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ABSTRACT There has been growing interest in single-stage grid-connected photovoltaic (PV) systems
due to their reduced losses and overall size, as they eliminate the intermediate DC-DC conversion stage.
The primary objective of this research is to develop a more efficient and industry-oriented control strategy
for these systems. This study proposes an artificial neural network (ANN)-based controller to address
the high complexity and computational demands of traditional model predictive control (MPC) methods.
The ANN-controller simplifies the process by utilizing basic linear equations, significantly reducing the
computational burden. Additionally, it integrates an improved maximum power point tracking (MPPT)
algorithm to ensure optimal power extraction from the PV panels while maintaining excellent transient
performance. The methodology involves validating the superior control performance of the proposed
ANN-based strategy in a simulation environment. This includes comparisons with a benchmark grid-tied PV
system managed by three different controllers, demonstrating the robustness of the ANN-controller under
realistic irradiation-temperature patterns. Results show that the ANN-controller achieves faster response and
improved performance compared to traditional MPC methods. Finally, the effectiveness of the ANN-based
control logic is experimentally validated using a Control Hardware-In-the-Loop (C-HIL) setup, proving its
practicality and reliability in real-world applications.

INDEX TERMS Artificial neural network, maximum power point tracking, model predictive control, solar
photovoltaic, supervised learning.

I. INTRODUCTION
Power electronic converters are crucial for integrating
renewable energy sources into the grid [1]. The single-stage
grid-tied (SSGT) solar photovoltaic (PV) system has gained
popularity due to its lower installation andmaintenance costs,
reduced system size, and higher efficiency [2], [3]. However,
designing robust control strategies for SSGT systems is more
challenging than for double-stage PV systems due to varying
environmental conditions and grid disturbances [4]. The PV

The associate editor coordinating the review of this manuscript and

approving it for publication was Mou Chen .

system’s P − V and I − V profiles are highly influenced
by changes in irradiance, necessitating advanced maximum
power point tracking (MPPT) algorithms to maximize power
extraction. Traditional MPPT algorithms like perturb &
observe (P&O) and incremental conductance (InC) are simple
to implement but fail to operate at the global maximum
power point (GMPP) under partial shading conditions [5].
Optimization-based MPPT algorithms can address this issue
but come with increased control complexity and longer
tracking times [6], [7].

Moreover, traditional methods of controlling PV-fed
voltage source converters (VSCs) face several challenges,
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FIGURE 1. Overall block diagram of SSGT PV system with proposed ANN controller, (a) Training phase of the ANN that incorporates the
MPC scheme predicting the VSC output voltage and data collection under full-state observation, (b) Testing phase of the ANN where the
fully trained ANN controller is used to control the VSC by replacing the MPC scheme.

including difficulty in tuning controller gains, limited
bandwidth, slow response, and stability issues [8], [9],
[10]. Among various advanced control approaches, Model
Predictive Control (MPC) stands out as a promising solution.
MPC’s key feature is its use of a system model to predict
the future behavior of control variables over a specified
time horizon. It then selects the optimal control action by
minimizing a predefined cost function that represents the
system’s desired behavior [11], [12]. Despite its advantages,
MPC application is hindered by the need for accurate system
modeling and increased computational complexity. Addi-
tionally, determining the appropriate weight factor for the
cost function often relies on trial-and-error or optimization
algorithms like genetic algorithms (GA) and particle swarm
optimization (PSO), which add further complexity without
addressing the fundamental issue of high computational
demands [13]. Efforts are ongoing to resolve these challenges
by using single-step or longer prediction horizons to achieve
practical and robust control performance [14].

The application of artificial intelligence (AI) to power elec-
tronics systems has garnered substantial attention in recent
years due to its ability to address critical issues with inherent
decision-making capabilities [15]. Neural networks (NNs)
used in these systems can be classified based on their training
methods into offline and online trained structures [16].
Offline training involves using simulation or experimental
data sets, while online training is more suitable for complex
systems where training data sets are unavailable. Among the
most prominent AI and NN schemes are deep learning neural
networks (DNN), reinforcement learning neural networks
(RNN), deep reinforcement learning (DRL), long short-term
memory RNN (LSTM-RNN), and various machine learning
(ML) methods. These approaches offer excellent solutions
for complex systems with diverse objectives such as energy
trading, energy management in networked microgrids, inertia
emulation, communication systems in microgrids, and PV
forecasting [16], [17]. A comprehensive discussion on the
industrial applications of ANN, considering different design
and training processes, is presented in the literature [18].

