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ABSTRACT Power loads usually have multiple cycles, and the traditional forecasting methods only use the
historical loads under various types of cycles together as input features to construct the forecasting model,
ignoring the deep features under multiple cycles. The simultaneous inputs will lead to the cycles overlapping
and influencing each other, which will be difficult to deal with when building the model. Therefore, this
paper proposes a GRO-Bagging day-ahead power curve forecasting model based on multi-cycle feature
extraction. First, the multi-periodicity of the power load is analyzed. The one-dimensional time series is
converted to two-dimensional according to themultiple cycles of power load. Then, themulti-periodic feature
extraction is performed by a multi-size convolutional feature extraction layer with parallel selected based on
the data characteristics and modeling mechanism, and Bootstrap Aggregating (Bagging) method is used to
construct different prediction models for the datasets containing different periodic features; finally, Gold
Rush Optimization (GRO) algorithm is introduced and improved by using the Tent chaotic mapping and
elite strategy, and the improved optimization algorithm is used for the weight optimization of the model, the
error feedback mechanism is introduced to achieve the weight dynamic Updating. To prove the superiority
of the proposed model, a series of comparison experiments and ablation experiments are carried out on real
datasets, and the results show that the proposed method has higher prediction accuracy, and prove that the
multi-period feature extraction and dynamic weighting methods have a positive and active effect on load
prediction.

INDEX TERMS Bagging, integrated learning, LSTM, multi-periodic features, short-term load forecasting,
gold rush optimization algorithm, XGBoost.

I. INTRODUCTION
Short-Term Load Forecasting (STLF) refers to the prediction
of electricity loads for a short time in the future, usually hours
to days [1]. This work is important for electricity market
operations, generation planning, reliability analysis, and

The associate editor coordinating the review of this manuscript and
approving it for publication was Maria Carmen Falvo.

security assessment [2]. Accurate short-term load forecasts
can help power plants, transmission systems, and distribution
networks make timely adjustments to meet future electric-
ity demand and avoid problems associated with supply-
demand imbalances, such as overloads, wasted energy, or
blackouts [3].

However, the combined effects of economic factors,
meteorological factors, social activities, and other factors lead
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to the power load showing obviousmulti-periodic, non-linear,
and time-varying characteristics [4]. Therefore, it is of great
significance to realize accurate short-term load forecasting by
exploring power load characteristics in depth. In short-term
load forecasting, the common forecastingmethods aremainly
classical statistical, machine learning, and deep learning.
Traditional mathematical statistical methods include the
Autoregressive Model (AR) [5], Autoregressive Moving
Average Model (RAMA) [6], and Autoregressive Integrated
Moving Average Model (ARIMA) [7], etc. Many of these
methods are based on the assumption of linearity, where the
relationship between load and time or other factors is assumed
to be linear, however, in real situations, loads usually exhibit
non-linear characteristics.

Machine learning methods are mainly Decision Trees,
Random Forest (RF) [8], and Gradient Boosting Trees
(GBDT) [9]. It is mainly used to construct regression models
through various influencing factors to realize regression
prediction, however, machine learning models can easily
overfit the training data, especially when the amount of data
is insufficient or the model complexity is too high.

With the continuous development of artificial intelligence,
some deep learning methods are widely used, such as
Recurrent neural network (RNN) [10], Long Short-Term
Memory (LSTM) [11], and Gated Recurrent Unit (GRU)
[12]. Compared to machine learning, deep learning models
are better able to extract complex nonlinear features from
data and can better utilize historical load data, weather
data, holidays, and other factors to improve forecast
accuracy.

Existing studies have shown that the actual electricity load
usually exhibits multi-period characteristics, such as daily
and annual variations in weather, and weekly and quarterly
variations in electricity consumption [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20].
Conventional forecasting models are unable to reflect the
different cyclical characteristics of loads, which may also
affect the accuracy of forecasting results.

Therefore, [13] proposed a short-term load forecasting
model with a multi-temporal scale spatiotemporal con-
volutional network by taking the past load data as the
characteristics and considering the time series characteristics
of the load data. The forecasting model was trained with
historical characteristic loads of 7, 21, 99, and 199 days,
which proved that the introduction of the historical cycle
loads could improve the accuracy of the short-term forecasts.
Reference [14] generates multiple time series by combining
macro and micro information from continuous and discrete
time series, including four different types of periodic series,
which are inputted into the RNNmodel for prediction, and the
results can effectively improve the accuracy. Reference [15]
proposes a multi-period prediction model for household load
forecasting, which better learns the electricity consumption
patterns of users by learning the characteristics and contextual
information of the relevant load curves in multiple historical
cycles, and also further proves that the load has obvious

multi-periodicity and time series. All of the above studies
have considered the cycle features, but all of them only take
the historical load under the cycle as an input feature, have
not carried out in-depth mining, and have not considered
the problem that different cycles will affect each other
superimposed when multiple cycle features are input at the
same time.

