science are discussed in detail. Moreover, this curriculum
adheres to the data science guidelines that define the key
competencies in data science for undergraduate learners.
This work demonstrates the benefits of using visual
programming languages to develop code for implementing
data science concepts. Overall, the student’s engagement in
learning data science increased, and their assessment marks
greatly improved. Notably, the control group obtained a mean
of 46.28% on Python questions, while the experimental group
obtained a mean of 71.76% on VPL-based questions. For the
sake of comparison, the computer science class obtained a
mean of 64.28% and 75.32% on Python and VPL questions
respectively. There was a small difference of 3.56% between
the means of non-computer science majors and computer
science majors who had used VPLs to solve data science
programming questions. This means that VPLs can assist

100953

IEEE Access

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

X1
K
y
= |H—
output
X / \
bias

FIGURE 7. Basic representation of an artificial neuron. The artificial
neuron is analogous in operation to the biological neuron. It has a bias
parameter (constant), and accepts two or more inputs, which are
multiplied by their respective coefficients (w;). These weighed inputs are
summed together to produce an output z = }°7_ w;x; which is then

passed through an activation function to produce y = f(z) [72].

non-computer science majors to achieve higher marks that are
comparable to the marks of computer science majors.

In this work, VPLs have shown great potential as a
pedagogical aid to data science students who do not have
a strong programming background. Research on assisting
learners to transition from no-code tools to text-based
programming languages is a work of further research.

In conclusion, the overarching contribution of this work
will support students, tutors, educational institutions and data
industries by (i) reducing the time and resources required
to learn data science programming, (ii) offering an alter-
native approach to text-based programming in data science
education, (iii) providing detailed procedures for developing
teaching, learning, evidence-based assessment and evaluation
methods using interactive learning environments.

APPENDIX A

OVERVIEW OF ARTIFICIAL NEURAL NETWORKS AND
DATA SCIENCE

The human brain consists of several interconnected cells that
transmit information encapsulated in electrical and chemical
signals from various parts of the brain. These cells or neurons
receive sensory inputs, process the signals and relay the
output to other neurons. Neurons can work together to learn
the solution to a problem by creating a neural pathway. This
pathway becomes more accurate through trial and error by
identifying neurons that regularly communicate. Through
regular practice, the brain learns to solve a problem.

This simple, yet complex operation is the fundamental
principle that has influenced the development of the artificial
neuron as shown in Figure 7. Each neuron can be seen as an
individual computing node that accepts one or more inputs
xi, and produces an output y based on an activation function
f(2). Non-linear functions Sigmoid functions are typically
used, however, several activation functions are sufficient for
this purpose. A summary of the most common activation
functions for neural networks is presented by et al. in [72].

A collection of these neurons form an artificial neural
network that learns from data by adjusting their parameters
and finding the correct solutions on their own, thereby
mimicking human intelligence. In what follows, we describe
the technical principles that govern the operation of artificial
neural networks.

100954

REFERENCES

[1]

[2]

[3]

[4

=

[5]

[6

—

[71
[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

[22]
(23]

[24]

M. Analytics, “The age of analytics: Competing in a data-driven world,”
in McKinsey Global Institute Research. McKinsey & Company, 2016.
[Online]. Available: https://www.mckinsey.com/capabilities/quantumbla
ck/our-insights/the-age-of-analytics-competing-in-a-data-driven-world

R. D. De Veaux et al., “Curriculum guidelines for undergraduate programs
in data science,” Annu. Rev. Statist. Appl., vol. 4, pp. 15-30, Aug. 2017.
M. J. Ramzan, S. U. R. Khan, Inayat-Ur-Rehman, T. A. Khan,
A. Akhunzada, and C. Naseeb, “A conceptual model to support the
transmuters in acquiring the desired knowledge of a data scientist,” JEEE
Access, vol. 9, pp. 115335-115347, 2021.

T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The Elements
of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2.
Springer, 2009.

J. Demsar, T. Curk, A. Erjavec, C. Gorup, T. Hocevar, M. Milutinovi¢,
M. Mozina, M. Polajnar, M. Toplak, A. Stari¢, M. gtajdohar, L. Umek,
L. Zagar, J. Zbomar, M. Zitnik, and B. Zupan, “Orange: Data mining
toolbox in Python,” J. Mach. Learn. Res., vol. 14, no. 1, pp. 2349-2353,
2013.

