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ABSTRACT We consider in this paper the practical implementation of a siftingless quantum key distribution
protocol. The protocol is considered siftingless since it combines sifting and error correction in a single step
for basis and information reconciliation, respectively. The protocol can be efficiently implemented even
assuming the existence of errors in the communication. In this case, the correlations between the legitimate
parties can be modeled by a binary symmetric channel with erasures. Specific codes for this channel are
included and simulated for intermediate block lengths. Simulation results show that a key reconciliation step
carrying simultaneously both basis and information reconciliation can be efficiently implemented.

INDEX TERMS Forward error correction, information reconciliation, quantum key distribution, siftingless.

I. INTRODUCTION
Quantum key distribution (QKD) is probably one of the
most interesting applications of quantum information [1].
It allows the exchange of an information-theoretically secure
key between two distant parties, traditionally named Alice
and Bob. In the original QKD protocol proposed by Bennett
and Brassard in 1984 (BB84) [2], Alice encodes a bit into a
quantum state choosing randomly and uniformly from two
mutually orthogonal bases and sends it to Bob through a
quantum channel. Bob is able to recover the original bit with
certainty —assuming no errors in the communication— only
if he measures using the same basis. In the BB84 protocol,
both parties agree on a common raw key discarding the states
from those measurements that do not produce a conclusive
result. This procedure, known as basis reconciliation or key
sifting, takes place through a classical public, noiseless and
authenticated channel that guarantees the legitimacy of the
communication between Alice and Bob.

In a practical implementation there are errors in the raw
key. That is, after the use of the quantum channel, Alice and
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Bob have two strings that are classically correlated but not
identical. In addition, for the sake of security, these errors
are paranoically attributed to the action of an eavesdropper—
Eve’s knowledge. Thus, a key distillation process has to be
performed by both parties in order to convert the noisy raw
key into a shared, error free, secret key. Again, a public
and authenticated discussion is carried out by the legitimate
parties to distill a secret key. This is usually implemented in
two steps: information reconciliation (error correction) and
privacy amplification [3], [4], [5]. The first one produces
a common string and the second one outputs a shorter, but
secret, key.

Several strategies have been proposed in the literature to
improve the practical implementation of the sifting step in a
QKD protocol. In [6] the authors demonstrate that the BB84
protocol continues being secure even when bases for the
encoding are asymmetrically chosen, that is, with different
probability. In the asymptotic regime, the efficiency of the
sifting procedure can be therefore made as close to 1 as
desired by biasing the basis choice without compromising
the security. Asymmetric BB84 protocols have also been
considered for practical implementations in the finite-key
regime [7], [8]. In this case the bias of the encoding choice is
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limited by the need to characterize the error rate in both bases;
the key is obtained from the values encoded in one of the
basis, while the values in the other basis are used to estimate
the error rate in the quantum channel or quantum bit error
rate. However, the choice of basis should not leak information
of whether a quantum state will be used as key material or
for error estimation, as this can compromise security [9],
[10]. Another simple modification of the BB84 protocol is
proposed in [11] and improved in [12] that leads to a method
of key expansion in which no public discussion of bases is
required, and in which a portion of the distributed key is left
to be used as a basis sequence later. Obviously, further public
discussion for error correction and privacy amplification are
still required.

A different approach was adopted in [13], [14]. In these
works, it is described a simplified version of the BB84
protocol where basis and information reconciliation (sifting
and error correction, respectively) are combined in a single
key reconciliation step. Therefore, instead of comparing
the bases used by the parties in a key sifting (or basis
reconciliation) step, the parties attempt to correct those errors
caused by preparing and measuring quantum states using
different bases, taking into account that in such a case the
outcomes are completely unknown. In coding theory this
inconclusive result is commonly referred to as an erasure,
and it is well-known that asymptotically n additional bits are
required to correct n erasures in a binary erasure channel
(BEC) [15], thus sifting can be equivalently replaced1 by an
error correction procedure on the BEC. However, in practice
we have errors caused by basis mismatch and errors in
the communication that must be reconciled together in a
single step. The protocol is considered siftingless since no
symbols are sifted away after the use of the quantum channel.
Although this approach remains largely unexplored, we show
here that its postprocessing can be easily implemented
with high efficiency for all relevant quantum bit error rate
values. For this, we develop novel error correcting codes
for the binary erasure symmetric channel which can be of
independent interest.