Due to the insufficient generalization of a single model,
most of the current models are enhanced by integrating
multiple models to enhance the model prediction capabil-
ity [16]. However, most of the existing integration strategies
adopt the mean value calculation method and weight fixing
mode, which do not realize the complementarity between
algorithms, and the theoretical basis of this combination is
weak [17], [18]. Reference [19] by using the dynamic error
function and optimal weight optimization algorithm, in order
to balance the contradiction between the speed and accuracy
of dynamic adjustment, for different periods, choose different
weight adjustment algorithms for enhancement and compare
with the traditional fixed-weight combination prediction
model. Reference [20] proposes an adaptive online learning
technique based on the Hidden Markov Model line learning
forecasting method, which recursively updates the model
parameters, and can effectively learn the dynamic changes of
the load, and then improve the forecasting accuracy, proving
that the consideration of the recent data in the model updating
can effectively improve the accuracy.

Aiming at the shortcomings of the above research,
this paper further extracts different cyclic features of
power loads, extracts different cyclic information through
integration learning and adopts an intelligent optimization
algorithm for the weight calculation of the integrated model.
A GRO-Bagging day-ahead power curve forecasting model
based on multi-cycle feature extraction is proposed to
realize load periodicity feature extraction and learning, which
effectively improves the accuracy and generalization of the
forecasting model. Firstly, a one-dimensional time series is
converted into two dimensions according to the multiple
periodicity of power loads, an Inception-CNN layer is
introduced according to the characteristics of convolution
operation, the historical data between adjacent time points
and adjacent cycles are combined and extracted to form
new features, and multiple subdatasets containing features
of different cycles are established to realize the decoupling
of the temporal pattern of the loads; then, two basic
models, LSTM and XGBoost two basic models, using the
Bagging method to construct different prediction models
for datasets containing different cycle features; finally, the
Gold Rush Optimization Algorithm is improved for the
integrated model weight optimization problem, and the Tent
chaotic mapping and elite strategy are introduced into the
Gold Rush Optimization Algorithm and used to solve the
integrated model weights, to construct the GRO based on
the multi-cycle feature extraction- Bagging day-ahead load
forecasting model. A series of comparative experiments are
conducted on real data, and the experiments show that the
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method of this paper can effectively improve the prediction
accuracy. The main contributions of this study are as follows:

1. A multi-cycle feature extraction method is proposed to
further extract the different cycle features of power loads and
realize the decoupling of load features under the influence of
multi-cycle.

2. Bagging integrated learning strategy is used to integrate
the prediction model considering different cycle features,
chaotic mapping, and elite strategy are introduced to improve
the Gold Rush Optimization Algorithm, and the improved
optimization algorithm is used for weight solving, which
enhances the model weight solving effect and improves the
prediction accuracy.

3. A weight updating strategy for the integrated load
forecasting model is proposed, which realizes dynamic
updating of the weights by setting a history review window
for prediction error feedback, making the model better
adaptable to future data.

The remainder of the paper is organized as follows:
section II describes the multicycle feature extraction method,
the improved optimization algorithm, and the integrated
model architecture. Data presentation and performance
evaluation of the associated prediction results are carried out
in Section III. Finally, it is summarized in Section IV.

II. THE PROPOSED FRAMEWORK
In this section, the proposed predictive model is described in
detail, including its main structure and properties. The model
is realized by extracting cycle features, building prediction
models considering different cycles, and finally building a
Bagging integrated model. The framework of the proposed
approach is shown in Fig.1, and its methodology consists of
the following steps.

1) Step 1: to analyze the correlation of historical loads
under multiple cycles, convert a one-dimensional
time series to a two-dimensional according to the
multiple periodicities of power loads, and introduce
an Inception-CNN [21] layer to combine and extract
new features from historical data between adjacent
time points and adjacent cycles according to the
characteristics of the convolutional operation, and
combine the new cycle features with other exogenous
variables to form multiple sub-datasets containing
different cycle features, and realize the decoupling of
loads in time patterns. See II-A and II-B for specific
steps.

2) Step 2: Adopting the idea of Bagging integrated
learning, two base models, LSTM and XGBoost,
are selected to build prediction models for datasets
containing different cycles. See II-D for specific steps.

3) Step 3: For the integrated algorithm weight optimiza-
tion problem, the Gold Rush Optimization Algorithm
GRO is introduced, and the Gold Rush Optimization
Algorithm GRO algorithm is improved by introducing
the Tent Chaos Mapping Algorithm and the Elite
Strategy, to make it faster convergence speed and better

solutions in the weight solving task. See II-C for
specific steps.

4) Step 4: The Bagging integration algorithm uses the
improved Gold Rush optimization algorithm to opti-
mize the model weights, and through the setting of the
history review window, the prediction error feedback is
carried out, thus realizing the updating of the weights of
the integrated model, which ensures the generalization
of the model, and at the same time, makes the model
more in line with the characteristics of the recent trend
of the data. See II-E and II-F for specific steps.

5) Step 5: Validating various aspects of the proposed
model, this paper sets up a series of ablation exper-
iments and compares them with current mainstream
prediction models. Evaluate the validity of the pro-
posed prediction model through several commonly
used performance metrics including Root Mean Square
Error (RMSE), Mean Absolute Percentage Error
(MAPE), and Mean Absolute Error (MAE). See III for
specific steps.

