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ABSTRACT Plant diseases can have profound effects on the economy, impacting both local and global
scales. These diseases can lead to substantial losses in agricultural productivity, affecting crop yields and
quality. In this context, deep learning algorithms are widely acknowledged as effective solutions. However,
the use of these black-box approaches raises concerns about trust in interpreting and validating the decisions
generated by the models. This study proposes an explainable artificial intelligence (XAI) based plant disease
classification system to classify and identify distinct ailments with improved accuracy. The system correctly
identifies 38 different plant diseases with accuracy, precision, and recall as 99.69%, 98.27%, and 98.26%,
respectively. These predictions are subjected to additional analysis employing the local interpretable model-
agnostic explanations (LIME) framework to produce visual explanations aligning with prior beliefs and
adhering to established best practices in explanations. This system will serve as a promising avenue for
revolutionizing disease detection, fostering informed decision-making, and ultimately contributing to global
food security.

INDEX TERMS Plant disease detection, deep learning, explainable artificial intelligence, prediction model.

I. INTRODUCTION
With the increasing global population and changing climatic
conditions, the challenges faced by farmers have been
intensified. One of the critical challenges worldwide is the
identification and management of plant diseases [1]. These
diseases, if undetected, can lead to substantial reductions in
crop yield and quality, posing severe economic losses and
threatening food security on a larger scale [2]. The traditional
methods of disease diagnosis often involve manual inspection
by experts, which is both time-consuming and subjective [1].
Moreover, by the time symptoms are visible to the naked eye,
the disease might have already spread extensively, making
mitigation efforts less effective.
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In recent years, agriculture has witnessed a significant
transformation driven by technological advancements [3],
offering solutions that can revolutionize traditional farming
practices. Furthermore, as the global population continues
to rise, leveraging technology in agriculture is not just
an innovative approach but a necessary one to ensure a
sustainable and secure food supply for the future. Image
recognition usingmachine learning (ML), has shown promise
in detecting plant diseases at early stages, providing an
opportunity to curb their spread and minimize damage [4].
This early assessment also depends on the plant species and
the diseases. It varies from disease to disease, some disease
takes around 1 week whereas some takes 2 or more weeks.

Numerous computer-aided diagnosis (CAD) systems [5]
have been created to aid farmers. These systems effectively
tackle prevailing challenges and improve the accuracy,
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efficiency, and objectivity of the diagnostic process. In this
regard, deep learning (DL) algorithms have emerged as
particularly promising, demonstrating significant potential
for image processing and data analysis. The integration of
deep learning techniques, particularly convolutional neural
networks (CNNs), holds promise for accurate and efficient
disease identification in plants [5].

Nevertheless, the ambiguity surrounding the processing
cycle involved in model learning and feature encoding in
these CAD systems raises doubts about their reliability [6].
The DL model without a rational explanation is a barrier
in accurate decision making. Hence, these models are of
black-box nature which makes them not to use with 100%
confidence. Therefore, there is a need to develop robust
methods that can help better understand the decisions made
by the black box. These methods are often known as
interpretable deep learning or XAI [6]. The incorporation of
XAI ensures transparency and interpretability in the decision-
making process, addressing the crucial need for trust and
understanding in agricultural practices.

In this study, the state-of-the-art model, namely, Effi-
cientNetB0 [7] is applied for classifying 38 plant diseases.
The explanation method employed is LIME, incorporating
enhanced explanations to improve both interpretability and
accuracy. The EfficientNetB0 with 237 layers is utilized for
feature extraction and model training. The model loads pre-
trained weights from a local file to enhance efficiency and
accuracy. At first, EfficientNetB0 predicts the disease or no
disease; after that LIME is applied to generate explanations
for the predictions of the classifier. LIME typically provides
feature importance scores, highlighting the regions or aspects
of the input that influenced the model’s decision. The
significance of this study lies in its potential to empower
farmers with a robust tool that not only identifies plant
diseases but also provides insights into the underlying factors
contributing to the classification decisions. The combination
of deep learning and explainability enhances the system’s
reliability and enables farmers to make informed deci-
sions regarding disease management strategies. In summary,
we introduce a robust model that exhibits improved accuracy,
achieved through the integration of XAI techniques for
plant disease detection. The main contributions of this study
include:

i) New System Design: A novel system is designed
using DL and XAI for accurate and quick diagnosis of
38 distinct plant diseases with improved accuracy. The
system also provides farmers with actionable insights
including treatment suggestions

ii) Comparative Study of State-of-the-art Algorithms:
Various cutting-edge ML algorithms are compared for
the diagnosis of plant diseases.

iii) Mobile Application Development: A user-friendly
mobile application named as ‘PlantCare’ is also
developed for farmers assistance.

iv) Data Set:The proposed approach is tested on both real-
world and benchmark data instances from Kaggle.

