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ABSTRACT Massive Open Online courses (MOOCs) are increasingly utilized by learners for knowledge
acquisition and skill development. Accurate extraction of emotional information fromMOOC course reviews
plays a pivotal role in enhancing the quality of MOOC courses and fostering sustainable growth of MOOC
platforms. Currently, sentiment analysis ofMOOC course reviews predominantly focuses on general aspects,
overlooking the hierarchical structure of text. Moreover, recurrent neural networks suffer from recursion
limitations leading to reduced computational efficiency, while word embedding fails to address the issue of
one-time polysemy. In this study, we propose ALBERT-DCNN-HAN (ADHN), an advanced text sentiment
analysis model based on Dilated Convolution Neural Network and Hierarchical Attention network derived
from ALBERT (A Lite BER) Network. The model primarily relies on the continuous updating of DCNN
to compensate for the lack of hierarchical structure in deep neural networks, while also addressing the
conflict between traditional word segmentation techniques and the trend towards emotion expression. Firstly,
we employ the ALBERT model to generate ALBERT word vectors that integrate contextual features and
dynamic semantics. ALBERT further incorporates contextual features from the sentence in which each word
is located into its corresponding word vector, thereby generating distinct semantic vectors based on different
meanings of polysemous words. Subsequently, these ALBERT word vectors are sampled and computed
using DCNN to extract text features across multiple scales of context. Moreover, in order to capture both
sentence-level and word-level characteristics comprehensively during text emotion expression, we fully
consider hierarchy by integrating a hierarchical attention mechanism. Finally, Conditional random field
(CRF) is employed for emotion prediction. Through analysis of information from empirical dataset derived
from reviews of MOOC courses, our results demonstrate that this model effectively extracts valuable textual
information and achieves an improved bias classification accuracy on review datasets compared with other
neural network models.

INDEX TERMS MOOC, dilated convolution, HAN (hierarchical attention network), sentiment analysis,
ALBERT (A Lite BER).

The associate editor coordinating the review of this manuscript and
approving it for publication was Sukhdev Roy.

I. INTRODUCTION
With the swift progress of Internet technology, massive Open
online Courses (MOOC) [1], [2], an online learning platform,
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have garnered significant attention. While participating in
these courses, learners frequently provide comments in
the designated section. These reviews encompass not only
assessments of course quality but also direct feedback on
technical issues encounteredwith theMOOCplatform. Given
the substantial volume of comment data, manual methods for
statistical analysis prove challenging. Employing sentiment
analysis is deemed optimal to ascertain the emotional
inclination within comment texts and effectively extract
and mine a vast array of valuable information from them.
This approach not only aids learners in selecting suitable
courses but also assists platform administrators in identifying
potential problems.

Emotional analysis of text is a subjective process that
leverages natural language processing techniques to extract
and analyze the emotional nuances within the text. Currently,
there are three main approaches for emotion analysis: emo-
tion dictionaries, machine learning, and deep learning [3], [4].
When using an emotion dictionary approach, it is crucial to
select a high-quality and comprehensive emotional lexicon in
order to accurately capture the emotional content of words.
On the other hand, machine learning-based methods rely
on manually created and extracted features for word-level
emotional analysis. In recent years, with advancements in
various learning technologies, deep learning has gained
widespread adoption.

The research motivation of this paper lies in the following
aspects:

(1) The traditional deep learning network model overlooks
the hierarchical structure of text, while convolutional neural
networks fail to effectively capture the sequential information
between word sequences. Additionally, recurrent neural net-
works suffer from recursion, resulting in low computational
efficiency.

(2) Furthermore, the implicit expression and blurred
boundaries of emotional words pose challenges for polysemy
and emotional analysis.

To address the aforementioned issues, this paper proposes
a text sentiment analysis model that leverages ALBERT’s
dilated convolutional neural network and hierarchical atten-
tion mechanism. By utilizing ALBERT’s word vectors,
this model captures the depth of words and embeds
contextual human dimensions to extract multi-scale context
information through a dilated convolutional neural network.
This compensates for the lack of hierarchical structure
in deep neural networks and facilitates the extraction of
multi-scale context information. Furthermore, we introduce
a hierarchical attention mechanism to capture correlations
and semantic information among words in the text, enabling
more accurate modeling of long-distance dependencies
between sentences while synthesizing sentence-level and
word-level information. Experimental results demonstrate
that our proposed model achieves promising performance in
critical emotion analysis.

The main contributions of this paper are as follows:

(1) We propose a model based on ALBERT-DCNN,
where the ALBERT embedded layer is utilized as input and
combined with hierarchical attention mechanism for hierar-
chical text analysis. To enrich the embedded information,
we introduce two modes, namely sentence and word.

(2) In order to further enhance the ability of extracting
multi-scale features, we adopt parallel multi-void rate void
convolution groups and expand the receptive fields in
different ranges to enrich the diversity of features within the
same layer.

(3) We employ a hierarchical attention network (HAN)
to extract internal structural information from key words
and sentences, capturing characteristics at different levels
to capture contextual relevance effectively and thereby
improving original text analysis capabilities.

The paper is structured as follows: Section I provides
an introduction to the background, research motivation,
and main contributions of sentiment analysis. Section II
presents a comprehensive review of related work in the
field of sentiment analysis. In Section III, we present the
architecture and principles underlying our proposed model.
Section IV details the experimental setup, results comparison,
and analysis. Finally, Section V summarizes the key findings
of this study and outlines future directions.

II. RELATED WORK
Currently, there exist three types of emotion analysis
methods: emotion dictionary, machine learning, and deep
learning. The approach based on an emotion dictionary
necessitates the artificial construction of a high-quality and
comprehensive emotion lexicon to accurately capture the
emotional content of text; however, it overlooks contextual
semantic information. The machine learning-based method
requires feature extraction followed by classification using
classifiers such as support vector machines [5], naive
Bayes [6], or deep forest [7]. Nevertheless, these approaches
rely on manual feature engineering.