For power electronics converter control, feed-forward
artificial neural networks (ANN) and their variant, the
multi-layer perceptron (MLP) ANN, are commonly used.

For instance, ANNs have been utilized as capacitor voltage
reference estimators for modular multilevel converters in
three-phase systems [13], [19]. Additionally, ANNs have
been adopted to simplify the multi-step prediction evaluation
for model predictive control (MPC) controllers, particu-
larly in lower-order power converter topologies [20]. Most
applications of ANN in PV-interfaced power electronic
generation systems are limited to maximum power point
tracking (MPPT) controllers [21], [22]. ANNs have been
used to replace standard MPPT algorithms for maximum
power extraction and to enhance the accuracy and tracking
time of global maximum power point (GMPP) without the
need for additional temperature sensors [23]. However, there
is limited literature on using ANN as a current controller
for PV applications. One example is the use of ANN to
replace the PI controller for single-phase multilevel inverter-
based PV systems [24]. Another example is an ANN-based
control solution for single-phase and double-stage residential
PV applications, which outperforms standard vector control
methods in various aspects [25].

In line with the aforementioned discussion, this paper
presents an artificial neural network (ANN)-based controller
for the single-stage PV system. The main contribution of the
paper to the state-of-the-art comprises the following:

• AnANN-based inner-loop current controller is proposed
for the single-stage grid-connected solar PV system.
The ANN is trained based on the Levenberg Marquardt
Back Propagation (LMBP) algorithm utilizing the MPC
scheme data.

• An improved MPPT algorithm with an additional
control loop is embedded with the proposed ANN
controller to extract the maximum power from the PV
panel for different scenarios of solar irradiance.

• Small-signal state-space model is developed to investi-
gate the stability of the proposed ANN controller under
different operating scenarios and accounting for the
parameter uncertainty.

The proposed ANN controller does not involve the necessity
of detailed system modelling as well as excludes solving the
optimization problem or cost functions rigorously at each
sampling instant. This approach has often been termed an
end-to-end approach. The proposed control approach ensures
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a satisfactory steady-state and faster dynamic performance
than the standard PI-controller with a lesser computational
burden as compared to the MPC scheme.

II. ANALYTICAL MODELING OF THE VSC WITH MPC
SCHEME AND ASSOCIATED CHALLENGES
The SSGT system with ANN-based controller is trained
under the supervision of MPC scheme is presented in Fig. 1.
The MPC technique requires the accurate modeling of the
VSC and output filter to achieve the desired performance.
This section presents the modeling of the converter and a
description of the equations governing the MPC scheme.

A. DISCRETE STATE-SPACE MODELING
The three-phase output voltage and current equations of the
converter are modeled in the stationary αβ-reference frame.
In this regard, each three-phase variables xa, xb and xc are
transformed into the corresponding αβ-frame by applying an
amplitude invariant Clarke transformation as

X =

[
xα
xβ

]
= Tabc−αβ [xaxbxc]T (1)

where

Tabc−αβ =
1
3

[
2 −1 −1
0

√
3 −

√
3

]
The dynamic equation of the inductor current, if can be
expressed in state-space form as [26]

d if ,αβ

dt
= Aif ,αβ + Bvinv,αβ + Bdvf ,αβ (2)

where vinv,αβ =

[
vinv,α
vinv,β

]
is the output voltage of the inverter,

and vf ,αβ is the voltage across the filter capacitor. The bold
font is used to represent the variables in matrix form. The
voltages and currents are indicated in Fig. 1. The Expression
of matrices A, B, and Bd are given below