A. MULTI-CYCLE ANALYSIS
Maximum Information Coefficient [22] (MIC) is a statistical
method for calculating the strength of the relationship
between two variables proposed by Reshef et al. in 2011 and
is considered a more flexible and efficient method than the
traditional correlation coefficient. MIC measures the rela-
tionship between two variables by calculating the maximum
possible joint distribution of their mutual information to
measure the relationship between them. It is capable of
capturing all types of relationships, not just linear ones.
The calculated MIC has a value between 0 and 1, which
indicates the degree of correlation between the two variables,
with 1 indicating perfect correlation and 0 indicating no
correlation, and the closer to 1 the higher the correlation.

Existing studies have shown that power load has obvious
daily, weekly, monthly, seasonal, and annual periodicity. The
US load data set used in this paper has 10 consecutive years of
power load data with a sampling interval of 1 hour. The MIC
correlation analysis was carried out between the time load
value of each day for 30 consecutive days and the historical
load at the same time under the daily, weekly, monthly,
seasonal, and annual cycles.

As shown in Fig. 2 for the MIC calculation results of
the historical cycle length from 1 to 7, the overall MIC is
between 0.5 and 0.7, the MIC under the seasonal cycle shows
cycle fluctuation in line with the phenomenon of alternating
seasons of spring, summer, fall and winter, the MIC under
the weekly cycle increases with the length of the cycle, and
the MIC under the daily, monthly and yearly cycles shows
decreasing with the increase of the cycle length, and the
MIC results show strong correlation between the historical
load data of the same time under the different cycles and
the current load. From the MIC results, there is a strong
correlation between the historical load data and the current
load at the same time in different cycles.
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FIGURE 1. Schematic diagram of GRO-Bagging day-ahead power curve forecasting model based on multi-cycle feature extraction.

FIGURE 2. Correlation analysis of MIC of multi-cycle historical power
load.

B. MULTI-CYCLE FEATURE EXTRACTION ALGORITHM
In this paper, based on the idea of Inception structure in
GoogleNet [21], a mechanism multi-size feature convolu-
tional extraction layer with parallel processing (referred to as
Inception-CNN layer) is introduced for multi-cycle feature
extraction of power loads.

The original one-dimensional load time series X1D is
first converted into a two-dimensional load time series X2D

i
according to the cycle length {t1, · · · , tn} of n types of cycles
such as daily, weekly, monthly, seasonal, annual, etc., in order
to prepare for the two-dimensional processing in the next
step. The specific formula is as follows:

X2D
i = Reshape|len(X1D)/ti|,ti (X

1D), i ∈ {1, · · · , n} (1)

where reshape denotes a dimensional change, a set of
two-dimensional tensor X2D

i obtained by deforming the
original data, which represents i derived from different cycles
of two-dimensional time series, for each two-dimensional
time series through the Padding layer will be extended by the
data, and then through a convolutional layer with amulti-head

structure, the multi-head structure through the introduction
of a parallel processing mechanism in the same layer to
extract different features, and then a layer of Inception-CNN
layer contains different sizes and dimensions. That is, one
Inception-CNN layer contains different sizes and dimensions
of convolutional layers and pooling layers, etc. Each 2D
tensor is derived into multiple 2D tensors, and new features
are formed by combining and extracting historical data
between neighboring time points and neighboring cycles
through different sizes of convolution kernels and pooling
kernels according to the characteristics of the convolution
operation. The specific formula is as follows:

X̂2D
i,j = Inception

(
Padding

(
X2D
i

))
, j ∈ {1, · · · , r} (2)

where X̂2D
i,j denotes the j-th 2D feature matrix extracted under

the ti-cycle feature, Inception(·) denotes feature extraction
through one Inception-CNN layer, Padding(·) denotes the
data padding operation, j denotes the number of 2D feature
matrices generated, and r denotes the number of convolu-
tional and pooling layers included in the Inception-CNN layer
Sum.

In order to maintain the original 2D tensor shape and
position after the convolution and pooling operations, while
not discarding the original information, this paper chooses to
use the historical data to perform adaptive Padding according
to the size of the convolution kernel and the pooling kernel,
i.e., complete the filling of the columns in accordance with
the sequential nature of the time series, and then complete
the filling of the rows according to the periodicity of the time
series, and the number of padding entries required tomaintain
the shape of inputs The number of fill entries needed to
maintain the shape of the input is always equal to kernel_size
minus 1, where kernel_size is the size of the convolution or
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pooling kernel, and the two-dimensional time series data is
adaptively expanded according to the time dimension. Taking
the 3 × 3 convolutional kernel as an example, it is expanded
as shown in Fig. 3, filling the data according to temporality
and period on the left side and the bottom side, respectively,
and the numbers in the figure represent the time points.

FIGURE 3. Adaptive Fill Schematic.