M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kétter, T. Meinl, P. Ohl,
K. Thiel, and B. Wiswedel, “KNIME—-the Konstanz information miner:
Version 2.0 and beyond,” ACM SIGKDD Explorations Newslett., vol. 11,
no. 1, pp. 26-31, Nov. 2009.

A. Santos. (2023).
neuraldesigner.com/

J. M. Wing, “The data life cycle,” Harvard Data Sci. Rev., vol. 1, no. 1,
p. 6,2019.

A. X. Zhang, M. M’,uller, and D. Wang, “How do data science workers
collaborate? Roles, workflows, and tools,” Proc. ACM Hum.-Comput.
Interact., vol. 4, no. CSCW1, pp. 1-23, May 2020.

B. A. Myers, “Visual programming, programming by example, and
program visualization: A taxonomy,” ACM SIGCHI Bull., vol. 17, no. 4,
pp. 59-66, Apr. 1986.

N. C. Shu, “Visual programming languages: A perspective and a
dimensional analysis,” in Visual Languages. Cham, Switzerland: Springer,
1986, pp. 11-34.

N. C. Shu, ““Visual programming: Perspectives and approaches,” IBM Syst.
J., vol. 38, no. 2, pp. 199-221, 1999.

M. A. Kuhail, S. Farooq, R. Hammad, and M. Bahja, “Characterizing
visual programming approaches for end-user developers: A systematic
review,” IEEE Access, vol. 9, pp. 14181-14202, 2021.

M. M. Burnett and M. J. Baker, “A classification system for visual
programming languages,” J. Vis. Lang. Comput., vol. 5, no. 3, pp. 287-300,
Sep. 1994.

J. D. Kiper, E. Howard, and C. Ames, “Criteria for evaluation of visual
programming languages,” J. Vis. Lang. Comput., vol. 8,no. 2, pp. 175-192,
Apr. 1997.

Z. Dobesova, “Evaluation of orange data mining software and examples
for lecturing machine learning tasks in geoinformatics,” in Computer
Applications in Engineering Education. Hoboken, NJ, USA: Wiley, 2024.
U. Thange, V. K. Shukla, R. Punhani, and W. Grobbelaar, “‘Analyzing
COVID-19 dataset through data mining tool ‘Orang,” in Proc. 2nd
Int. Conf. Comput., Autom. Knowl. Manage. (ICCAKM), Jan. 2021,
pp. 198-203.

A. Abdelmagid and A. Qahmash, “Utilizing the educational data mining
techniques,” Inf. Sci. Lett., vol. 12, no. 3, pp. 1415-1431, 2023.

1. Popchev and D. Orozova, “Algorithms for machine learning with
orange system,” Int. J. Online Biomed. Eng., vol. 19, no. 4, pp. 109-123,
Apr. 2023.

J. Demsar and B. Zupan, “From experimental machine learning to
interactive data mining,” in Proc. Knowl. Discovery Databases, 2005,
pp. 537-539.

B. Cukic, D. Hague, and M. Lou Maher, “‘An innovative interdisciplinary
undergraduate data science program: Pathways and experience,” in Proc.
IEEE Frontiers Educ. Conf. (FIE), Oct. 2020, pp. 1-5.

D. Conway. (2010). The Data Science Venn Diagram. [Online]. Available:
http://www.dataists.com/2010/09/the-data-science-venn-diagram

J. W. Tukey, “The future of data analysis,” Ann. Math. Statist., vol. 33,
no. 1, pp. 1-67, 1962.

J. M. Chambers, ‘““Greater or lesser statistics: A choice for future research,”
Statist. Comput., vol. 3, no. 4, pp. 182-184, Dec. 1993.

Home. [Online]. Available: https://www.