A =

[
−
Rf
Lf

0

0 −
Rf
Lf

]
, B =

[
1
Lf

0

0 1
Lf

]
, Bd = −B

where Rf and Lf are filter resitance and inductance,
respectively. Considering the above variables are maintained
as constant during each sampling interval (Ts), the system
described in (2) can be obtained in the discrete-time state
equation as

if ,αβ(k + 1) = Gif ,αβ(k) + Hvinv,αβ(k) + Hdvf ,αβ(k) (3)

where G = eATs , H = (G − I)A−1B, Hd = (G − I)A−1Bd
and I is the identity matrix with same dimension as G.
The reference current (i∗f ,αβ) for the MPC controller is

obtained as a function of dc power generated from the PV
system at each sampling instant. Thus, i∗f ,αβ can be expressed
as

i∗f ,αβ =
2
3
Tdq−αβ · Pset · η ·

1
Vd

(4)

where Vd is the real-axis component of the output voltage on
the rotating reference frame, η is the efficiency of the inverter,
Pset and Tdq−αβ given in (5) are the instantaneous power
from the PV system and the Park transformation matrix,
respectively and θ is the position of the voltage vector vf
estimated with a standard phase-locked loop (PLL).

Tdq−αβ =

[
cos(θ) −sin(θ )
sin(θ) cos(θ)

]
; Pset = vpv · ipv (5)

The single-step horizon cost function for regulation of ac
current through the filter of the SSGT system can be
expressed as

gcon =
(
X∗

− X(k + 1)
)T W(X∗

− X(k + 1)) (6)

where X∗
=

[
i∗f α(k)
i∗f β (k)

]
, W is a 2 × 2 diagonal matrix and

X(k+ 1) = if ,αβ(k+ 1) is the prediction of the state space at
the next sample based on the value of the input variable vinv.

Thereby, the desired modulation signal for the VSC can
be obtained by taking the derivative of the cost function with
respect to vinv and equating it to zero. In this process, the final
solution obtained is:

vinv = (HTWH)−1
[
HTWX∗

− HTWHdvf(k) − HTWGX(k + 1)
]
. (7)

Finally, the modulation signal obtained from the above
step can be sent into the PWM block to obtain the PWM
signals, as shown in Fig. 1. The cost function formulation
considered here can be extended even for long prediction
horizon evaluation as described in [27].

B. CHALLENGES IN THE MPC SCHEME
The Model Predictive Control (MPC) scheme has certain
shortcomings that limit its application, primarily due to the
computational burden on the real-time controller. In a power
converter, the number of switching states is represented
by xy, where x is the number of feasible states for each
leg of the converter and y denotes the number of legs or
phases, depending on the converter type. The standard MPC
operation requires prediction and optimization procedures
at each sampling instant. Consequently, the controller must
predict xy states during the prediction stage and evaluate
corresponding costs during the optimization stage. In turn,
the total computational burden (NFCS−MPC ) imposed by the
finite control set (FCS)-MPC with prediction horizon length
of 1, can be expressed as:

NFCS−MPC =
(
ρpNp + ρcNc

)
xy (8)

where Np and Nc are the number of calculations associated
with the prediction and cost function, respectively. ρp (= 2)
represents the number of signals that need to be predicted,
and ρc (= 1) represents the number of objectives considered
in the cost function. The (8) shows that the computational
complexity of FCS-MPC increases exponentially with the
number of levels and phases.
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FIGURE 2. Schematic of the improved MPPT algorithm combined with the proposed ANN controller for the SSGT PV system.

Continuous control set (CCS)-MPC can provide a better
control solution than FCS-MPC but with an even higher
computational burden. Thus, the number of calculations
(NCCS−MPC ) involved in CCS-MPC can be said to be:

NCCS−MPC ≥ NFCS−MPC . (9)

Additionally, the accuracy of the prediction function
depends on precise system modeling, which further influ-
ences the optimization stage. For complex systems with
multiple variables, designing an accurate higher-order
mathematical model is challenging and often impractical.
Therefore, an ANN controller is introduced in this work to
address these issues and provide a more practical solution for
MPC.