The paper is organised into 6 section. Section II overviews
the background and related works. The proposed approach is
in Section III followed by experimental design and results in
section IV. Section V presents the limitations of this work.
This study concludes in section VI with future directions.

II. LITERATURE REVIEW
A. BACKGROUND
Machine learning for plant disease detection has emerged
as a transformative technology in agriculture, offering
efficient and accurate solutions to identify and combat crop
diseases [4]. By leveraging advanced algorithms, ML models
can analyze datasets to detect subtle signs of diseases that
may go unnoticed by the human eye [8]. In this context,
we assess the effectiveness of cutting-edge algorithms for
diagnosing plant diseases. The rationale behind choosing
these algorithms is their simplicity in implementation,
coupled with the fact that a majority of them are open source.

The convolutional neural networks (CNNs) [9] are a class
of deep neural networks designed specifically for image
recognition and processing tasks. Inspired by the visual
processing in the human brain, CNNs excel in capturing
hierarchical features and patterns within images. A basic
CNNmodel consists of an input layer, multiple convolutional
layers followed by pooling layers, and fully connected
(dense) layers leading to the output layer. The convolutional
layers apply filters to the input to extract features, while the
pooling layers downsample the spatial dimensions, leading
to more efficient processing. The dense layers then perform
classification based on the extracted features [10]. CNNs
have proven highly effective in computer vision applications,
such as image classification, object detection, and facial
recognition.

Residual network (ResNet) [11] is one of the most
powerful deep neural networks, demonstrating outstanding
performance in addressing classification problems. Built
upon CNN architecture, ResNet is designed to accommodate
hundreds or even thousands of convolutional layers.

EfficientNetB0 [7] is a state-of-the-art CNN architecture
designed to achieve impressive performance with high
efficiency in terms of both computational resources and
model size. This architecture is particularly notable for its
ability to outperform larger and computationally expensive
models on various computer vision tasks, including image
classification [7].
MobileNet [12] is a lightweight CNN architecture

designed specifically for efficient and high-performance
image classification on mobile and embedded devices.
MobileNet focuses on achieving a balance between accuracy
and computational efficiency, making it well-suited for
applications with limited computational resources [12].
LIME [13] is a method used in the field of ML for

explaining the predictions of complex models in a human-
understandable way. The LIME is designed to provide
insights into the decision-making process of black-box
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machine learning models by approximating their behavior
locally. It focuses on local interpretability, aiming to explain
individual predictions rather than the entire model [13].
This makes it particularly useful for understanding specific
instances where model predictions may be unclear. The
explanations are generated by perturbing input data and
observing the model’s response.

B. RELATED WORKS
Plant disease detection plays a crucial role in agriculture
productivity with significant impact on the economy [28].
Timely identification andmanagement of plant diseases helps
in preventing crop losses, ensuring a stable food supply
and supporting the livelihoods of farmers [22]. This section
presents an overview of recent ML model-based approaches
for plant disease detection.

Ferentinos et al. [4] presented the development of
CNN models with variants (AlexNet, AlexNetOWTBn,
GoogleNet, Overfeat, VGG) for plant disease detection and
diagnosis using images of simple leaves from healthy and
diseased plants. The models were trained on an extensive
database of 87,848 images, encompassing 25 plant species in
58 unique [plant, disease] combinations. The best-performing
model achieved an impressive 99.53% success rate in
accurately identifying the [plant, disease] combination or
healthy plants.

Mehedi et al. [14] developed a transfer learning
approach with three pre-trained models (EfficientNetV2L,
MobileNetV2, ResNet152V2). The study detected 38 leaf
diseases across 14 different plants. The dataset was taken
from Kaggle [15]. EfficientNetV2L demonstrated the highest
accuracy at 99.63%. The integration of XAI through LIME
enhances model interpretability.

Mohanty et al. [16] utilized a public dataset [17] containing
54,306 images of diseased and healthy plant leaves, deep
CNNs (AlexNet and GoogLeNet) were trained to identify
14 crop species and 26 diseases with an impressive accuracy
of 99.35% on a held-out test set.