In this paper, different convolution kernel parameters are
used to achieve the calculation of first-order difference during
the cycle and first-order difference during the cycle, as shown
in equation (3) respectively. Average pooling, maximum
pooling, and minimum pooling operations are performed
between weeks and cycles through 2 × 1 and 1 × 2 pooling
Windows, respectively. Together with extracting the history
load using a 1×1 convolution kernel, a total of 9 features are
extracted per cycle. [

1
−1

] [
−1 1

]
(3)

Existing studies have shown that time-derived features
as well as weather features have a significant impact on
electricity load, therefore, we also introduce peripheral
features, including temperature, year, month, day, week,
weekday, weekend, and moment of the moment to be
predicted in a total of 8 dimensions, which are encoded as
continuous features according to the temporal order, and then
combined together with the first m features extracted by
convolution and pooling under different 2D vectors, which
are jointly used as the input feature quantities of the moment
to be predicted, and the load of the moment to be predicted
is used as the output to generate the n-class dataset with
different input features.

C. GOLD RUSH OPTIMIZATION ALGORITHM
IMPROVEMENT
The Gold Rush Optimizer algorithm [23] (GRO) is a
meta-heuristic algorithm proposed in 2023 that is inspired
by the process of panning for gold during the gold rush. The
algorithm simulates the way gold miners search for gold on
the riverbed, and find the optimal solution by continuously
trying different locations and methods. The algorithm has
high convergence speed and search efficiency.

In this paper, we make relevant improvements to the GRO
algorithm for the weight optimization problem of integrated
models.

1) TENT CHAOS MAPPING
Tent chaotic mapping is commonly used to study nonlinear
behavior in dynamical systems, its name comes from the fact
that its folded shape is similar to the top of a tent (Tent),
Tent chaoticmapping can exhibit a uniform distribution under
appropriate parameter settings. Since the initialization of
the gold miner’s position using a random method will lead
to an uneven distribution of the initial position. Therefore,
in this paper, Tent chaotic mapping is used to initialize
the population to ensure the diversity and balance of the
initialization of the gold miners’ positions.

The Tent chaotic mapping formula is as follows:

xn+1 = f (xn) =

{
xn/α, xn ∈ [0, α)

(1 − xn)/(1 − α), xn ∈ [α, 1]
(4)

where xn denotes the n iteration chaotic value, xn+1 denotes
the n+1 iteration chaotic value, and α is a control parameter.

The behavior of the Tent mapping depends on the choice
of the parameter A. The system’s behavior becomes more
linear when A increases. When A is smaller, the behavior
of the system tends to be more linear, while when A
increases, the nonlinear characteristics of the system become
more obvious and may exhibit chaotic behavior. Since the
conventional Tent chaotic mapping produces chaotic values
between 0 and 1, in this paper, a normalization step is added
after the Tent chaotic mapping to scale it between −1 and 1.
The normalization formula is shown in equation (5):

XSta = 2 (X − 0.5) (5)

where X denotes the generated chaotic value and XSta denotes
the value after normalization is performed.

Through many experiments, in this paper, α is set to 0.499,
and the distribution of its Tent mapping is shown in Fig. 4,
fromwhich it can be seen that the generated chaotic values are
distributed between −1 and 1, and are uniformly distributed.

FIGURE 4. Tent chaotic map distribution.

2) ELITE STRATEGY
Due to the regularity of the electricity load, keeping the
last model weights can help to speed up the updating speed
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of the model weights. Therefore, when initializing the gold
miner’s position each time, freezing the position of the last
best gold miner, so that it has the historical experience when
calculating the weights next time can accelerate the speed of
optimization.

3) WEIGHT OPTIMIZATION PROCESS
In this paper, the improved gold panning optimization
algorithm is used for integrated model weight optimization,
and Fig. 5 shows the specific flow of the improved gold
panning optimization algorithm.

FIGURE 5. Improved gold optimization algorithm flow chart.

First, the initial parameters of the optimization algorithm
are set, including the number of gold panners, the maximum
number of iterations, the search space, etc., and then the gold
panner positions and evaluation matrix are initialized, and the
Tent chaotic mapping is used to initialize the gold panner
positions as the integrated model weights.

The next position is calculated using migration, gold
panning, or collaboration for each gold panner:

(1) Migration process
When a gold mine is found, the gold miner migrates there

to pan for gold, and the location of the richest gold mine is the
optimal solution in the search space. Since its exact location
is unknown, the location of the optimal gold panner each time
is considered as the location of the richest gold mine

(2) Gold panning process

The goal of each gold panner is to find more gold in the
gold panning area. The location of each panner is considered
as the approximate location of the gold mine.

(3) Collaborative Process
As gold panning is sometimes carried out through team-

work, two gold panners are randomly selected. Three-player
collaboration is realized between the current computational
gold panner and the two randomly selected gold panners.

The gold panners keep moving in order to get more gold,
and in order to decide whether the panners should stay where
they are or move to a new location, an evaluation function is
used to compare the two. If the value of the objective function
improves, the gold miner’s position is updated; otherwise, the
gold miner stays at the previous position.

When the stopping condition is reached, the position of the
best gold miner is obtained as the best weight, and when the
weight update is performed again, an elite strategy is used
to retain the best weight, i.e., one best gold miner’s position
in the last gold mine is retained, and the rest of the gold
miners are used to generate a set of mixed-pure sequences
using Tent chaotic mapping method as the new position and
a new iteration is performed again.