In recent years, deep learning networks have been
extensively employed for sentiment analysis due to their
ability to automatically extract text features, which exhibit
characteristics such as low labor cost, minimal domain
knowledge requirements, and wide applicability. Attardi and
Sartiano [8] utilized a convolutional neural network (CNN)
for emotion analysis and achieved promising results on
three-category emotion datasets. However, CNNs are limited
in effectively capturing the sequential information of word
sequences. To address this limitation, Bahdanau et al. [9]
employed Recurrent Neural Networks (RNNs) for sentiment
analysis as they can capture semantic features of the text;
however, RNN’s recursive nature leads to computational
inefficiency and inadequate handling of long-distance textual
information. Long Short-Term Memory (LSTM) models
were introduced as an improvement to overcome these
challenges. Zhang et al. [10] incorporated LSTM with
attention mechanism to enhance model efficiency and
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demonstrated that LSTM is capable of extracting semantic
features more effectively than other approaches. Behera et al.
[11] highlighted the effectiveness of deep convolutional
networks in local feature selection while emphasizing that
recursive networks like LSTM yield favorable results in
sequence analysis tasks involving lengthy texts. By com-
bining CNN and LSTM models, issues related to slow
convergence and low recognition accuracy are resolved while
enabling extraction of deep abstract features from the data
at hand.Jiang et al. [12] proposed a fine-grained LSTM-
CNN classificationmodel incorporating attentionmechanism
wherein Bi-LSTM is used for contextual information retrieval
between text contexts followed by addition of attention
mechanism prior to CNN pooling stage thereby preserving
lost information during pooling process leading to improved
accuracy in text emotion classification tasks. Cui et al. [13]
proposed a discrete self-attention mechanism that utilizes
sparse substitution instead of the softmax algorithm to
induce sparsity in sentiment analysis. Zhang et al. [14]
employed convolution operation and attention mechanism to
capture semantic features for extracting feature information
from multi-word N-gram grammar, thereby accomplishing
sentiment analysis tasks. Gan et al. [15] introduced the
CNN-BiLSTM model with an attention mechanism, which
incorporates a multi-channel extended joint structure capable
of extracting both original context features and high-
level multi-scale context features, resulting in significantly
improved accuracy across multiple datasets; however, this
model structure is complex as it requires multiple channels of
CNN-BiLSTM for feature extraction. Wu et al. [16] proposed
a word vector-based representation method and incorpo-
rated BiLSTM and an attention mechanism to effectively
address issues related to inaccurate word segmentation and
dependency on attention parameters. Huang et al. [17] put
forward ERNIE2.0-BiLSTM-Attention model for implicit
emotion analysis task, which can better capture the context
semantics of implicit emotion text. Chen et al. [18] used
memory network and hierarchical attention mechanism to
obtain text representation. Li et al. [19] proposed a deep
self-attention Bi-LSTM model to enhance the emotional
information related to the object. In order to solve the problem
of high computational complexity of LSTM threshold
unit, Chen et al. [20] proposed an alternative scheme of
LSTM-Gated Recurrent Unit,GRU). Compared with LSTM
model, GRU model has a simpler structure and can greatly
improve the training and reasoning speed of the model.
Using bidirectional slice GRU to enhance the depth of
semantic extraction shows the necessity of extracting depth
information. The above models can’t model the complete
context well and ignore the hierarchical structure of the
text, which leads to the lack of rich emotional features.
Attention mechanism is only used to assign higher weights
to important features after feature extraction, and the overall
training speed of the model will also decrease due to
the cyclic dependence mechanism of the recurrent neural

network. Yang et al. [21] proposed a model for classifying
emotions at the aspect level using graph neural networks.
The model utilizes graph convolutional networks to enhance
node representation, allowing it to learn global semantic
and syntactic structures of sentences effectively. He et al.
[22] introduced a trapezoidal structure bidirectional LSTM
model that performs similarly to the standard structure
but with fewer parameters. Zhang et al. [23] proposed an
SA-Model that integrates multiple encoders to extract text
features at different levels, thereby enhancing the accuracy
and generalization capability of the model for analyzing
poetic emotions. Rahman et al. [24] introduced a multi-layer
classification approach for supervised machine learning on
social media texts, while Mohamed et al.’s study [25]
demonstrated the superior performance of LexDeep models
over support vector machines in sentiment analysis tasks
specific to Twitter datasets. Xu et al.’s work [26], based
on BERT and hypergraph dual attention mechanism, sig-
nificantly improved sentiment analysis accuracy for short
online Chinese texts by dynamically extracting features
and aggregating correlation information through dual graph
attention mechanisms. Liu et al. method [27], which incor-
porates self-attention and dynamic word/sentence character-
istics, effectively encodes comments for emotion analysis
purposes.

Effectively expressing word vectors in sentiment analysis
is of utmost importance. Commonly employed methods
for word embedding learning include word2vec [28] and
GloVe [29]. However, these models only provide a sin-
gle vector representation for the same word in different
contexts, which fails to effectively address the issue of
word polysemy. Additionally, static word vectors are unable
to capture polysemy adequately. The Bert (Bidirectional
Encoder Representation from Transformers) model, based on
Transformer architecture, exhibits strong language represen-
tation and feature extraction capabilities [30]. Nevertheless,
this model suffers from poor reproducibility and slow
convergence speed, necessitating substantial computational
power. To enhance the slow convergence of the BERT
model, Lan et al. [31] proposed ALBERT (A Lite BERT),
a two-way coding feature representation model that pre-trains
extensive text data and subsequently fine-tunes it according
to downstream tasks to improve downstream prediction
performance. The ALBERT pre-training language model
serves as a bidirectional Trandformer encoder-based feature
representation that can extract key features from text while
minimizing parameter usage. In order to address the limi-
tations of one-time polysemy and accurately express word
features, this study employs the ALBERT model to obtain
embedding vectors that combine contextual features with
diverse semantics. These word vectors not only encompass
semantic characteristics inherent in words but also integrate
contextual attributes thereby compensating for deficiencies
observed in traditional approaches towards word embedding
methods. Moreover, owing to its lightweight nature, it is
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well-suited for large-scale deployment with notable engineer-
ing application advantages.