VOLUME 12, 2024

IEEE Access

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular
[25] W.S. Cleveland, “Data science: An action plan for expanding the technical [52] B. Zhao and D. D. Potter, “Comparison of lecture-based learning vs
areas of the field of statistics,” Stat. Anal. Data Mining: ASA Data Sci. J., discussion-based learning in undergraduate medical students,” J. Surgical
vol. 7, no. 6, pp. 414417, Dec. 2014. Educ., vol. 73, no. 2, pp. 250-257, Mar. 2016.
[26] S. C. Hicks and R. A. Irizarry, “A guide to teaching data science,” Amer: [53] W. Hung, D. H. Jonassen, and R. Liu, “Problem-based learning,”
Statistician, vol. 72, no. 4, pp. 382-391, 2018. Handbook Res. Educ. Commun. Technol., vol. 3, no. 1, pp. 485-506, 2008.
[27] D.Donoho, ““50 years of data science,” J. Comput. Graph. Statist., vol. 26, [54] M. A. Albanese and L. C. Dast, “Problem-based learning,” in Under-
no. 4, pp. 745-766, Oct. 2017. standing Medical Education: Evidence, Theory and Practice. Wiley, 2013,
[28] N. Corte-Real, P. Ruivo, T. Oliveira, and A. Popovic, “Unlocking the pp. 61-79.
drivers of big data analytics value in firms,” J. Bus. Res., vol. 97, [55] E.de Graaff and A. Kolmos, “Characteristics of problem-based learning,”
pp. 160-173, Apr. 2019. Int. J. Eng. Educ., vol. 19, pp. 657-662, Jan. 2003.
[29] O. Hazzan and K. Mike, Guide to Teaching Data Science: An Interdisci- [56] C. Onyon, “Problen}:bas?d learning: A review of the educational and
plinary Approach. Springer, 2023. psychological theory,” Clin. Teacher, vol. 9, no. 1, pp. 22-26, Feb. 2012.
30 K . o « . B . S [57] D. Kokotsaki, V. Menzies, and A. Wiggins, “Project-based learning: A
(30 C. Kelleher and R. Pausch, “Lowering the barriers to programming: review of the literature,” Improving Schools, vol. 19, no. 3, pp. 267-277
A taxonomy of programming environments and languages for novice Nov. 2016 i P 8 §, VOl 15, no. 3, pp. >
» ov. .
programmers,” ACM Com;zfu. ‘.gurveys’ VOIZ 37, po. 2? pp- 83-137, 20.05',, [58] N. Hosseinzadeh and M. R. Hesamzadeh, “Application of project-based
[31] C.Kelleher and R. Pausch, ““Using storytelling to motivate programming, learning (PBL) to the teaching of electrical power systems engineering,”
oy S ACH. vol 30, no. T, pb- ;8*56.‘1" . mend. “Th IEEE Trans. Educ., vol. 55, no. 4, pp. 495-501, Nov. 2012.
[32] J. Maloney, M. esnick, . RSk, B. Sl verman, and - astmond, N [59] B.Condliffe, “Project-based learning: A literature review. working paper,”
scratch programming language and environment,” ACM Trans. Comput. in Proc. MDRC, 2017, pp. 1-11
Educ., vol. loj n'o. 4, pp. 1-15, Nov. 2010. . . [60] M. M. Grant, “Getting a grip on project-based learning: Theory, cases and
[33] Scratch Statistics. Accessed: Feb. 7, 2024. [Online]. Available: recommendations,” Meridian, A Middle School Comput. Technol. J., vol. 5,
https://scratch.mit.edu/statistics/ no. 1, p. 83, 2002.
[34] L F. de Kereki, “Scratch: Applications in computer science 1,” in Proc. [61] I.S. Krajcik and P. C. Blumenfeld, Project-Based Learning. Cambridge
38th Annu. Frontiers Educ. Conf., Oct. 2008, pp. 1-7. Univ. Press, 2006.
[35] J. Estevez, G. Garate, and M. Graiia, “Gentle introduction to artificial [62] M. Saleh, M. Abbas, and R. B. Le Jeannes, “FallAlID: An open dataset
intelligence for high-school students using scratch,” IEEE Access, vol. 7, of human falls and activities of daily living for classical and deep learning
pp- 179027-179036, 2019. applications,” IEEE Sensors J., vol. 21, no. 2, pp. 1849-1858, Jan. 2021.
[36] R.J.Brunner and E. J. Kim, ““Teaching data science,” Proc. Comput. Sci., [63] S. C. dos Santos, “PBL-SEE: An authentic assessment model for PBL-
vol. 80, pp. 1947-1956, Dec. 2016. based software engineering education,” IEEE Trans. Educ., vol. 60, no. 2,
[37] H. Habibzadeh, K. Dinesh, O. Rajabi Shishvan, A. Boggio-Dandry, pp. 120-126, May 2017.
G. Sharma, and T. Soyata, “A survey of healthcare Internet of Things [64] P. Abichandani, V. Sivakumar, D. Lobo, C. Iaboni, and P. Shekhar,
(HIOT): A clinical perspective,” IEEE Internet Things J., vol. 7, no. 1, “Internet-of-Things curriculum, pedagogy, and assessment for
pp. 53-71, Jan. 2020. STEM education: A review of literature,” IEEE Access, vol. 10,
[38] H. Hu, Y. Wen, T.-S. Chua, and X. Li, “Toward scalable systems pp. 38351-38369, 2022.