D. BAGGING
The basic idea of Bootstrap Aggregating (Bagging) [24] is to
abstract n times from the training dataset with returns to form
n sub-datasets, train a base classifier for each sub-dataset, and
finally synthesize their results to obtain the final output. The
advantage of Bagging is that by integrating multiple models,
it can reduce the risk of overfitting and improve the robustness
and generalization performance of the model, and it generally
uses a simple voting or averaging method.

Considering the multi-period characteristics of power
loads, multiple forecasting models are utilized to learn for
different period characteristics, and each model is only
responsible for learning one type of period characteristics so
that the models have stronger learning and characterization
capabilities. At the same time, due to the modeling mecha-
nism and starting point of different forecasting models, the
effective information that can be extracted by using different
forecasting methods is also different.

In this paper, after comprehensively considering the
characteristics of the data and the modeling mechanism of the
model, LSTM and XGBoost are selected as the base models.

1) LSTM
Among them, LSTM, as a deep learning model, has a power-
ful nonlinear modeling capability to learn complex patterns
in data, including nonlinear relationships. Through gating
mechanisms and memory units, LSTM can automatically
choose what information to keep and what to forget during
training, thus helping to reduce the risk of overfitting [27].

As shown in Fig. 6, the basic unit of the LSTM network
contains forgetting gate, input gate, and output gate. Input xt
in the forgetting gate together with statememory cell St−1 and
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FIGURE 6. LSTM network structure.

intermediate output ht−1 determine the forgotten part of the
state memory cell. The input xt in the input gate determines
the retention vector in the state memory cell after the change
of sigmoid and tanh functions, respectively. The intermediate
output ht is jointly determined by the updated St and output
ot . The formula is shown in the following equation.

fι = σ (Wfxxι +Wfhhι−1 + bf ) (6)

it = σ (Wixxt +Wihht−1 + bi) (7)

gι = φ(Wgxxι +Wghhι−1 + bg) (8)

ot = σ (Woxxt +Wohht−1 + bo) (9)

St = gt ⊙ it + St−1 ⊙ ft (10)

ht = φ(St )ot (11)

where: ft , it , gt , ot , ht and St are the states of oblivion
gates, input gates, input nodes, output gates, intermediate
outputs and state units, respectively; Wfx , Wrh, Wix , Wih,
Wgx , Wgh, Wox and Woh are the matrix weights of the
corresponding gates multiplied by the inputs xt and the
intermediate outputs ht−1, respectively; bf , bi, bg, bo are
the bias entries of the corresponding gates, respectively; ⊙

denotes the multiplication of the elements of the vectors by
the bits; σ denotes the variation of the sigmoid function; and
φ denotes the variation of the tanh function.

2) XGBOOST
XGBoost, on the other hand, uses a combination of multiple
trees to make predictions and has strong generalization
capabilities [25]. It is suitable for dealing with structured
data and can handle various types of features. With adequate
feature engineering, XGBoost usually gives better prediction
results. It integrates multiple decision trees through the
gradient boosting framework, which is able to capture
the complex relationships in the data, thus improving the
generalization ability of the model. Its objective function
consists of a loss function and a regular term, which limits
the complexity of the model through the regular term and
can effectively avoid the problem of lowmodel generalization
ability. The core idea of the algorithm is as follows:

As shown in Fig. 7, the tree is continuously added and
grown by feature segmentation, and each added tree is
equivalent to learning a new function f (x) to fit the residuals
of the last prediction.

FIGURE 7. XGBoost principle schematic.

When k trees are obtained at the end of training, depending
on the features of the samples, in each tree the samples fall to
the corresponding leaf nodes, each of which corresponds to a
score.

Finally, the scores corresponding to each tree are summed
to obtain the final prediction for that sample.

E. GRO-BAGGING PREDICTION ALGORITHM BASED ON
MULTI-CYCLE FEATURE EXTRACTION
As shown in Fig. 8 for the prediction algorithm flow
proposed in this paper, firstly, the original data is subjected to
multi-cycle feature extraction to form datasets with different
cycle features, and then all the datasets are trained and
predicted by using LSTM and XGBoost models to generate
the results of multiple prediction sub-models, and then finally
the final prediction results are obtained by using the improved
GRO algorithm to weight the prediction results and combine
them to obtain final prediction results.

For the constructed combined prediction model, the
mathematical expression is shown below:

ỹt =

N∑
i=1

wit ỹit (12)

where ỹt denotes the integrated prediction result at moment
t , N denotes the number of predictive sub-models, wit is the
weight of the ith model at moment t , and ỹit is the prediction
value of the ith model at moment t .
The problem of optimizing the weights with the objective

of minimizing the root-mean-square error, whose model
weight coefficients are solved, can be transformed into
solving the optimal solution of the following objective
function:

obf (x) = min

√√√√1
n

n∑
i=1

(xi − x̃i)2

 (13)

where x̃i is the i th model prediction value, xi is the true value,
and n is the number of sub-models. The improved gold rush
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FIGURE 8. GRO-Bagging based on multi-period feature extraction.

optimization algorithm is used to solve for the integration
weights, and the smaller the objective function value
indicates the better performance of the combined prediction
model.