III. PROPOSED ANN CONTROLLER FOR PV SYSTEM
The off-line training phase of the ANN controller for SSGT
PV system is shown in Fig. 1(a). The CCS-MPC scheme
data is used for the training to retain its advantageous control
features. After a successful training, the ANN controller
can be deployed for the real-time testing, as illustrated in
Fig. 1(b). The modeling and off-line training of the proposed
ANN controller is detailed as following.

A. MODELING AND TRAINING OF ANN CONTROLLER
The ANN controller is modeled with a feed-forward
supervised learning neural network structure. Training data
samples of the control inputs (i∗f αβ , if αβ , vf αβ , vdc) and
control outputsM∗

abc (modulation signals) are stored in look-
up table ai and M∗

abc, respectively. ai is then multiplied with
the weight matrix Wk(i,j) (ith input, jth node, and k th layer)
and added with the bias matrix bk(j) to procure the internal
variable uk(i,j) as presented in (10). The outputF of the hidden
layer can be calculated by defining an activation function as
given in (11).

u1(i,j) = W1(i,j)ai + b1(j). (10)

F
[
W1(i,j), b1(j)

]
=

1 − e−2u1(i,j)

1 + e−2u1(i,j)
. (11)

Here, uk(i,j) and F are termed as the control variables of
the converter since they are formulated as a function of the

control inputs ai. Moreover, a linear activation function is
used at the output layer, which implies the final output or
predicted modulation index (Mabc) of the ANN is

Mabc = W2(i,j)F
[
W1(i,j), b1(j)

]
+ b2(j). (12)

The ANN controller is trained with the Levenberg Marquardt
Back Propagation (LMBP) method by defining a cost
function (cf ) as

cf =

N∑
n=1

{√[
M∗
abc −Mabc(n)

]2}
=

N∑
n=1

△M2(n). (13)

The goal of this training is to search for the optimum
weight and bias values in order to converge at the targeted
modulation signals. In this context, the gradient of the cf with
respect to weight factor and bias value is then continuously
evaluated as given in (14) to find their new value.

dcf

d
−→
W

=

N∑
n=1

d
{
△MT (n) ∗ △M (n)

}
d
−→
W

= 2J (
−→
W )T△M (14)

where J (
−→
W ) is a Jacobian matrix and can be given as

J (W ) =


d△M (1)
dW1

· · ·
d△M (1)
dWn

...
. . .

...
d△M (N )
dW1

· · ·
d△M (N )
dWn

 ; △M =

△M (1)
...

△M (N )

 (15)

Moreover, the weights of the proposed ANN controller can
be updated as per (16), and similarly, the bias value can also
be updated.

δ
−→
W = −

[
J (

−→
W )T J (

−→
W ) + µI

]−1
J (

−→
W )T△M .

(16)

Wupdate(W ∗) =
−→
W + δ

−→
W . (17)

B. ADVANTAGE OF THE PROPOSED ANN CONTROLLER
The proposed ANN controller has several advantages like the
inclusion of simple mathematical expressions, distinguished
approximation, yielding generalized solution for the VSC,
etc. Mainly, the ANN controller significantly reduces the
complexity burden as compared to the MPC scheme.
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FIGURE 3. Data collection flow and offline training phase sequence of
the proposed ANN controller.

The number of calculations per sampling period (NANN )
associated with the ANN controller can be presented as

NANN = 2ij+ 2jl + λ1j+ λ2l (18)

where i = number of inputs, j = number of neurons in
the hidden layer, l = number of outputs, λ1 = number
of evaluation of activation function in hidden layer, and
λ2 = number of evaluation of activation function in output
layer [13].
From the expressions given in (8), (9), and (18), it is evident

that the number of calculations per sampling time in the MPC
scheme increases at an exponential rate with the system order,
whereas it is moderate in case of ANN controller.