for big data analytics: A technology tutorial,” IEEE Access, vol. 2, [65] G.V.Helden, V. Van Der Werf, G. N. Saunders-Smits, and M. M. Specht,
pp. 652-687, 2014. “The use of digital peer assessment in higher education—An umbrella
[39] A. K. Pandey, A. L. Khan, Y. B. Abushark, Md. M. Alam, A. Agrawal, review of literature,” IEEE Acces.s, vol. 11, pp. 22948-22960, 2023.
R. Kumar, and R. A. Khan, “Key issues in healthcare data integrity: Anal- [66] H.-P. Yueh, T.-L. Chen, L.-A. Chiu, S.-L. Lee, and A.-B. Wang, “Student
ysis and recommendations,” IEEE Access, vol. 8, pp. 40612-40628, 2020. evaluation of teachir}g effectiveness of a nationwide innovative education
[40] B. K. Daniel, “Big data and data science: A critical review of issues for program on image display technology,” [EEE Trans. Educ., vol. 55, no. 3,
educational research,” Brit. J. Educ. Technol., vol. 50, no. 1, pp. 101-113, pp- 365-369, Aug. 2012. o _)
Jan. 2019. [67] M. Llamas-Nistal, F. A. Mikic-Fonte, M. Caeiro-Rodriguez, and
[41] X. Qin, Y. Luo, N. Tang, and G. Li, “DeepEye: An automatic big data M. Liz.—Dominguez, “Supporting intens.ive cgntinuous assessment with
visualization framework,” Big Data Mining Analytics, vol. 1, no. 1, BeAl 5(‘)‘52 2a 12;)%%66(1 zglla;sroom experience,” [EEE Access, vol. 7,
pp. 75-82, Mar. 2018. pp- - > - e ‘
[42] A. Perrot and D. Auber, “Cornac: Tackling huge graph visualization with [68] J. tMoreno and ‘? F. Pltﬁeda’t, A tramevt"orl;Eé(l); :utomated | tog—
big data infrastructure,” IEEE Trans. Big Data, vol. 6, no. 1, pp. 80-92, ma ;V(;?IS;SS‘;SS;;;“ZO;HO mathematics - courses, ceess, vol. o,
Mar. 2020. pp- 54 5= Lo
ar .. o . T . [69] S. Draft, Computer Science Curricula. New York, NY, USA: ACM, 2013.
[43] M. Aparicio and C. J. Costa, “Data visualization,” Commun. Design [70] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan
Quart., vol. 3, no. 1, pp. 7-11, Jan. 2015, doi: 10.1145/2721882.2721883. Y. B.-D. Kolikant, C. Laxer, L. Thomas, I Utting, and T. Wilusz, “A multi-
[44] R. D?SCMte‘S" The Phll,omp hical Worliv Qf Des.cartes.[2 Vo.ls.] ’ Dove.r, 1955. national, multi-institutional study of assessment of programming skills
[45] E. Bisong, .Matplothb and seaborn,” in Building Machine Learjnmg and of first-year cs students,” in Working Group Reports From ITiCSE on
geeip Lea;’gllngg Mozfc;liv (;IéSGOOgle Cloud Platform. Cham, Switzerland: Innovation and Technology in Computer Science Education. Association
pringer, > PP- 151720 . . . for Computing Machinery, 2001, pp. 125-180.
[46] J. Davis and M. Goadrich, “The relationship between precision-recall and [71] A. Joshi, S. Kale, S. Chandel, and D. Pal, “Likert scale: Explored
ROC curves,” in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 233-240. and explained,” Brit. J. Appl. Sci. Technol., vol. 7, no. 4, pp. 396-403,
[47] A. N. Shewalkar, “Comparison of RNN, LSTM and GRU on speech Jan. 2015.
recognition data,” Comput. Sci. Masters Papers, 2018. [72] R. Parhi and R. D. Nowak, “The role of neural network activation
[48] Y. Bai, J. Xie, C. Liu, Y. Tao, B. Zeng, and C. Li, “Regression modeling functions,” IEEE Signal Process. Lett., vol. 27, pp. 1779-1783, 2020.
for enterprise electricity consumption: A comparison of recurrent neural
network and its variants,” Int. J. Electr. Power Energy Syst., vol. 126,
Mar. 2021, At. no. 106612. . , , HARRY D. MAFUKIDZE received the B.Sc.
[49] K. H. Lycke, P. Grgttum, and H. I. Strgmsg, *“Student learning strategies, d . . .
. . L egree (Hons.) in physics from Midlands
mental models and learning outcomes in problem-based and traditional State Uni itv. G Zimbab in 2009
curricula in medicine,” Med. Teacher, vol. 28, no. 8, pp.717-722, Zeth ;}IVSS‘ y’d werd, 11“1 abwe, m 20U,
Jan. 2006. and the M.Eng. degree in electronic engineering
[50] M. Khatiban, S. N. Falahan, R. Amini, A. Farahanchi, and A. Soltanian, from the University of Stellenbosch, Stellenbosch,
“Lecture-based versus problem-based learning in ethics education among South Africa, in 20.14~ He 18 currently with the
nursing students,” Nursing Ethics, vol. 26, no. 6, pp.1753-1764, Department of Applied Physics and Telecommu-
Sep. 2019. nications, Midlands State University. His research
[51] L. D. Kantar and S. Sailian, “The effect of instruction on learning: Case interests include radar signal processing, data