Traditional combined prediction models usually limit the
weight coefficients of individual models to the interval [0,1],
i.e., it is assumed that the contribution of each individual
model to the combined model is positive. However, there are
some problems in practical applications. For example, in the
short run, if the forecasts of multiple individual models that
are combined are high, then the combined forecast must be
higher than the true value. The forecasting direction of some
individual models is opposite to the direction of the observed
series, and if these models are given positive weights, it will
lead to a large error in the combined result. Therefore, using
the method of assigning negative weights to this model can
effectively adjust the predictive trend of the combined model,
thus improving the predictive effect of the model. In order to
effectively improve the overall performance of the integrated
model, we control the weight range between −1 and 1,
i.e:

−1 ≤ wit ≤ 1 (14)

where wit represents the weight of the i th model at
time t .

F. GRO-BAGGING PREDICTION ALGORITHM BASED ON
MULTI-CYCLE FEATURE EXTRACTION
Considering the temporal and cyclical nature of power loads,
this paper further introduces a weight updating mechanism
for the integrated model as shown in Fig. 9, i.e., the integrated
model is always updated based on the average of the
prediction errors of the historical K days for the integrated
model weight w. Considering its cyclical nature, K is set as a
multiple of the cycle. Taking the K+1th to 2Kth day weights
as an example, the integrated model weights are updated
by utilizing the error between the predicted and true values
from day 1 to day K. Considering the prediction error of the
historical K days can smooth the rate of weights updating and
reduce the influence of abnormal samples, and at the same
time, it prompts the integrated model to update the weights
by considering the most recent data more often.

FIGURE 9. The weight update diagram based on error feedback.

III. CASE STUDY
A. SIMULATION SOFTWARE AND HARDWARE
The experiments were performed with a computer equipped
with an AMD Ryzen5 5600 6-Core processor, an NVIDIA
GeForce GTX 4070 graphics card, and 16.0 GB of memory
(RAM). The software simulation was implemented via
Python, and the main libraries used included Pytorch and
Scikit-learn.

B. INTRODUCTION TO THE DATASET
The data used for the experiments are GEFCom2014-E,
an extended version of the GEFCom2014-L dataset provided
by the Global Electricity Energy Forecasting Competi-
tion [26], which contains hour-by-hour load data and
temperature data for a region in the U.S. for the period of
January 1, 2006, through December 31, 2014, with 24 load
values per day. The data length allowed for simultaneous
consideration of daily, weekly, monthly, seasonal, and annual
cycles. The data of the first 3 years are not involved in the
model construction because it is necessary to use 3 years
ago loads as features. In this paper, some data are selected
for experiments, and the selection interval is January 2010 to
March 2011 for a total of 15 months of data.

C. PARAMETER SETTING
For all sub-models in the integrated model, all features with a
historical cycle step of 3 after multi-period feature extraction,
temperature, and date features at the moment to be predicted
are selected as inputs to the predictionmodel. Considering the
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model variability, in which the LSTM model inputs features
in the order of period, the historical time step is 3, then
the input format is 3 × 17, and the load at the point of
time to be predicted is used as the output of the prediction
model. XGBoost model adopts a one-time input, and the
input features are 33, and the load at the point of time to
be predicted is used as the output of the prediction model.
Since the minimum period considered in this paper is 1 day,
day-ahead load forecasting can be realized. The individual
hyperparameters of the model are determined by grid search,
and the specific parameter Settings of the XGBoost, LSTM,
and GRO algorithms are shown in Table 1. Some parameters
not listed use default values.

TABLE 1. Specific parameters of the proposed model.

For the sake of fairness in algorithm comparison, all
regression models follow the conventional feature construc-
tion method, using the date feature of the moment to be
predicted, the temperature feature, and the load at the same
moment of the 7 days of history as input features to predict
24 points in the future. The time series forecasting model
input multivariate historical series (including date features
and temperature) were 7 × 24 in length, and direct multistep
forecasting (24 steps) was performed. The data divisions are
all divided into training, test, and validation sets in the ratio
of 8:1:1. All hyperparameters of the model are determined by
grid search, and the parameter combination with the smallest
error is selected as the optimal parameter of the model by
setting the search range and step size and traversing the
experiments on the possible combinations.

For the prediction model of the neural network, MSE is
used for the loss function, and in order to prevent overfitting,
early stopping criterion and Dropout are used, in which the
early stopping criterion is used by checking the validation
loss at the end of each training cycle, and the count will be
increased by 1 if does not reduce the error in the validation set,
and the trainingwill be stoppedwhen the threshold is reached,
and the last best model will be retained as the final model, and
in this paper, the threshold for early stopping is set to 10.
Dropout is a regularization technique that prevents overfitting
by randomly dropping a certain percentage of neurons in
the training process. In this paper, a dropout probability of
0.01 is finally chosen throughmultiple experiments to prevent

overfitting andmaintain themodel learning ability. To prevent
the gradient explosion problem, the Adam adaptive learning
rate optimization algorithm is used. To prevent gradient
vanishing, the Relu activation function and normalization are
used before each layer.