IV. EMBEDDED IMPROVED MPPT ALGORITHM
The traditional P&O and InC MPPT algorithms do not
guarantee the GMPP operation during the partial shad-
ing condition of the SSGT PV system [23]. Therefore,
an improved MPPT algorithm embedded with the proposed
ANN controller is presented in this work for the accurate
tracking of GMPP, as illustrated in Fig. 2. The improved
MPPT algorithm is a two-stage concept in which the first
stage is solely dedicated to performing a full scan operation of
the PV-curve. The second stage of the algorithm is the P&O
method which utilizes the outcome of the first stage to locate
the GMPP. The fundamental concept of the whole algorithm
is detailed in the following steps.

1) In the scanning operation, the entire PV -curve is
divided into different segments and the total number of
segments can be calculated as

Nseg = (VHigh
PV − V Low

PV )/Vstep (19)

where VHigh
PV is the upper voltage limit beyond which

there is no LMPP, V Low
PV is the lowest possible dc

voltage allowed for the converter to have a stable
operation, and Vstep (=20, in this work) is the step
voltage for the uphill staircase.

TABLE 1. Eigenvalues for the SSGT-PV system.

2) The operating point is then gradually shifted to the
subsequent segment by recording the power value of
each segment. The highest power value recorded in a
segment indicates the higher chance of GMPP laying
in the corresponding segment. The reference voltage of
the MPP inside the vector is also extrapolated, which
acts as the starting point for the P&O algorithm in the
second stage. Moreover, the shifting process forces the
dc voltage vdc to follow the reference dc voltage vref as
following

vref = V Low
PV + Vstep/Nseg. (20)

3) Afterwards, vdc will get close to vref with a downhill
voltage step size Vstep, which can be initialized based
on the system requirement. It is worth mentioning that,
selecting a relatively Vstep possibly results in better
tracking accuracy, but also in a trade-off with slower
tracking speed and more dynamic power loss during
the tracking process.

4) The above three steps are responsible for the first-stage
scanning operation. Moreover, the first stage makes
the operating point to fall in the GMPP segment. The
second stage of the algorithm is enabled when vdc
attains the vref value. The classical P&O algorithm is
then applied in the second stage to follow the MPP.

vref is obtained from the improved MPPT algorithm by
following the above procedure, which is detailed in [28].
However, in this work, vref is additionally processed through
an external PI-control to generate the current reference signal
for the proposed ANN controller, as shown in Fig. 2. 1P
is obtained from vdc multiplied to 1i obtained from the
PI-control as given by

△P = vdc
(
vref − vdc

) (
Kp +

Ki
s

)
. (21)

1P is then subtracted from the feed-forward power factor
Pff to calculate the reference power value Pset , which can be
written by

Pset = Pff − △P ;Pff = vref ipv. (22)

V. SMALL-SIGNAL ANALYSIS OF THE PROPOSED
CONTROLLER
The small-signal characteristics of the proposed control has
been studied to understand its interaction behavior with the
SSGT PV system. It can be represented in the state-space
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TABLE 2. Parameters of the SSGT PV system and proposed controller.

FIGURE 4. Trajectory of eigenvalues under grid-inductance variation.

FIGURE 5. Learning profile of the selected ANN structure, (a) Gradient
curve, (b) Regression plot.

domain by means of a 12th order non-linear model. But,
the non-linearity associated with this model restricts the
direct application of traditional linear methods. Thus, the
small-signal representation of the model can be written as

1ẋss = Ass.1xss + Bss.1uss (23)

where xss is the state vector, Ass is system matrix, uss is input
vector, Bss is input matrix, and 1 represents the small-signal
perturbation around the steady-state value.

A detailed derivation of all the state-space equations for
a grid-connected VSC system with only current controller

FIGURE 6. Results with proposed controller under sudden irradiation
change.

can be found in [8] and [29]. In this work, the state-space
equation related to the PI-loop used after the MPPT stage
is newly added. Accordingly, the state-space equations are
reformulated and presented by

xss = [vf α vf β ioα ioβ γ if α if β vPLL,1 vPLL,2

ϵPLL 1θPLL vdc]T

uss = [vref vg ωg]T (24)

where vPLL,1, vPLL,2, ϵPLL , 1θPLL are the state variables
related to the PLL, γ is the integrator state of the dc-side PI-
loop, and ωg is the grid frequency.
The eigenvalues of Ass can be considered to examine

the behaviour of the system and controller. The analytically
calculated eigenvalues are listed in Table 1. Participation
factors are calculated to assess the relative contribution of
different states in each mode. The contributions from the
dominant states are also listed for all the modes.