In recent years, the field of MOOCs has witnessed numer-
ous studies. Tao et al. [32] employed a sentiment analysis
approach based on emotional and semantic features to com-
prehend the emotions exhibited by MOOC students through
their participation and emotional behaviors. This study pri-
marily relies on traditional sentiment analysis techniques and
semantic feature extraction methods. Hew et al. [33], on the
other hand, utilized a supervised machine learning method
that combines sentiment analysis with gradient boosting trees
(Gradient Boosting Trees) to predict students’ satisfaction
with MOOC courses. Although this method is rooted in
conventional machine learning technologies and sentiment
analysis, it does not incorporate deep learning models.
Li et al. [34], however, applied natural language processing
(NLP) for performing sentiment analysis on learners’ com-
ments while exploring key factors in MOOC teaching. Their
study focuses on identifying characteristics of successful
courses through student comments and places greater empha-
sis on pedagogy rather than utilizing deep learning techniques
or traditional sentiment analysis approaches alone. This
paper proposes the ADHN model which integrates multiple
deep learning technologies including contextual semantic
understanding from ALBERT, multi-scale feature extraction
from DCNN, and hierarchical attention mechanism from
HAN to address computational inefficiency issues associated
with RNN as well as polysemy-related problems encountered
in traditional word embedding methods during text sentiment
analysis process. The proposed model demonstrates signif-
icant improvements thereby enhancing the quality and user
experience ofMOOC courses thus validating its effectiveness
in practical applications.

III. ALBERT-BASED DILATED CONVOLUTION NEURAL
NETWORK AND HIERARCHICAL ATTENTION MODEL
A. OVERALL STRUCTURE
The ALBERT-DCNN-HANmodel, as illustrated in Figure 1,
is proposed in this paper by integrating the Albert and
Han models. It comprises several components: the ALBERT
embedding layer, DCNN module, hierarchical attention
module, and CRF module. Firstly, to address the limita-
tion of traditional word embedding methods in expressing
multiple meanings, this study generates character-level word
vectors based on pre-training with the ALBERT model.
Subsequently, the ALBERT word vector employs parallel
dilated convolution groups with various dilated rates to
extract text semantic features and aggregate multi-scale
semantic dependencies. Simultaneously, the HAN module
is utilized to consolidate both sentence-level and word-
level information by attending to local contextual cues that
highlight frequently occurring characters and words within
a sentence. The features learned by the DCNN module
(H ) and the features learned by the HAN module (d) are
concatenated. Subsequently, a Linear layer is employed to
linearly combine the features from different feature maps,

thereby extracting higher-level feature information that can
be effectively utilized for enhanced classification. Finally,
a CRF module is incorporated for comprehensive sentence
output modeling.

B. BERT MODEL
The language model in natural language processing is
primarily utilized to compute the probability of a sequence of
linguistic elements X1,X2, · · · ,Xn. The calculation method
is shown in Eq. (1).

p(S) = p(X1,X2, · · · ,Xn) =
∏n

i=1
p(X |X1,X2, · · · ,Xi−1)

(1)

The conventional unidirectional neural network language
model fails to incorporate contextual information, while
simultaneously lacking the ability to capture word ambiguity
due to fixed word embeddings. The BERT model [35], [36],
[37] and the ELMo model [38], [39], [40], [41] demonstrate
proficient solutions to the aforementioned issues. In com-
parison with the ELMo model. The benefits of the GPT
(Generative Pre-Training) [42] and ELMo [43] models are
combined in the BERT model, which uses a bidirectional
Transformer [43] as an encoder. In contrast to LSTM,
it makes use of a superior transformer. On the other hand,
the bidirectional language model enables BERT to obtain
contextual information, which in turnmakes word embedding
richer in semantic information.

Figure 2 depicts the layout of the transformer coding unit.
Transformer mainly uses the idea of attention mechanisms
and obtains the internal relations of the sequence through
self-attention. The calculation method is as shown in
Eq. (2).

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (2)

The calculation method is demonstrated in Eq. (3)-(4)
through the results obtained from the splicing of multi-head
structures.

MultiHead (Q,K ,V )

= Concat(head1, head2, · · · , headh)WO (3)

head i = Attention(QWQ
i ,KWK

i ,VWV
i ) (4)

The Transformer coding unit incorporates residual con-
nections and layer normalization to enhance the network’s
trainability, as depicted in Eq. (5)-(6).

LN (xi) = α ×
xi − µL√
σ 2
L + ε

+ β (5)

FFN = max (0, xW1 + b1)W2 + b2 (6)

The input incorporates positional encoding to address the
issue of attention mechanism overlooking temporal charac-
teristics in time series data. The computational approach is
illustrated in Eq. (7)-(8).

PE (pos,2i) = sin(pos/100002i/dmodel ) (7)
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FIGURE 1. ALBERT-DCNN-HAN model structure.

PE (pos,2i+1) = cos(pos/100002i/dmodel ) (8)

The position embedding and word embedding are concate-
nated and subsequently fed into the BERT model.

Although the model structure is only an improvement of
GPT and ELMO, BERT innovatively put forward two tasks:
‘‘Masked language model’’ and ‘‘next sentence prediction’’.
The masked language model randomly selects 15% of
the of the words in the corpus to be replaced by the
mask, and 80% of these selected words are replaced
normally, 10% are replaced by another word, and 10%
remain unchanged. The subsequent sentence prediction task
involves selecting two sequentially connected sentences from
the document as positive samples and randomly choosing
sentences from different documents to follow the first
sentence as negative samples during pre-training of the
language model. These tasks capture information between
words and sentences, respectively, and integrating them
during training can enhance the global expressiveness ofword
embeddings.

FIGURE 2. Transformer encoder.

C. IMPROVEMENT OF ALBERT
The ALBERT model incorporates two parameter reduction
techniques to optimizememory consumption and enhance the
training efficiency of BERT.

To eliminate unnecessary special characters such as
punctuation marks and expressions in the dataset, regular
expressions are employed for data cleansing and extraction
of meaningful words. Subsequently, the text is segmented
at the character level using a word divider, followed by
removal of stop words. The characters are then encoded
using a vocabulary, with non-existent characters being
replaced by [UNK]. Additionally, preceding and succeeding
the text, sentence vector [CLS] and clause marker [SEP]
are added respectively. Finally, as one of the inputs to
the ALBERT model, the character vector is transformed
into a dynamic word vector incorporating contextual
information.