As the order of magnitude of various types of input features
may differ, it will affect the model training. In this paper,
the input features are normalized and the original data are
scaled to the range of [0,1] by linear transformation with the
following formula:

Xnorm =
X − Xmin

Xmax − Xmin
(15)

where Xnorm indicates the scaled data, X indicates the original
data to be scaled,Xmin indicates theminimum value, andXmax
indicates the maximum value.

D. EVALUATION INDICATORS
Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Mean Absolute Percentage Error (MAPE) were
chosen as the evaluation indexes of the model [27].

RMSE =

√
1
n

∑n

i=1
(yi − ŷi)2 (16)

MAE =
1
n

∑n

i=1
| ŷi − yi | (17)

MAPE =
100%
n

∑n

i=1
|
ŷi − yi
yi

| (18)

In the above formula, yi is the actual observed value, ŷi
is the predicted value of the model, and n is the number of
samples.

E. VALIDATING MODEL FRAGMENTS
1) MULTI-CYCLE FEATURE EXTRACTION
In order to verify the positive effect of multi-period feature
extraction on load forecasting, a single forecasting model is
used to model datasets containing different feature periods.
As shown in Fig. 10, all five datasets with different cycle
features are modeled by the LSTM model, comparing the
prediction errors of three consecutive days, it can be seen
that there is a lower error in the weekly feature dataset
on the first day, the second day has a lower error in the
monthly feature dataset, and the third number of days has a
lower error in the daily feature dataset, which shows that the
datasets with different cycle features under the same model
can lead to different forecasting results, proving that more
effective information can be provided in load forecasting
after multi-cycle feature extraction. Therefore coupling the
results of multiple forecasting models, each focusing on
learning one periodic feature, can enhance the learning and
characterization ability of the integrated model.

2) MODEL INTEGRATION
In order to demonstrate that the effective information that
can be extracted by using different prediction methods is also
different, we chose the dataset after performing weekly cycle
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FIGURE 10. Prediction errors for different periodic characterization
datasets.

feature extraction for the comparison of the prediction errors
of two different prediction models for 14 consecutive days.

As shown in Fig. 11, it can be seen that the performance
of different models changes over time with the same input
data. Therefore, making full use of the results of each
load forecasting model and combining different types of
forecasting methods into an integrated learning model can
improve the accuracy of load forecasting.

FIGURE 11. Comparison of errors of different forecasting models.

3) IMPROVED GOLD PANNING OPTIMIZATION ALGORITHM
In order to verify the effectiveness of the GRO algorithm,
this paper compares the mainstream optimisation algo-
rithms, including the Grey Wolf Algorithm (GWO), Sparrow
Search Algorithm (SSA) and Particle Swarm Optimisation
Algorithm (PSO), in the actual weights solving. The basic
parameters of all optimization algorithms are set the same,
the number of populations is 50, and themaximum iteration is
200. From the convergence curves in Fig. 12, it’s clear that the
GRO algorithm has faster convergence and better solutions
for weight solving.

In order to verify the effectiveness of the proposed
improvement strategy, this paper firstly predicts the results
on the sub-model for 14 days, and takes the prediction error
of the first 7 days as the basis for calculating the next
weights to simulate the error feedback process, and uses the
improved GRO algorithm to solve the weights, and compares
it with the original unimproved GRO algorithm, as shown in

FIGURE 12. The optimization of fitness curves with different algorithmic
weights.

Fig. 13, which shows the convergence curve of the weight
update, the improved GRO algorithm has lower adaptation
value in the beginning and has better convergence speed and
better solution, while the original GRO algorithm is slower
to converge. The results also show that the characteristics of
power loads in a short period of time are highly similar.

FIGURE 13. Improve GRO and GRO fitness curve.

F. ANALYSIS OF PROJECTED RESULTS
Fig. 14 gives a comparison of the prediction results in 7 days
using this paper’s method and the comparison algorithms,
including the Bagging algorithm using averaging (this paper’s
algorithm removes the GRO optimization), LSTM,XGBoost,
LightGBM [28], BPNN [29], TCN [30], Informer, and
N-Beats [31]. As can be seen in the figure, the prediction
curves of this paper’s algorithm (red) are overall closer to
the true value curves (black), and the prediction effect of
the algorithm proposed in this paper is better than the other
comparison algorithms.

The prediction errors for each day are shown in Table 2.
The MAE, RMSE, and MAPE of the model proposed
in this paper are smaller than those of other models for
most of the time in a consecutive week, which proves that
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TABLE 2. One-week forecast error.

FIGURE 14. Comparison of forecast results.

the introduction of multi-period features can improve the
prediction accuracy, and the regression methods such as
BPNN, LightGBM, XGBoost, and LSTM can simulate the
trend of electricity consumption of different types of days in
a week more accurately. The load forecasting effect of TCN
and N-Beats, which use time series forecasting methods is
average. Informer has good predictive accuracy as a more
advanced model.