based versus lecture based,” Teaching Learn. Nursing, vol. 13, no. 4,
pp. 207-211, Oct. 2018.

VOLUME 12, 2024

science, machine learning, and deep learning and
their applications.

100955

http://dx.doi.org/10.1145/2721882.2721883

IEEE Access

H. D. Mafukidze et al.: Development of a Modularized Undergraduate Data Science and Big Data Curricular

ACTION NECHIBVUTE received the B.Sc. degree
in physics from Midlands State University,
in 2001, the B.Sc. degree in mathematics from
the University of Zimbabwe, in 2001, the M.Sc.
degree in physics from the University of Botswana,
in 2008, and the Ph.D. degree in physics in the area
of energy harvesting for wireless sensor devices
from Midlands State University, in 2015. He is
currently an Academic Researcher with Midlands
State University.

ABID YAHYA (Senior Member, IEEE) received
the bachelor’s degree in electrical and electronic
engineering, major in telecommunication from
the University of Engineering and Technology
Peshawar, Peshawar, Pakistan, and the M.Sc. and
Ph.D. degrees in wireless and mobile systems from
Universiti Sains Malaysia. He began the career
on an engineering path, which is rare among
other researcher executives. He is currently with
Botswana International University of Science and
Technology. He is also a Professional Engineer certified by Botswana
Engineers Registration Board (ERB). He has many research publications
in numerous reputable journals, conference articles, and book chapters.
He received several awards and grants from various funding agencies and
supervised several master’s and Ph.D. candidates. His recent four books
Emerging Technologies in Agriculture, Livestock, and Climate (Springer,
2020), Mobile WiMAX Systems: Performance Analysis of Fractional
Frequency Reuse (CRC PresslTaylor & Francis, 2019), Steganography
Techniques for Digital Images, LTE-A Cellular Networks: Multi-hop
Relay for Coverage, Capacity and Performance Enhancement (Springer
International Publishing, July 2018 and January 2017), and are being
followed in national and international universities.

100956

IRFAN ANJUM BADRUDDIN received the
Graduate degree in mechanical engineering,
in 1998, the Master of Technology degree,
in 2001, and the Ph.D. degree in heat transfer
from Universiti Sains Malaysia, in 2007. He is
currently a Professor with the Department of
Mechanical Engineering, King Khalid University,
Saudi Arabia. He works in the interdisciplinary
fields. He has more than 300 articles to his credit.

SARFARAZ KAMANGAR received the Ph.D.
degree in mechanical engineering. He is currently
an Assistant Professor with the Department of
Mechanical Engineering, King Khalid University,
Saudi Arabia. He has more than 13 years of
research and teaching experience at well-known
universities. He has published more than 100 arti-
cles at international journals and conferences.

MOHAMED HUSSIEN was born in Menofia,
Egypt, in 1981. He received the B.Sc. degree
in chemistry and the Ph.D. degree in organic
chemistry from Menofia University, in 2002 and
2023, respectively. He is currently a Lecturer in
organic chemistry with the Department of Chem-
istry, Faculty of Science, King Khalid University,
Abha, Saudi Arabia. He has many research articles
in heterocyclic chemistry against pests and using
as anticancer agents published in international
journals. His research interests include synthesis and chemical reactivity of
phosphorus compounds contain bioactive heterocyclic systems.

VOLUME 12, 2024