The ALBERT model incorporates word embedding matrix
decomposition and cross-layer parameter sharing strategy
to optimize the number of parameters and enhance its
semantic comprehension capability. Additionally, it replaces
the original Next Sentence Prediction (NSP) task with
Sentiment Order Prediction (SOP) task. Figure 3 illustrates
the architecture of thismodel, whereX1,X2, · · · ,Xn represent
words in a text sequence, and E1,E2, · · · ,En denote the
corresponding extracted textual feature vectors.

The ALBERT model addresses the issue of a large number
of BERT parameters by utilizing bidirectional Transform to
capture text characteristics in its encoder output. Building
upon BERT, ALBERT introduces three enhancements.

1) WORD EMBEDDING VECTOR FACTORIZATION
By incorporating large word features into matrix decomposi-
tion, we obtain two relatively compact matrices, effectively
separating the hidden layer. Through factorization, the
model’s complexity is reduced from O(VH) to O(VE+EH),
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FIGURE 3. Structure of ALBERT model.

resulting in the following changes in complexity:

O (VH)→ O (VE + EH) (9)

The length of the vocabulary is denoted by V in Eq. (9),
while H represents the size of the hidden layer. E indicates
the word embedding size, and when E ≪ H , it significantly
reduces the parameter quantity.

2) CROSS PARAMETER SHARING
To address the issue of excessive parameters, ALBERT
employs a multi-layer parameter sharing strategy to effec-
tively reduce the number of parameters. This includes
parameter sharing in both the fully connected layer and
attention layer. Such an approach ensures that the model
network does not suffer from an increase in parameter count
as its depth increases.

3) PARAGRAPH CONTINUOUS TASK
The ALBERT model enhanced the NSP (Next Sentiment
Prediction) task in BERT and introduced the SOP (sentence-
order prediction) task to mitigate the impact of topic
recognition. This approach enables the selection of positive
and negative samples within a single text, independent of
sentence order.

The ALBERT pre-training model, functioning as a word
embedding layer, incorporates the self-attention mechanism
to effectively capture the interdependencies between words
and generate dynamic word vectors with enhanced represen-
tational capacity. Notably, the initial vector in ALBERT’s
word vector sequence is denoted by [CLS], which can be
leveraged for downstream classification tasks. Additionally,
the clause vector [SEP] serves as a separator to demarcate
distinct sentences.

D. DCNN MODULE
The second layer serves as the feature extraction layer in the
DCNNmodel, aiming to capture the emotional information of
textual content within a global context and mitigate potential
recursion issues.

The CNN model demonstrates limited proficiency in
learning from sequential dimensions and requires the stack-
ing of multiple layers to effectively capture contextual

information. In contrast, the proposed neural network with
dilated convolution adeptly addresses this issue. Dilated
convolution primarily differs from ordinary convolution in
terms of its design for the convolution kernel. Furthermore,
this type of dilated convolutional neural network is not
significantly constrained by CNN, thereby facilitating feature
map extraction and ensuring the preservation of feature
integrity. Additionally, this network exhibits hierarchical
recognition capabilities for text structure without compromis-
ing spatial dimensionality. During the process of convolution,
dilated convolution expands the receptive field by selectively
skipping elements.

In essence, the objective of the dilated convolutional net-
work is to retain dense emotional analysis information while
maximizing the receptive field. To achieve this, it is necessary
to eliminate the pooling layer in the convolutional neural
network to prevent loss of emotion analysis features during
pooling. Additionally, increasing the receptive field requires
transforming the convolution layer into a dilated convolution
layer. The primary purpose of dilated convolution is to expand
the receptive field through multiple consecutive dilations.
The traditional convolution operation and its corresponding
calculation formula are presented in Eq. (10).

z (x, y) = σ
(∑

i,j
f (x + i, y+ j) ∗ g (i, j)+ b

)
(10)

z(x, y) = σ
(∑

i,j
f (x + i ∗ d, y+ j ∗ d) ∗ g(i, j)+ b

)
(11)

The working principle of dilated convolution is illustrated
in Figure 4. Dilated convolution employs a 3∗3 convolution
kernel with an expansion degree of 0, as depicted in
Figure 4(a). The operational procedure resembles that of
general convolution; however, the pivotal component in
dilated convolution neural networks lies within the convo-
lution kernel. Upon completion of the operation, each grid
effectively represents information from the original 3∗3 grid,
thereby resulting in a receptive field size of 3∗3. The dilated
convolution kernel depicted in Figure 4(b) has a size of 3∗3,
and the expansion degree d is set to 2. In Figure 4(b), despite
having an expansion degree of 2, the actual spatial extent of
the convolution kernel is highlighted in red. This convolution
operation is performed on the feature map subsequent to the
convolution operation shown in Figure 4(a). Consequently,
compared to the convolution in Figure 4(a), there is a
modification in the effective receptive field of the feature map
resulting in a size change to 7∗7. The convolution kernel in
Figure 4(c) exhibits a size of 3∗3 and an expansion degree (d)
of 4, resulting in a receptive field of 15∗15. When combined
with the conventional three-layered 3∗3 convolution kernel,
the receptive field expands to reach dimensions of 7∗7.
This clearly demonstrates that the integration of dilated con-
volution kernels exponentially increases the receptive field
value. Consequently, by employing this structure, dilated
convolutions can effectively eliminate pooling processes
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without sacrificing information loss while enhancing each
convolution output’s informational content.

Convolution operation primarily involves the identification
and analysis of emotions in a physical context, aiming to
extract relevant characteristics. If the convolution kernel
effectively identifies emotional features during region analy-
sis, the activation value of the feature can be computed using
the aforementioned formula. Consequently, a larger Z value
will activate in the new feature map Z, thereby accomplishing
emotional feature identification. However, it is crucial to
note that each layer of convolutional layers contains different
convolution kernels for extracting distinct information during
feature extraction and recognition processes. The local
connectivity and weight sharing advantages inherent in
convolutional layers make them more advanced than fully
connected layers. Moreover, despite being composed of only
a few parameters, convolution kernels possess remarkable
sensitivity towards identifying pertinent information. Specif-
ically regarding emotional details identification, multiple
cooperation between convolution kernels is required to
complete feature extraction in emotional analysis while
significantly expanding receptive fields and enhancing recog-
nition capabilities for fundamental features obtained through
convolutions.