As observed from the relative contribution values, the high
and medium frequency modes (λ1−6) are influenced mainly
by the point of common coupling (PCC) capacitor voltage,
output current and grid current. Modes λ7−10 are related to
the low pass filters (LPF) and integrator used in the PLL. This,
along with the participation factors, points out that the modes
λ11−12 are affected by the dc-side capacitor voltage and
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FIGURE 7. Performance of proposed controller under grid-side fault
condition.

FIGURE 8. PV setup for uniform and partial shading test cases.

PI-loop. Nonetheless, all the eigenvalues are in the negative
half of the complex plane, indicating the system is stable.
Further, the grid-side inductance (Lo) value is varied from
0.2 to 1 mH in the eigenvalues trajectory shown in Fig. 4.
It can be observed that the modes λ1−4 are mainly affected
and moves towards the origin with the increase in Lo value,
but are still in the negative-half. This indicates the system is
stable even under extremely weak grid conditions.

VI. SIMULATION RESULTS AND DISCUSSION
The proposed ANN controller for the SSGT PV system as
shown in Fig. 1 was implemented in MATLAB/Simulink
platform using the SimPower systems Toolbox. The Sun-
Power SPR-305E model is used as a PV panel in the
configuration of 66 parallel strings and 5 series modules
per string forming a 100 kW rated power system. All the
parameters of the investigated SSGT PV system are presented
in Table 2.

A. DATA COLLECTION AND FINALIZATION OF ANN
STRUCTURE
A total of 100000 data points are stored in a look-up table that
is obtained by executing the MPC scheme under changing
irradiance level, grid voltage sag, swell and fault conditions.
The data set is further divided into three parts: a training
set (70% of total data), a validation set (15%), and a test
set (15%). The training set is used to determine the weight
update at each iteration. The validation set is an indicator
of what is happening to the network function in-between the
training epoch, and its error is monitored during the training

FIGURE 9. Ideal PV-curve under partial shading of the SSGT system.

process. Fig. 5 shows the learning profile of the selected
ANN structure. The gradient of the cost function dropped to
a lower value within 500 iterations, which can be verified
from Fig. 5(a). Further, regression (R) value defines the
prediction precision of the ANN and closer to unity defines a
closer relationship. Fig. 5(b) illustrates the R is near to unity
indicating a successful training of employed ANN.

B. ANALYSIS UNDER DYNAMIC CHANGING CONDITIONS
The performance of the proposed ANN controller is tested
under variation of irradiation pattern and grid side voltage
change when the PV array is uniformly shaded. Fig. 6
shows the grid voltage (Vg), current injected to the grid
(ig), dc voltage or PV voltage (VPV ), PV power (PPV ),
and output power (Pac) under the step irradiation change
condition. The current magnitude changes proportionally
without deteriorating its desired shape. The Vg profile is
unaffected during this incident and the proposed control
strategy quickly scans the new MPP, which is evident from
the VPV and PPV profile. On the other hand, the dc-side
parameters are maintained at a steady-state value all along
with this test interval. Fig. 7 shows satisfactory working
under grid-side fault conditions, where voltage magnitude is
decreased by 50 % during 0.4 to 0.6 s. During this period,
the current injection to the grid is increased proportionally
to maintain the constant power flow, indicating the low-
voltage ride through ability of the proposed controller. It is
worth mentioning that, the recorded total harmonic distortion
(THD) level of the injected grid current in steady-state is
3.1 % which complies with IEEE-519 standard.