Table 3 gives a comparison of the average prediction
error for one consecutive week, from which it can be seen
that this paper’s algorithm has the smallest prediction error
in all the experiments, with MAPE as the main analysis,

TABLE 3. Comparison of prediction errors.

which is reduced by 42.64% and 38.78% compared to
the single LSTM and XGBoost, respectively, which proves
that the integrated learning can effectively learn the load
multiple periodic features, and thus reduce the prediction
error. Compared with the averaging method of the Bagging
algorithm, the MAPE index is reduced by 13.57%, proving
that introducing a weight optimization strategy and a weight
update strategy in Bagging integrated learning can further
improve the prediction accuracy. The baseline model is
also compared, which is reduced by 26.84% and 39.74%
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TABLE 4. Weekday 24-hour prediction error (MAPE).

FIGURE 15. Comparison of weekday prediction results (left) and prediction error (right).

compared to the regression prediction methods BPNN and
LightGBM. Compared with TCN, N-Beats, and Informer,
the error is reduced by 53.86%, 54.20%, and 30.63%
respectively. It proves that the GRO-Bagging day-ahead
power curve forecasting model based on multi-cycle feature
extraction is better and the prediction accuracy is more
accurate compared to other models.

To further compare the errors of the algorithms, box
plot and normal curve of absolute point error are given
in this paper, as shown in Fig. 17, which shows that the
method of this paper The proposed model shows a tight
distribution with a median error around 50 MW. It also
has the smallest interquartile range (IQR), indicating high
accuracy and precision. The bagging model has a slightly
wider distribution than the

proposed model, with a median error of around 50 MW.
However, it shows more variability and outliers. The LSTM
model has a wider spread, with a median error higher than
the proposed model and bagging. It shows considerable
variability and several outliers. The XGBoost model and
LSTM, Informer have similar distributions, the median error
is about 100MW, and there are more outliers. The LightGBM
model shows a relatively large spread, with a median error
slightly higher than the LSTM and XGBoost. It also has a
higher number of outliers. The BPNN model shows a larger
spread in error distribution, with a median error higher than
the previous models and more outliers. The N-Beats model
has a distribution similar to the BPNN, with a widespread and
high median error. The number of outliers is also significant.
The TCN model shows the widest distribution and highest
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TABLE 5. Non-Working day 24-Hour prediction error (MAPE).

FIGURE 16. Comparison of non-weekday prediction results (left) and prediction error (right).

median error among all models, with many outliers indicating
lower accuracy and precision.

For further analysis, the hour-by-hour prediction errors for
weekdays (Wednesday, March 16, 2011) and non-weekdays
(Sunday, March 13, 2011) are also given in this paper,
as shown in Table 4 and Table 5, and the corresponding
comparative graphs of the prediction results are shown in
Figures 15 and 16. The results show that the forecasting
model proposed in this paper is able to predict the upper
and lower peak loads of the 24-hour electricity forecast more
accurately, which indicates that the model proposed in this
paper has a strong ability to forecast weekday and weekend
loads.

G. COMPARISON OF TRAINING TIME
To assess the complexity of the proposed model, we com-
pared the training times of all the predictive models involved
in the comparison experiments as well as those presented in
this paper. To avoid chance, we ran each model ten times
with the optimal parameters obtained through grid search
and used early stopping for the deep learning models to
avoid overfitting. Table 6 summarizes the average ten training
times of different prediction models, from the results in
Table 6, it can be seen that XGBoost and LightGBM based
on traditional machine learning have the lowest training time,
followed by BPNN and LSTM, and the training time of the
proposed method in this paper is 23.27s, which is similar
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FIGURE 17. Distribution of errors between each predicted value and the
true value.

to the Bagging method but much lower than that of TCN
and methods such as N-Beats and Informer, etc. TCN and
N-Beats have relatively more complex model structures and
require more training time, and Informer requires the most
training time, which is due to the fact that it has a more
complex model structure and more parameters, resulting in
a relatively high amount of computation. From the point of
view of training time, the proposed method is in the middle
of the range in terms of computation and is more efficient
than the computationally intensive methods such as TCN and
Informer.

TABLE 6. Comparison of training time of different models.

IV. CONCLUSION
In this paper, a GRO-Bagging day-ahead power curve
forecasting model based on multi-cycle feature extraction is
proposed from themulti-period nature of power loads, and the
proposed method is experimentally verified by a real dataset,
and the conclusions are as follows:

a) By extracting intra-periodic and inter-periodic features
of historical loads under multi-periodicity, temporal pattern
decoupling can be realized and new input features can
be generated, which can positively contribute to load
forecasting.

b) Using the Gold Rush Optimization Algorithm that
introduces Tent chaotic mapping and elite strategy to solve
the weights, as well as the introduction of error feedback for
weight updating, possesses better prediction accuracy with
better solution and faster convergence speed compared to the
general integration methods.

c) The GRO-Bagging algorithm integrates the prediction
of datasets with different cycle characteristics, which can

effectively learn the multiple cycle change patterns of the
data, and the prediction accuracy is higher.

In the future, we will further study the extraction and
utilization of load multi-period features, as well as the
dynamic weighting strategy considering model integration,
to further realize the prediction modeling adapted to multiple
time-varying loads.
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