The DCNN module proposed in this study is a parallel
multi-dilated rate dilated convolution group, which aims to
investigate the semantic interdependence among words at
varying distances and capture contextual information across
different scales. E is the word vector matrix, E ∈ Rn×d .
Where n represents the number of words and d represents the
dimension of theword vector. Dilated convolution can expand
the basic convolution kernel to different sizes by different
expansion rates. F is defined as the basic convolution kernel,
and its receptive field is h×w, where h represents the height
of the convolution kernel and w represents the width of the
convolution kernel. The expansion rate is (γ,∅)(γ,∅ ≥ 1),
and the receptive field of the expanded dilated convolution
kernel Fγ is D(h, γ ) × D(l,∅). D (h, γ ) = (h− 1) × γ +

1,D (l,∅) = (l − 1) × ∅ + 1. In this paper, the basic
convolution kernel with h = 3,w = 3 is selected, and the
dilated operation is performed on the first dimension of the
basic convolution kernel (∅ = 1). The receptive field of Fγ

is (2γ+1)×3.
The expression of the characteristic graph Hγ after dilated

convolution can be formulated as Eq. (12).

Hγ
= f (Conv(Fγ ,E)) (12)

Conv stands for convolution operation, f () stands for
activation function, and ReLu activation function is adopted
here. Let the number of channels of Fγ be cγ , then
Hγ
∈ Rn×d×c

γ
. In order to mitigate overfitting, the Dropout

operation is employed subsequent to the dilated convolution
operation, thereby reducing model parameters and mitigating
the risk of overfitting. Eq. (13) can be reformulated as

follows:

Hγ
= Dropout

(
ReLu

(
Conv

(
Fγ ,E

)))
(13)

The feature maps from each dilated convolution layer
within the parallel multi-dilated rate dilated convolution
group are integrated to effectively capture contextual seman-
tic features across various scales. The fused text features
H ∈ Rn×d×c, c =

∑
cγ .

The feature map after dilated convolution is preserved
to match the input feature size by filling each dilated
convolution layer with zeros. Additionally, employing an
equal number of channels in each dilated convolution layer
not only simplifies model parameter configuration but also
facilitates parameter sharing among these layers. In this
study, we enhance the expressive capacity of our model by
aggregating multi-scale semantic features through parallel
multi-void volumes while reducing the number of model
parameters through parameter sharing.

The architecture diagram of the DCNN module proposed
in this study is illustrated in Figure 5. The word vector
matrix E, which has been processed by the ALBERT word
embedding layer, is separately fed into 3 × 3 dilated
convolutions with dilation rates of 1, 2, and 3. Subsequently,
the dilated convolution operation is performed to generate
three feature maps: H1, H2, H3. Finally, these three feature
maps are fused to obtain the ultimate feature map H .

E. HIERARCHICAL ATTENTION NETWORK (HAN)
For comprehensive emotional analysis of text, it is essential to
consider contextual semantic relationships and pay attention
to the significant impact of certain words on sentence emotion
expression. To analyze text features from various angles
and levels, this paper proposes a novel hierarchical attention
model (HAN) that facilitates text analysis. From a sentence
perspective, expanding attention mechanisms at both word
and sentence levels can better capture long-distance depen-
dencies between sentences and comprehend their informa-
tional content. The use of hierarchical attention mechanism
not only improves performance but also dynamically focuses
on sentences and words that aid in text analysis.

The HAN module is composed of four main layers: word
coding layer, word attention layer, sentence coding layer,
and sentence attention layer. Let L represent the number of
sentences in the text, and T represent the number of words in
each sentence. The structure of the HANmodule is illustrated
in Figure 6.

1) WORD CODING LAYER
Word-level coding is achieved through the use of a two-way
Gated Recurrent Unit (GRU). GRU replaces the complex
relationship between cell state and hidden state in LSTM
with a linear relationship between hidden state and candidate
hidden state, resulting in a simpler structure that is easier
to calculate and train. The information transmission control
structure of GRU is also relatively simple, consisting mainly
of Update Gate and Reset Gate. The update gate determines
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FIGURE 4. Transformer encoder.

FIGURE 5. DCNN module structure diagram.

the ratio of previous moment’s hidden state information
to current moment’s hidden state information as well as
the ratio of current candidate hidden state information to
current hidden state, while the reset gate determines the ratio
of previous moment’s hidden state information to current
candidate hidden state. At time t, updating formulas for
GRU’s updated gate, candidate hidden states, reset gate and
its ownhidden states are given by Eq. (14)-(17).

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (14)

zt = σ (Wzxt + Uzht−1 + bz) (15)

h̃t = tanh(Whxt + rt ∗ (Uhht−1)+ bh) (16)

rt = σ (Wrxt + Urht−1 + br ) (17)

where ht , h̃t , ht−1 represent the hidden state at time t ,
the candidate hidden state and the hidden state at time
t − 1. xt represents the input word vector, t∈ [1,T ], and
T represents the number of words in the sentence. zt
and rt denote update gates and reset gates. tanh and σ

represent tanh activation function and sigmoid activation
function respectively. Wz,Wh, Wr , Uz, Uh, Ur represent
the corresponding weights of GRU neurons. bz, bh, br
represent the deviation of GRU neurons. ∗ stands for element
multiplication (Hadamard product).

The structure of the word coding layer is represented as
follows:

h⃗it = ⃗GRU (xit ), t ∈ [1,T ] (18)
←

h it =
←

GRU (xit ), t ∈ [T , 1] (19)

Among them, h⃗it and
←

h it respectively represent the forward
hidden state and the reverse hidden state of the word wit . The
two words are merged to get the bidirectional hidden state
hit =[h⃗it ,

←

h it ] of the word wit .

2) WORD ATTENTION LEVEL
Firstly, the hidden layer vector uit is obtained by applying
a basic multi-layer perceptron network operation to the
bidirectional hidden state hit of the word wit generated by the
word coding layer. Subsequently, we introduce the softmax
operation to derive the weight ait , and finally obtain the
sentence feature si through summation. The corresponding
formula is expressed as Eq. (20)-(22).

uit = tanh(Wwhit + bw) (20)

ait = softmax(uw, uit ) (21)

si =
∑

t
aithit (22)

Among them, Ww, uw and bw represent the weight
parameters and deviations associated with the word vector
layer respectively.