C. COMPARATIVE ANALYSIS UNDER PARTIAL SHADING
CONDITION
The effectiveness of the proposed controller is also tested
under partial shading conditions. It is compared with
the widely-used PI-controller implemented with optimized
parameters in the benchmark model [30], MPC scheme, and
the support vector machine-based ML (SVM-ML) controller
integrated with the P&O MPPT algorithm. The SVM-ML
is implemented by taking the reference of [31]. Moreover,
three PV-panels (each having 30 parallel strings and four
series modules per string) are cascaded to form the rated
SSGT PV system for performing the partial shading test,
as illustrated in Fig. 8. Among the three cascaded PV-panels,
two are partially shaded, and the same structure is considered
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FIGURE 10. Comparative performance analysis under partial shading condition obtained with, (a) PI-controller, (b) MPC controller, (c) SVM-ML
controller, (d) Proposed controller.

FIGURE 11. Performance of the benchmark model under partial shading,
(a) ideal PV-curve, (b) actual PV-profile.

for all the controllers to execute a fair comparative analysis.
The ideal PV-curve in Fig. 9 indicates there are two LMPPs,
and the power at the GMPP is ≂ 54 kW for the considered
irradiation pattern. In this context, the PI-based controller,
MPC-based control scheme, SVM-ML controller settles at
the LMPP2 (350.8 V, 47.87 kW) instead of GMPP, as shown
in Fig. 10(a-c). On the other hand, the proposed ANN-based
controller accurately tracks the GMPP (450 V, 54 kW) within
a short time, which is evident from Fig. 10(d). Further, a grid
voltage swell of 0.2 p.u. is created in Vg at 0.3 s. The grid-
side voltage, current, and power profile of the proposed ANN
controller are found to be satisfactory as compared to the
other three controllers.

Additionally, the benchmark model is also tested under
the same irradiation pattern. The benchmark model is a
double-stage PV system, where the InC MPPT algorithm
is implemented to generate the duty cycle for the dc-dc

converter [30]. From Fig. 11, the controller reaches the
steady-state operating point very late and settles at the
LMPP2 (350.8 V, 47.87 kW) instead of GMPP. This further
justifies the superior performance of the proposed control
system.

D. VALIDATION UNDER REAL WORLD DATA
The proposed controller performance is further validated
under a realistic scenario. This test case is performed by
considering the solar irradiation and temperature data of
1st June 2021 received on the solar power plant installed
on the rooftop of the Norwegian University of Science and
Technology (NTNU), Trondheim, Norway. The irradiation
and temperature profile on the mentioned date is illustrated in
Fig. 12(a). The proposed controller is still able to maintain the
grid voltage and current at the desired level without making
the system unstable, which is evident from Fig. 12(b). Despite
the highly dynamic PV-profile, the MPP is scanned at every
changing scenario and the power is maintained in accordance
with the irradiance profile.

E. COMPUTATIONAL COMPLEXITY EVALUATION
Expressions in (8), (9), and (18) are used to evaluate the
overall computational complexity. For a 2L converter control,
MPC needs to evaluate the 23 = 8 switching states.
In this aspect, the prediction and cost function is also solved
8 times. Thus, the total number of calculations involved
in the MPC control in one sampling period is ⩾ 192
(prediction horizon length is 1). Conversely, as the proposed
ANN controller uses 7 inputs (i) and 3 inputs (l), total
number of calculations by the ANN controller in terms
of hidden neurons (j) is 24j. In this work, value of j =

5 gives the best approximation. Hence, the total number of
calculations by the ANN controller is 120. This implies,
the proposed ANN controller lessens the calculations as
compared to MPC. Additionally, the calculations associated
with theMPC aremainly optimization-based and are complex
for higher-order systems, whereas simple addition and
multiplication types of calculations are involved in the ANN
controller.
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TABLE 3. Efficiency evaluation of the SSGT PV system with proposed
controller.

FIGURE 12. Performance of the proposed controller under the real-world
solar irradiation and temperature data received on 1st June 2021, on the
rooftop of NTNU, Trondheim, (a) Irradiation and temperature profile,
(b) Actual time domain results.