Jasim et al. [18] explored the application of DL models
in the early detection and classification of plant diseases,
highlighting the potential for increased accuracy compared
to traditional ML approaches. The Plant Village [17] dataset
was used with 20,636 images as three plants, namely,
tomato, pepper, and potato crops were chosen because of the
most famous types of plants. The CNN classifier achieved
98.029% accuracy, with the potential for further improvement
with a larger training dataset.

Ramesh et al. [19] employed Random Forest for clas-
sifying healthy and diseased leaves based on leaf images.
The proposed methodology involved dataset creation, fea-
ture extraction using Histogram of an Oriented Gradient
(HOG), classifier training, and classification. In testing
with 160 papaya leaf images, the Random Forest classifier
achieved approximately 70% accuracy.

Harakannanavar et al. [20] focused on addressing plant
diseases in tomato crops. Employing machine learning and

image processing, the study introducesd a robust algorithm
for early detection of leaf diseases. The proposed model
employs Support Vector Machine (SVM) [29], K-Nearest
Neighbor (K-NN) [30], and CNN for classification, achieving
high accuracy rates of 88%, 97%, and 99.6% respectively.
Benito Fernández et al. [21] used CNN model leveraging
XAI methods, specifically LIME [13], SHAP [31], and
Grad-CAM [32], to enhance the interpretability of CNN
outputs.

Kinger et al. [22] addressed the challenge of making deep
learningmodels for plant disease detectionmore interpretable
for human users. The VGG16 was employed with achieved
accuracy rate of 98.15%. They used XAI method Grad-
CAM, to provide human-understandable explanations for the
model’s decisions.

Nahiduzzaman et al. [23] introduced an XAI-based CNN
model for classifying mulberry leaf diseases. They utilized
a novel lightweight CNN model and achieved impressive
accuracy of 95.05 ± 2.86% for three-class classifications
and 96.06 ± 3.01% for binary classifications. The model
outperformed well-known deep transfer learning models,
offering better accuracy, fewer parameters, layers, and overall
size. The interpretability of the model was ensured through
SHAP explanations.

Arsenovic et al. [1] addressed the significant agricultural
challenge of plant diseases by leveraging DL methods for
accurate detection. They introduced a novel dataset compris-
ing 79,265 diverse leaf images, employing both traditional
augmentation and state-of-the-art generative adversarial
networks for dataset expansion. Experimental evaluations
demonstrate the model’s effectiveness in identifying plant
diseases under various conditions, achieving an accuracy of
93.67%.

Khattak et al. [24], addressed the crucial issue of less
citrus fruit yield due to diseases, by proposing an integrated
approach using CNN. The CNN model is designed to
differentiate healthy citrus fruits and leaves from those
affected with common diseases and achieved a remarkable
test accuracy of 94.55%. The proposed model outper-
formed other classifiers, achieving a high accuracy of
95.65% in classifying citrus fruit/leaf diseases, establish-
ing its potential as a valuable decision support tool for
farmers.

Singh et al. [26] addressed the significant issue of plant
disease-related crop yield loss in India by proposing a novel
solution using computer vision. The authors introduced a
comprehensive dataset comprising 2,598 data points across
13 plant species and up to 17 disease classes, annotated
with approximately 300 human hours of effort. This study
demonstrates the efficacy of the dataset by training three
models for plant disease classification, revealing a notable
increase of up to 31% in classification accuracy compared
to existing datasets.

Besides these, some studies [2], [3], [5], [28], [33] review
the application of DL models in visualizing and detecting
plant diseases. Various DL architectures and visualization
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TABLE 1. Research matrix of related works.

FIGURE 1. The proposed methodology workflow.

techniques were discussed; however, the review identifies
research gaps, including the limited diversity in datasets
used for evaluation, emphasizing the need for more realistic
environmental considerations.

Table 1 provides a summary of these studies. It is
evident that a significant number of researchers have not
integrated XAI methods. This observation motivates our
research, which seeks to develop a robust XAI-based model,
with the goal of improving transparency, traceability, and
the overall efficacy of plant disease classification in AI
models.