3) SENTENCE CODING LAYER
The sentence feature si is encoded in a manner similar to that
of the word coding layer, following the formulation expressed
as Eq. (23)-(24).

h⃗i = ⃗GRU (si), i ∈ [1,L] (23)
←

h i =
←

GRU (si), i ∈ [L, 1] (24)

L stands for the number of sentences. Combining the
two-way hidden states of the sentence si, we get hi = [h⃗i,

←

h i].

4) SENTENCE ATTENTION LEVEL
The structure of the sentence attention layer bears resem-
blance to that of the word attention layer. Emotional feature
d is generated through the utilization of the sentence
attention layer. The calculation formula can be represented as
Eq. (25)-(27).

ui = tanh (Wshi + bs) (25)

ai = softmax (us, ui) (26)

d =
∑

i
aihi (27)
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FIGURE 6. HAN module structure diagram.

Among them,Ws, us and bs respectively denote the weight
parameters and biases associated with the attention level of
the sentence.

The purpose of the HAN module is to analyze the
features extracted by the ALBERT-DCNN module in
all directions. Additionally, the sentence attention layer
enables more accurate capture of long-distance dependen-
cies between sentences, effectively integrating fundamental
information from both words and sentences. By lever-
aging a hierarchical attention mechanism, it facilitates
comprehensive analysis at both word and sentence levels.
The introduction of this hierarchical attention mechanism
significantly enhances emotional analysis accuracy while
dynamically attending to text segments that contribute to
analysis. Furthermore, the HAN module assigns distinct
attention weights to semantic coding, thereby discerning
vector semantic coding importance and improving model
accuracy.

F. CRF LAYER
The CRF is widely employed in natural language processing
due to its ability to model sequential data and has numerous
applications in this domain. On the other hand, the Deep
Neural Network (DNN) excels at capturing long-range
information and considers contextual details of input word
(character) vector sequences; however, it overlooks tag
dependencies despite their strong correlation. To address this
limitation, we introduce CRF into our study for predicting
optimal tags of text vectors.

Reconfigure the architecture by establishing a connection
between the output H of the DCNN module and the output D

of the HAN module, as depicted in Eq. (28).

Mi = tanh(WM (Hi +MHead i)+ bM ) (28)

Mi is the input of CRF layer. Where WM and bM
respectively represent the weight matrix and the bias term.

The input sequence is X = {xi}N1 , and the score of
the corresponding prediction sequence S = {si}N1 can be
formalized as shown in Eq. (29).

s(X , S) =
∑N

i=1

(
Oi,si + Tsi−1,si

)
(29)

Among them, the vector of the ith column in the model
input matrix is the vectorMi obtained from Eq. (28), andOi,si
represents the non-normalized probability that the input xi
is mapped to the tag si. A label transition matrix T , Tsi−1,si
is introduced to represent the transition probability of two
consecutive labels.

The specific scoring method can be expressed as shown in
Eq. (30):

P
(
S
X

)
=

es(X ,S)∑
Ŝ∈Sx

e
s
(
X ,Ŝ

) (30)

Among them, Ŝ represents the real tag sequence, and Sx
represents all the useful tag sets.

When conducting training, the output sequence can be
obtained through the utilization of the likelihood function.
The specific computational approach is illustrated in Eq. (31).

Log
(
P

(
S
X

))
= s (X , S)− log

(∑
Ŝ∈Sx

e
s
(
X ,Ŝ

))
(31)
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When determining the optimal label, it is assumed that the
sequence S∗ yielding the highest probability can be derived,
as demonstrated in Eq. (32).

S∗ = argmaxS
(
X , Ŝ

)
(32)

In the training phase, the function loss can be minimized
through backpropagation, while during testing, the Viterbi
algorithm enables us to obtain the label sequence with
maximum probability.

IV. EXPERIMENTAL ANALYSIS
A. DATA SET AND EVALUATION CRITERIA
In order to validate the model, this paper collected a
comprehensive dataset from China’s MOOC website com-
prising 80,000 authentic comments written in Chinese
characters using web crawling technology. These comments
were specifically obtained for exceptional computer science
courses and originated from diverse countries worldwide.
The distribution of this dataset is presented in Table 1, while
further details are provided in Table 2.

TABLE 1. Data set polarity statistics.

TABLE 2. Demonstration of a sentiment polarity label.

In order to validate themodel, this paper employsAccuracy
(Acc) andMacroF1 as indicators for model verification, with
Eq. (33) presented below.

P =
TP

TP+ FP

R =
TP

TP+ FN
MacroP = 1

n

∑n
i=1 Pi

MacroR = 1
n

∑n
i=1 Ri

MacroF1 = 2×MacroP×MacroR
MacroP+MacroR

Acc = T
N

(33)

where P represents precision, R represents recall, and n
represents the number of classifications. TP denotes the
count of correctly predicted positive samples. TN denotes the
count of correctly predicted negative samples. FP denotes
the count of falsely predicted positive samples among actual
negatives. FN denotes the count of falsely predicted negative
samples among actual positives. MacroF1(F1) signifies the
average value of F1 for each category. T stands for true
positive sample and N stands for total sample.

B. EXPERIMENTAL PLATFORM
The experimental platform and environment utilized in this
study are presented in Table 3.

TABLE 3. Experimental platform.

C. EXPERIMENTAL PARAMETERS
The performance and recurrent processing ability of the
model during training can be influenced by numerous
parameters and factors. The model parameters are presented
in Table 4. The word vector dimension employed in this
study is set to 128. Themaximum sequence length considered
is 100. Dropout regularization technique is implemented
to mitigate overfitting, with a dropout rate of 0.3, while
the Adam optimizer is utilized for optimization purposes.
The initial learning rate is configured as 0.0001, and a
batch size of 64 samples per iteration is adopted throughout
the training process. A total of 30 epochs are executed
for convergence achievement. The ALBERT-DCNN module
consists of three convolutional layers with a kernel size of
3 × 3 and 128 channels, employing the ReLU activation
function. The dilation rates γ1, γ2 and γ3 are respectively set
to 1, 2, and 3. Additionally, the hidden layer within HAN has
a dimensionality of 128. The Linear Layer neuron is set to 64.