In this work we combine two of the approaches described
above: bases are asymmetrically chosen and bases reconcili-
ation is combined with information reconciliation in a single
reconciliation step. The protocol analyzed is, in essence,
an asymmetric version of the four-state protocol from
the family of siftingless protocols proposed by Grosshans
in [13]. The aim of this work is to examine the classical
postprocessing step of a siftingless protocol in a practical
setting, with a numerical simulation of the key reconciliation

1Note that, assuming perfect error correction in the reconciliation of bases
and there are no other errors, the amount of information required to reconcile
those inconclusive results caused by a basis mismatch is equal to the number
of basis mismatches. Since the information disclosed during this procedure is
later discarded in the privacy amplification, then the raw key length remains
the same after a key sifting procedure or the proposed error correction on the
BEC.

efficiency using real postprocessing algorithms [16], [17],
[18].

The paper is organized as follows. In Section II the protocol
is described and information leakage in the simplified key
reconciliation step analyzed. A family of codes and their
performance is described in Section III. Finally, conclusions
are presented in Section IV.

II. SIFTING-LESS QUANTUM KEY DISTRIBUTION
A. PROTOCOL
We consider here a siftingless version of BB84. This protocol
is defined in the following steps.
Step 1. State Preparation. Alice chooses uniformly at

random the string of bits (xi)i∈N and a second bit string
(ai)i∈N following a Bernoulli process with probability
Pr(ai = 0) = px . For each index in the string Alice prepares
and sends the state |xi⟩ai to Bob, where ai selects the encoding
basis, zero indicates the computational basis and one the
Hadamard basis, and xi encodes the logical bit to transmit
into one of the eigenvectors of the chosen basis.
Step 2.Measurement. For simplicity, we assume that all the

states reach Bob’s measuring device. On the receiving side
Bob chooses the binary string (bi)i∈N following a Bernoulli
process with the same probability Pr(bi = 0) = px .
The measurement basis for the incoming states are selected
between the computation and Hadamard basis following bi.
The outcomes of the measurements are stored in the binary
string (yi)i∈N.
Step 3. Parameter Estimation. Alice and Bob choose a

random subset of size t of their strings, for encoding and
measurement bases, and exchange their values on the public
channel. Let (n1, . . . , nt ) be the indexes associated with the
published values and M = {j : anj = bnj}, that is,
the positions where the encoding and measurement basis
coincide. Then, they can compute the quantum bit error rate
(QBER) as follows:

Q =
1

|M |

∑
i∈M

xi ⊕ yi (1)

We denote by X ,A and Y ,B the strings of bit and basis
values available to respectively Alice and Bob after shrinking
the original ones to eliminate the published positions.
Step 4. Partial Basis Reconciliation. Alice sends A to

Bob, that is, she informs Bob of the basis choice for every
state prepared and sent in Step 1. After this message the
correlations between Alice and Bob are as follows: for every
position i such that Ai = Bi Bob knows that his bit value
should coincide with Alice’s except with probability Q, and
for every i such that Ai ̸= Bi Bob knows that his bit and
Alice’s are completely independent, that is, this corresponds
to an erasure which we denote by e.

This description effectively allows to consider the bit
strings of Alice and Bob as the input and output, respectively,
of a binary erasure symmetric channel (BESC) as shown in
Fig. 1. Note that, when there are no erasures in the considered
channel (since a full basis reconciliation, or sifting, was
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FIGURE 1. Channel model for the BESC with erasure probability α and
crossover probability ϵ. In the analyzed siftingless protocol α is the
probability that there is a basis mismatch. The quantum bit error rate Q is
determined from the crossover probability ϵ = Q(1 − α).