III. PROPOSED METHODOLOGY
This section describes the proposed methodology in detail as
shown in Fig. 1.

A. DATA PRE-PROCESSING
In this step, background is removed from the images to
separate the region of interest (ROI). The background can
introduce noise into the data, leading to potential misdi-
agnoses. For instance, a leaf’s shadow or the surrounding
environment might be mistaken for a disease symptom,
skewing the results. The images are also separated into
distinct classes based on different crops to enhance model
training efficiency. This step overall enhances the optimal
accuracy and reliability of the trained classifier in disease
detection, while decreasing the corresponding computation
time. Some results before and after pre-processing are shown
in Fig. 2 and 3 respectively.

FIGURE 2. Randomly selected plant images before preprocessing.

B. FEATURES EXTRACTION
This step involves selecting a subset of the most important
features from the existing data for developing a ML model.
It is a crucial step in the ML workflow, given that the
performance of amodel can be significantly influenced by the
quality and quantity of features. The default feature extraction
technique is transfer learning with the EfficientNetB0 model,
where the base model’s layers are frozen to prevent training.
The model is then extended with global average pooling and
a dense layer for multi class classification. It is employed
to generate multiple features, enhancing the capabilities of
disease detection.

C. MODEL TRAINING AND VALIDATION
To ensure the robustness of our model, the dataset is split into
an 80:20 ratio, with 80% of the images being used for training
and the remaining 20% for validation.
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TABLE 2. Dataset description.

FIGURE 3. Randomly selected plant images after preprocessing.

D. PREDICTION EXPLANIBILITY
During this phase, the LIME framework is utilized. LIME is a
method employed to explain individual predictions by using a
local interpretable model to approximate any black box ML-
based model.The process involves perturbing the original
data points, inputting them into a black box model, and
observing the resulting outcomes. Following this, the method
allocates weights to the supplementary data points depending
on their proximity to the initial location. Subsequently, these
sample weights are employed to train a surrogate model
on the dataset, such as linear regression. The resultant
explanation model, once trained, can then be applied to each
of the original data points.

IV. EXPERIMENTAL ANALYSIS
A. EXPERIMENTAL SETUP
1) DATASET
In this paper, the dataset named as ‘New Plant Diseases’
is taken from Kaggle as described in Table 2. This dataset

is a rich collection of 87,000 images, providing a diverse
range of plant diseases 38 distinct classes across 14 plant
species. Determining the economic relevance of diseases per
plant depends on various factors such as the crop’s economic
importance, the severity and prevalence of the disease, the
cost of control measures, and the potential yield losses.
However, some insights are provided for diseases which are
most economically relevant, per plant as shown in ‘red’ color
in Table 2 and healthy instances are shown in ‘green’ color.
Moreover, this dataset is imbalanced. It means that number
of images in each class are not equal.

2) PERFORMANCE MEASURES
This section presents the quantitative metrics employed to
assess classifier performance. The classifier is attempting
to identify what kind of disease it is given plant species.
It can also identify the leaf as healthy leaf which is the
case in Blueberry, Raspberry, and Soyabean. In classification
problems where results are categorized into positive or
negative classes, the evaluation involves four potential states,
often referred to as the confusion matrix [34].

i) True positive (TP): Correctly identifying instances of
the positive class

ii) True negative (TN): Correctly identifying instances of
the negative class

iii) False positive (FP): Incorrectly classifying instances as
belonging to the positive class

iv) False negative (FN): Incorrectly classifying instances
as belonging to the negative class

The performance of the results is assessed through
accuracy, precision, and recall, computed as follows:

Accuracy =
TP+ TN

FP+ TN + TP+ FN
(1)
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TABLE 3. Hyperparameters for classifiers.

Precision =
TP

TP+ FP
(2)

Recall/Sensivity =
TP

TP+ FN
(3)

B. PARAMETER SETTINGS
The hyperparameter settings employed for the classification
of plant diseases are outlined in Table 3.

1) EXPERIMENTAL ENVIRONMENT
The experiments are performed on GPU-enabled Tensor-
Flow [35] with TF Lite [36] for converting the trained
TensorFlow model into a format suitable for mobile
applications; using Python programming language run-
ning on a personal computer with Apple M1 Chip, and
8 GB RAM.

C. RESULTS AND DISCUSSION
1) COMPARISON OF STATE-OF-THE-ART METHODS
The proposed methodology uses four distinct state-of-the-
art models namely, CNN,MobileNetV2, EfficientNetB0, and
ResNet-50 to detect the plant diseases. The results presented
in Table 4 show that EfficientNetB0 outperforms four other
models in terms of accuracy, precision, and recall. After
EfficientNetB0, MobileNetV2 is performing well with the
highest classification performance as 96.89%. ResNet-50 is
performing least as compared to its peers with accuracy rate
of 79.83%. These results demonstrate the effectiveness of
the EfficientNetB0 model, achieving the highest accuracy
among other models. The confusion matrix is shown in
Fig. 4. The graphical representation of model accuracy is
presented in Fig. 5. It is clear that there is variation in
training and validation accuracy’s values as the epochs count
increases.