TABLE 4. Parameter setting.

D. EMBEDDED LAYER ANALYSIS
In this paper, the results of two embedding layers are
compared by experiments at word level and word segmen-
tation level respectively. Text data is segmented according to
word level, and word vectors are randomly initialized. The
accuracy results of two embedding layers of the model are
shown in Table 5.
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TABLE 5. Model accuracy with different representation of embedded
layer.

The present study compares the outcomes of two embed-
ding layers through experiments conducted at both the word
level and word segmentation level. Textual data is segmented
based on individual words, with randomly initialized word
vectors. The accuracy results for the two embedding layers
employed in our model are presented in Table 5.

E. TEXT VECTOR REPRESENTATION ANALYSIS
To validate the efficacy of the ALBERT model in this study,
diverse word vectors are employed to represent the model and
distinct word vectors are trained as inputs for the embedding
layer. The proposed model from this paper is utilized to
analyze emotions on the identical dataset.

The ALBERT model, as demonstrated in Table 6, exhibits
the highest Accuracy of 96.18% in this study. Unlike
static word vectors such as Word2vec and GloVe that fail
to effectively capture textual information for expressing
polysemous words, ALBERT and ELMo offer dynamic
representations of word vectors by fine-tuning their semantics
based on downstream tasks and incorporating domain-
specific knowledge, resulting in more feature-rich word
vectors. However, while ELMo utilizes bidirectional LSTM
to dynamically calculate semantic vectors within a contextual
framework, ALBERT leverages the Transformermodule with
enhanced feature extraction capabilities, thereby yielding
superior application performance compared to ELMo. The
BERT model exhibits superior accuracy compared to ELMo,
while also boasting the largest number of parameters.
Consequently, the proposed model in this study achieves a
harmonious equilibrium between parameter reduction and
ensuring optimal performance for sentiment analysis.

TABLE 6. Comparative results of different word vector models.

F. LEARNING RATE ANALYSIS
In order to expedite the initial training phase and maintain
a consistent learning rate during the later stages, thereby
enhancing model convergence, we employ an exponential
decay strategy for the learning rate as depicted in Eq. (34).

lr = max
(
baselr ∗ 0.96globalstep, 0.001

)
(34)

where lr stands for learning rate. baselr is the initial learning
rate. globalstep is the current iteration number.

To validate the rationality of the learning rate employed
during model training, Figure 7 illustrates the impact of
different learning rates on model performance, encompassing
fixed learning rates (lr) of 0.01 and 0.05, as well as decaying
learning rates with basic learning rates (baselr) of 0.1 and
0.05. As depicted in the figure, employing an exponentially
decaying learning rate leads to faster convergence during
training compared to a constant learning rate approach,
resulting in higher final accuracy. Additionally, it is observed
that smaller learning rates correspond to slower convergence
speed. However, combining an appropriate decay strategy
with a suitable initial learning rate not only ensures timely
model convergence but also yields improved accuracy levels.
This validates the selection of a reasonable decay strategy
and corresponding value for the chosen learning rate in our
experiment.

FIGURE 7. Influence of different learning rates on the model.

G. MODEL TRAINING ANALYSIS
In the process of model training, we also closely monitor the
changes in accuracy and loss for both the training and test
datasets, as depicted in Figure 8 and Figure 9 respectively.
The x-axis represents the number of epochs trained on the
entire dataset, while the y-axis represents accuracy and loss
values. From Figure 8, it is evident that when training reaches
Epoch = 16 on the complete dataset, our model achieves
its highest accuracy on the test set. Although not reaching
its absolute minimum value, at this point, the corresponding
loss for the test set remains close to its minimum. However,
as training progresses further, overfitting becomes apparent
with a decline in test set accuracy accompanied by an upward
trend in test set loss.

H. HIERARCHICAL ATTENTION ANALYSIS
In order to further validate the efficacy of the HAN module
proposed in this study, three models are employed for
comparative analysis.

① ALBERT-DCNN model: This model is obtained by
removing the HAN module from the original architecture.
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FIGURE 8. Acc variation curve of training set and test set.

FIGURE 9. Loss variation curve of training set and test set.

② ALBERT-DCNN-ATT model: In this variant, the HAN
module is substituted with a self-attention mechanism.

③ ALBERT-DCNN-HAN model: The proposed approach
in this study involves incorporating an enhanced hierarchical
attention network (HAN) into the ALBERT-DCNN frame-
work.

The Acc comparison diagram of three models is pre-
sented in Figure 10. As depicted, this model exhibits the
highest accuracy (Acc). The HAN module facilitates feature
weight distribution, enabling the model to learn diverse
levels of weighted features. This capability enhances the
model’s ability to accurately and swiftly capture higher-level
weight information. Comparatively, when compared to the
ALBERT-DCNN-HAN model without HAN mechanism,
our proposed ALBERT-DCNN model achieves a significant
improvement in Acc by 3.21%. This result underscores
that incorporating the HAN mechanism enhances overall
performance and plays a pivotal role in analyzing target-
context interactions.

By comparing the ALBERT-DCNN-HAN model with the
ALBERT-DCNN-ATTmodel, we can observe the superiority
of the HAN module. The accuracy of the HAN-enhanced
model is 1.16% higher than that of the ATT-enhanced model,
indicating that incorporating hierarchical attention considers

FIGURE 10. Text 2 character-level attention weight diagram.

both hierarchical text information and deep emotional
features when extracting textual representations, thereby
achieving superior performance compared to traditional self-
attention mechanisms.

I. CLASSIFIER ANALYSIS
To validate the effectiveness and performance of the CRF
classifier, we compare it with both the Softmax classifier and
a CRF classifier based on this model. Figure 11 illustrates
the changing trend of test accuracy for both classifiers. It is
evident that compared to the Softmax classifier, the CRF
classifier not only achieves higher classification accuracy
but also exhibits faster convergence speed. This observation
highlights that while the widely used Softmax classifier
predicts labels solely based on maximum probabilities
without considering label dependencies, our proposed CRF
classifier takes into account such dependencies before and
after each word in the classification process, leading to
improved overall training efficiency.