carried out), it reduces to the binary symmetric channel
(BSC), that is, the channel used to model the correlations
between the bit strings of the legitimate parties in BB84 [16].
Step 5. Information Reconciliation. Alice sends to Bob an

encoding of her bit string X that allows Bob to correct the
discrepancies between X and Bob’s Y . This encoding should
be as short as possible in order to disclose the minimum
amount of information.
Step 6. Privacy Amplification. Alice selects randomly a

function fH from a family of universal hash functions. She
sends the selected function to Bob and they extract a secret
key K of length l by applying fH to the reconciled key.
The classical postprocessing or key distillation process in

the BB84 protocol corresponds to steps 5 and 6 (after a full
basis reconciliation step), and errors in the communication
are modeled by a BSC with crossover probabilityQ (QBER).
On the other hand, in the siftingless version the key
distillation includes steps 4, 5 and 6, and errors are modeled
by a BESC (as depicted in Fig. 1) with erasure probability α

and crossover probability ϵ.
The novelty of this siftingless protocol with respect to

BB84 is that both reconciliation steps, bases and information
reconciliation, are joined logically into a single one. Alice
sends her string of basis and the information reconciliation
messages together since no feedback is expected from Bob.
This differs from the one in [13] in the reconciliation step
since for simplicity we consider forward error correction
instead of reverse reconciliation. On the other hand, schemes
for privacy amplification can be used without modification
by plugging in the appropriate parameters.

B. RECONCILIATION EFFICIENCY
As a result of the given QKD siftingless protocol, the bit
strings or keys belonging to Alice and Bob can be considered
as the output of two correlated sources. Let X and Y be
two correlated discrete random variables taking values in the
binary alphabets X = {0, 1} and Y = {0, 1, e}, respectively.
Both variables can be regarded as the input and output of a
BESCwith input distribution Pr(X = 0) = Pr(X = 1) = 1/2.
The channel parameters are: α the symmetric probability of a
transition to the erasure symbol, and ϵ the probability also
symmetric of bit flipping. For the former, the transition to
the erasure symbol corresponds to the event Ai ̸= Bi (basis
mismatch) with probability α = 1 − p2x − (1 − px)2. For the

latter, the protocol allows to compute the QBER using Eq. (1),
then simply ϵ = Q(1 − α).

The problem of reconciling discrepancies (errors) between
two correlated sources is equivalent to a particular case of
source coding with side information, also known as Slepian-
Wolf coding [19], where X is the source and Y the side
information. Accordingly, given the source X and a decoder
with access to side information Y , no encoding of X shorter
than H (X |Y ) allows for a reliable decoding. This is the
minimum information that should be given to Bob that holds
the side information Y in order to allow him to recover
X . Then, the efficiency of an information reconciliation
procedure can be defined as:

fIR =
m

nH (X |Y )
(2)

where m is the length of the bit string message exchanged for
reconciling the errors in a key of length n. Note that, it holds
that fIR ≥ 1, and fIR = 1 stands for perfect reconciliation.

We can calculate the conditional entropy H (X |Y ) for the
given BESC as:

H (X |Y ) =

∑
y∈Y

p(y)H (X |Y = y)

=
1 − α

2
H (X |Y = 0)

+
1 − α

2
H (X |Y = 1) + αH (X |Y = e)

= (1 − α)h(
ϵ

1 − α
) + α

= α + (1 − α)h(Q) (3)

where h(p) is the binary Shannon entropy function given by
h(p) = −p log2 p− (1 − p) log2(1 − p).
Note that, the BESC capacity is then given by C = 1−α−

(1 − α)h(Q). Therefore, when α = 0 it holds C = 1 − h(Q),
and when ϵ = 0 it holds C = 1 − α, that is, the capacities of
binary symmetric and binary erasure channels, respectively.