We have utilized XAI techniques, specifically leveraging
the Lime framework, to enhance the interpretability of our
machine learning models. This framework enabled us to
explain the predictions of our model, providing valuable
insights into how the model arrived at its decisions as shown
in Fig. 6, which indicates LIME explanations for predicted
black-box model. These are Pepper,Bell with Bacterial
Spot disease images with LIME explanations. Moreover,
100% confidence means model predicted the disease with
high probability. A user-friendly mobile application is also
developed to assist the farmers as shown in Fig. 7.

TABLE 4. Performance metrics of CNN models.

FIGURE 4. Confusion matrix of proposed model.

FIGURE 5. Accuracy Curve for plant disease detection.

2) STATISTICAL ANALYSIS
In this section, an analysis of variance (ANOVA) test [37]
is conducted to evaluate the statistical significance of the
machine learning models. ANOVA serves as a statistical
method employed to analyse variations among group means
within a sample. It assesses whether the variations between
the means are statistically significant or if they could occur
by chance. ANOVA is particularly useful when comparing
the means of three or more groups, providing insights into
whether there are significant differences among them. The
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FIGURE 6. Infected images detection by our developed model with 100% confidence.

FIGURE 7. Plant disease detection - mobile application.

TABLE 5. ANOVA test results for model accuracy.

F-statistic and p-value obtained from the ANOVA test are
presented in Table 5.

Since the p-value is less than the chosen significance
level (α = 0.05), therefore, we reject the null hypothesis.

These results suggest that the variations in disease detection
accuracy across different models are statistically significant
based on our model’s performance.

3) VISUALIZATION
We also performed an analysis using Power BI to gain
insights from our dataset, presenting them in various types of
charts and graphs. In Fig. 8, number of samples per plant are
shown, whereas Fig. 9 represents accuracy achieved by each
plant. These values may also depends on the quality of the
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FIGURE 8. Number of samples per plant.

FIGURE 9. Achieved average accuracy for each plant.

FIGURE 10. Number of samples by disease.

images in data. The number of samples by disease are shown
in Fig. 10.

V. THREATS TO VALIDITY
The primary objective of this study is to assist farmers in
the early assessment of plant diseases. Nonetheless, this

study has certain constraints. Initially, we did not account
for extensive or diverse datasets. Secondly, our approach
relied on four pre-trained models for comparsion. Extending
the model to integrate more advanced pre-trained models
may enhance classification performance. Lastly, employing
a larger set of training data could potentially yield superior
results.

VI. CONCLUSION
Plant diseases pose a significant threat to our economy,
causing substantial losses in agricultural productivity and
impacting the livelihoods of farmers. Addressing plant
diseases is not just a matter of agricultural concern but also
a strategic move for economic prosperity. In this regard,
this research presents the effectiveness of a deep learning-
based plant disease detection system employing explainable
artificial intelligence (XAI). The integration of advanced
deep learning models not only enhances the accuracy
of disease identification but also provides interpretability
through the incorporation of XAI techniques.

This paper employs EfficientNetB0 to develop the ML
model, utilizing a dataset consisting of 87,000 images. The
developed model demonstrates proficiency in accurately
categorizing 38 distinct types of diseases, achieving accuracy,
precision, and recall rates of 99.69%, 98.27%, and 98.26%,
respectively. Further, the LIME framework is employed
to provide meaningful explanations that supports informed
decision-making. The visual explanations not only showcase
the model’s effective generalization but also reveal biases
acquired from outlier images. These insights empower
researchers and field experts to gain a deeper understanding
of the rationale behind the classification of plant diseases,
shedding light on the inner workings of the black-box model.
Additionally statistical analyses, notably ANOVA, showcases
significant models’ performance.

In future, there is potential for the creation of a more
resilient model that takes into account diseases affecting
various plant species. Moreover, the compilation of written
reports documenting disease observations in both technical
and non-technical languages stands as an additional task
that contributes to the model’s adoption. Furthermore, the
integration of Internet of Things (IoT) devices will contribute
to the fully automated disease detection systems on farms.
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