F. EFFICIENCY CALCULATION
One of the standard efficiency calculation method for grid-
connected PV systems is Weighted European Efficiency
(ηEU ), in which, efficiency at different operating power
is noted, and are then multiplied with the corresponding
pre-defined weight values (we) [32]. The overall efficiency
of the SSGT PV system with the proposed control system
is summarized in Table 3. It can be seen that the overall
efficiency is high in the entire operating range.

VII. EXPERIMENTAL RESULTS WITH C-HIL TEST
Experimental analysis based on a control-hardware in the
loop (C-HIL) approach is carried out to validate the

FIGURE 13. C-HIL setup using OPAL-RT platform and Arduino mega-2560
controller.

FIGURE 14. Experimental results under step irradiation change, (a) Vg,ig
and PPV , (b) VPV ,Vref , PPV and Pac .

effectiveness of the proposed ANN-based controller. The
C-HIL setup picture is presented in Fig. 13. The OPAL-RT
platform is used to emulate the power stage (PV, VSC, and
grid) using the standard RT-LAB andMATLAB library tools.
The power stage is discretised with a sampling time of 1 µ s
to mimic similar to the real-hardware system. The proposed
control system is programmed inside an Arduino controller,
where the MPPT stage runs with a sampling time of 1000 µ

s and the ANN controller runs at 100 µ s. By receiving
the desired analogue signals as input, the Arduino executes
the proposed control system to determine the PWM signals
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FIGURE 15. Experimental results under grid voltage sag, (a) Vg,ig and
PPV , (b) VPV ,Vref , PPV and Pac .

FIGURE 16. Experimental results under parameter uncertainty.

for the converter, which is emulated inside the OPAL-RT
platform. In this fashion, the control loop is closed and
prototypical results are obtained for different test scenarios.

Fig. 14 shows the real-time performance of the proposed
ANN controller under a step change in irradiation. The grid
voltage is stable and is not much influenced by this change,
although the current magnitude and power level change
in accordance with the irradiation level. The satisfactory
performance of the ANN controller under grid voltage
fluctuation can be verified from Fig. 15. As shown in
Fig. 15(a), the grid voltage is subjected to a temporary
voltage sag to 0.8 p.u. It can be noticed that the magnitude

FIGURE 17. Experimental results under partial shading condition,
(a) Vg,ig and PPV , (b) VPV ,Vref , PPV and Pac .

of grid current is elevated during this interval to maintain
the power level. Nonetheless, the PV voltage and power are
unaffected as can be seen from Fig. 15(b). Moreover, the
filter parameters are changed to 30% of their rated value as
mentioned in the Table 2 and the obtained results are depicted
in Fig. 16. The robust performance of the proposed controller
can be observed from this test case as all the signals are
maintained within the desired level.

Furthermore, to assess the efficacy of the proposed
controller under partial shading conditions, two of the PV
modules are partially shaded as done in the simulation study,
and the obtained results are demonstrated in Fig. 17. In such
a case, the proposed controller is still able to extract the
optimum power (≂ 54 kW) from the PV-array and smoothly
transfers it to the grid by maintaining the stable grid-side
voltage and current signals. Besides, the proposed controller
starts scanning the GMPP at the beginning as illustrated in
Fig. 17(b) and reaches the steady-state GMPP within a short
time interval.

VIII. CONCLUSION
In this work, a novel ANN-based controller integrated with an
improved MPPT controller has been presented for an SSGT
PV system. The ANN structure is trained offline using data
from a supervisory MPC scheme. The ANN controller is
deployed in real-time upon successful training, eliminating
the need for a complex and computationally intensive MPC
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scheme. The proposed ANN controller reduces the number of
calculations by 1.6 times that of the traditional MPC, offering
a more efficient solution. Comparative simulation studies
show that the ANN controller achieves fast and accurate
tracking performance, outperforming standard controllers.
Furthermore, the ANN controller demonstrates robust per-
formance under realistic irradiation and temperature patterns,
confirming its suitability for practical applications. Compre-
hensive C-HIL experiments, which consider various PV-side
and grid-side dynamics, validate the real-time effectiveness
of the proposed ANN controller. These results highlight the
ANN controller’s potential for improving the efficiency and
reliability of SSGT PV systems in real-world conditions.
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