FIGURE 11. Performance comparison chart of Softmax classifier and CRF
classifier.

J. CONTRAST EXPERIMENT
To ascertain the efficacy of the Albert-CNN-HAN model
in sentiment analysis, this study conducted a comprehen-
sive comparison with other prominent models including
ERNIE2.0-BiLSTM-Attention [17], a graph neural network-
based aspect-level emotion classificationmodel [21], a BERT
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and Hypergraph dual attention mechanism-based text emo-
tion analysis model [26], GloVe-CNN-BiLSTM [29], and
ALBERT pre-training model [31].

Meanwhile, in order to further validate the model’s
generalization capability proposed in this paper, it will
be assessed on an additional dataset. The experimentation
on an alternative dataset is conducted using Coursera’s
Course Reviews Dataset, which comprises 100K reviews and
can be accessed at https://www.kaggle.com/septa97/100k-
courseras-course-reviews-dataset. Each entry in this dataset
represents a review for a specific course obtained from
Coursera’s website. The reviews were pre-labeled based on
their corresponding ratings: very positive for a rating of 5,
positive for 4, neutral for 3, negative for 2, and very negative
for 1. This dataset encompasses feedback from 1835 distinct
courses, comprising a total of 140320 reviews.

We conducted comparative experiments between the
model proposed in this paper and the aforementioned
models on both datasets within a consistent experimental
environment. Performance assessment measures such as
accuracy rate (Acc) and F1 values were utilized to gauge
their effectiveness, while presenting comparative outcomes
in Table 7 and Figure 12-13.

TABLE 7. Model comparison results.

FIGURE 12. Compare the experimental results on China’s MOOC.

The ERNIE2.0-BiLSTM-Attention model proposed
by [17] exhibits superior proficiency in capturing the
contextual semantics of implicit affective texts, thereby
resulting in significant advancements in emotion analysis,
as evident from Table 7 and Figure 12-13.

The model introduced by [21] utilizes a graph neural
network to analyze and classify emotions across various

FIGURE 13. Compare the experimental results on Coursera MOOCs
review.

aspects of the text, enabling more precise detection of subtle
emotional fluctuations.

The approach presented in [26] leverages BERT, a pre-
trained language representation model, as a feature extractor
and integrates a hypergraph dual attention mechanism for
context modeling, showcasing robust generalization capabil-
ities when handling novel or unfamiliar samples.

Additionally, the approach proposed in [29] synergisti-
cally integrates GloVe word vectors, CNN, and BiLSTM
to effectively harness their respective strengths: capturing
intricate semantic relationships with GloVe word vectors,
extracting localized features using CNN, and modeling
enduring dependencies through BiLSTM. The ALBERT
model introduced by [31] exhibits proficiency in extracting
dynamic semantic features.

The proposed ALBERT-DCNN-HAN model in this study
achieves the highest accuracy (Acc) and F1 scores on both
datasets. Specifically, on China’sMOOC dataset, the Acc and
F1 scores reach 96.18% and 94.73%, respectively, surpassing
the best method mentioned in [26] by a margin of 0.35% and
0.14%. Similarly, on the Coursera MOOCs review dataset,
the Acc and F1 scores achieve 92.78% and 89.53%, respec-
tively, outperforming the best method described in [26] by a
margin of 0.51% and 0.37%. Notably, the ALBERT model
stands out as a lightweight and highly efficient pre-trained
language representation model with fewer parameters com-
pared to traditional BERT models, while still delivering
exceptional performance. Consequently, sentiment analysis
methods based on ALBERT can provide rapid and accurate
results. By incorporating a dilated convolutional layer into
our approach, we are able to capture information pertaining
to the associations between different distances within the text
and effectively process lengthy sequences of text. Moreover,
by employing hierarchical attention mechanisms, our model
can simultaneously focus on crucial features at various levels
such as words and sentences, thereby facilitating a better
understanding of textual structure and semantic information
for conducting sentiment analysis across multiple levels.
Through the integration of ALBERT, dilated convolutional
neural network, and hierarchical attention network, we can
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leverage their distinctive advantages to achieve enhanced
performance in sentiment analysis tasks. The experimental
results validate the effectiveness of the proposed model
architecture.

V. CONCLUSION
This paper presents a comprehensive sentiment analysis of
feedback on MOOC courses. To address the issue of large
parameters and lengthy training time in BERT pre-training
language models, we employ ALBERT pre-training model
for word embedding training. In contrast to static word vector
tools, ALBERT endows words with dynamic semantics
that align with their context, thereby resolving polysemy
concerns. This study establishes the ALBERT-DCNN-HAN
model by integrating hole convolutional neural networks
with a hierarchical attention mechanism. The hole convolu-
tional neural network captures abstract relationships among
characters or words, reducing the likelihood of recurrence
problems. By leveraging word and sentence attentions,
we effectively identify pertinent information for emotional
tendency assessment. Furthermore, through incorporating a
hierarchical attention network mechanism and analyzing at
both word level and sentence level respectively, we fully
exploit the characteristics and semantic combinations of
words. The experimental results show that the model
proposed in this paper achieves an Acc of 96.18% and an F1
score of 94.73% on the China’sMOOC dataset, and an Acc of
92.78% and an F1 score of 89.53% on the Coursera MOOCs
review dataset, which are higher than those of other models.

The findings of this research will contribute to a com-
prehensive understanding of students’ course evaluation and
feedback on online education platforms, thereby providing
educational institutions and platforms with more robust data
support. Additionally, sentiment analysis can facilitate timely
identification and resolution of issues or dissatisfactions
encountered by learners during the learning process, thus
optimizing course design and teaching methodologies. Over-
all, this study holds significant implications for enhancing the
quality of online education, fostering personalized learning
experiences, and augmenting user satisfaction. In future
investigations, we intend to delve deeper into sentiment
analysis pertaining to MOOC course reviews while exploring
factors influencing learners’ sentiments in such evaluations.

DATA AVAILABILITY
The accompanying author can provide some of the models,
data, or code created or utilized during the study upon request.
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