Finally, in the case of a BESC the reconciliation efficiency
is given by:

fBESC =
1 − R

α + (1 − α)h(Q)
(4)

III. RESULTS
In this section we study the key reconciliation efficiency
of the siftingless QKD protocol, and compare it with the
efficiency of the common BB84 protocol with sifting, that
is, where bases are reconciled separately. As representative
situations, we consider symmetric and asymmetric versions
of a siftingless protocol with the computational basis chosen
with probability px = 0.5 and px = 0.9, respectively. The
strings that Alice and Bob hold after the fourth step can be
regarded as the input and output of a BESC, respectively.
Therefore, the symmetric and asymmetric version of the
siftingless correspond to a BESC with different erasure
parameter: α = 0.5 and α = 0.18, respectively.
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TABLE 1. Ensembles of LDPC codes for reconciling errors in the BSC and BESC.

FIGURE 2. (Color online) Reconciliation efficiency using the rate-adaptive
method described in [16]. The reconciliation method is also suited for the
BESC channel (siftingless reconciliation). LDPC codes of 104, 2 × 104 and
1.22 × 104 bits length are compared, for BB84 (black dots), symmetric
siftingless (red boxes) and asymmetric siftingless reconciliation (blue
triangles), respectively. The fundamental limit [20] for the efficiency of
one-way information reconciliation with a finite block length code of
104 bits is also depicted (black dashed line). The efficiencies correspond
to a frame error rate of εrec = 10−2.

We implemented the rate-adaptive reconciliation method
based on low-density parity-check (LDPC) codes described
in [16]. These error correcting codes are extremely efficient
only for a specific type of noise [21]. In order to assess the
achievable key rate with real postprocessing, we design and
construct codes adapted to the correlations produced by the
BB84 and siftingless protocols. First, we designed families of
irregular LDPC codes using a differential evolution algorithm
as in [22]. The codes designed (see Table 1) have thresholds
(ϵth) —which were computed using the discretized density
evolution algorithm described in [23]— close to the capacity
of the BESC. Next, we constructed instances of the code
ensembles described in Table 1 using the progressive edge-
growth algorithm [24]. The length of the codes was chosen

so that it allows to directly compare BB84 with the siftingless
protocol. In consequence, we chose codes of 104, 2×104 and
1.22 × 104 bits length for BB84, symmetric siftingless and
asymmetric siftingless, respectively. Note that, in all three
cases, the key string to reconcile without erasures is close to
104 bits length. Indeed, in the symmetric siftingless version
(with α = 0.5) there are approximately 104 erasures, while
in the asymmetric siftingless (α = 0.18) it is near 2200.
As suggested in [16], 10% of the code symbols were used

for code rate modulation, using intentional puncturing [17]
and shortening techniques. For each mother code, and
different proportions of punctured and shortened symbols,
we computed the maximum crossover probability ϵ that can
be corrected assuming a frame error rate of εrec = 10−2.
This frame error rate value was used since it provides a better
compromise between reconciliation efficiency and secret key
rate for intermediate block length codes as argued in [18]. The
numerical results2 shown in Fig. 2 report the reconciliation
efficiency of these codes in the QBER range Q ∈ [0.01, 0.1],
where a secret key could be distilled. The efficiency for the
BB84 (BSC channel for reconciliation), symmetric siftingless
(BESC channel with α = 0.5) and asymmetric siftingless
(BESC with α = 0.18) overlaps in the range from 4%,
whereas in the lowQBER region the efficiency of a siftingless
reconciliation is better. Fig. 2 also shows the fundamental
limit for one-way information reconciliation over the BSC
with finite resources [20], that is, the optimal efficiency when
reconciling errors in BB84 with a linear code of finite block
length (104 bits)

IV. CONCLUSION
In this paper we have studied a siftingless QKD protocol.
That is, a protocol in which there are no symbols discarded
after the use of the quantum channel. The advantage of
such a protocol is that both reconciliation steps, bases and

2Numerical results were computed using iterative LDPC decoding. For
decoding we used a sum-product algorithm with serial schedule and a
maximum of 200 decoding iterations.
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information reconciliation, can be joined into a single one.
We have computed the impact of a realistic postprocessing
scenario with a rate-adaptive reconciliation procedure based
on LDPC codes. For the implementation of the reconciliation
protocol we have designed and constructed families of LDPC
codes for the BESC with thresholds close to the optimal
value. Simulated results show a good average efficiency even
in the low error rate region.
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