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ABSTRACT Graves’ orbitopathy is an inflammatory disorder that causes changes in different structures
close to the eye. Accurate and consistent diagnoses are essential to improve the quality of life for Graves’
orbitopathy patients. To this end, a number of studies on Graves’ orbitopathy have been conducted based
on neural networks recently. However, treatment decision methods based on neural networks have been
much less addressed. This study aims to propose an effective deep neural network-based diagnosis method
that makes treatment decisions for Graves’ orbitopathy patients. Specifically, the proposed method adopts
a high-resolution feature enhancement and low-resolution feature preservation strategy focusing on the
following points. First, the loss of detailed spatial information during the alignment of pixel spacing
in computed tomography images leads to a decrease in performance. Thus, we preserve the detailed
information of the images through high-resolution resampling. Second, existing studies lack sophistication
in network design. The baseline network was improved by four modifications. Finally, resizing and coarse
cropping cause learning instability. Thus, we adopt padding and fine-grained cropping. Our empirical
study shows that the proposed method outperforms two existing neural network-based Graves’ orbitopathy
diagnostic pipelines achieving an average area under the receiver operating characteristic curve of 0.793,
accuracy of 0.699, F1 score of 0.416, sensitivity of 0.723, and specificity of 0.694 in five repetitive
experiments. Furthermore, in-depth analysis provides several future research directions in computed
tomography preprocessing and deep neural network design. The source code for the proposed model is
available at https://github.com/tkdgur658/GOTDNet.
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I. INTRODUCTION
Graves’ orbitopathy (GO) is an orbital inflammatory dis-
order that occurs in association with autoimmune thyroid
disease [1]. Patients with GO can experience reduced
life quality due to several conditions, such as visual
impairment, deformed appearance, and declined emotional
health [2]. Moreover, GO primarily occurs in patients with
hyperthyroidism but can also coexist with euthyroidism,
subclinical hypothyroidism, or overt hypothyroidism [3].
For the systematization of treatment plans of GO patients,
various taxonomies have been studied in the past years [4].
For example, the European Group on Graves’ Orbitopathy
categorized the severity of GO into three groups, and
suggested different treatment plans for each group, taking
into consideration the activity of GO [5]. Although numerous
treatment methods have been explored, there is still a strong
emphasis on the need for consistent treatment guidelines
because the severity and activity of GO require different
approaches [6].

At the same time, imaging techniques such as computed
tomography (CT) play a crucial role in evaluating orbital
alterations to understand the progression of GO and to assist
in surgical planning [7]. Integrating pertinent input data along
with meticulously crafted machine learning algorithms into
diagnostic processes can assist physicians in making more
accurate and consistent decisions [8]. Moreover, GO diag-
nosis based on orbital imaging is often time-consuming in
practice because clinical decisions should be made after
observing changes in various anatomical structures related to
GO [9]. Thus, several studies of GO diagnosis have recently
been conducted based on deep neural networks (DNNs) [10]
for different objectives, such as the differentiation of GO
patients from normal cases [11], severity evaluation [12], and
activity evaluation [13], [14]. Nevertheless, the application of
DNN-based methods for treatment decision making is still a
relatively unexplored area [10], [15].
This study aims to develop an effective DNN-based diag-

nostic method for making treatment decisions for patients
with GO. To this end, we design an effective diagnostic
pipeline based on a high-resolution feature enhancement
and low-resolution feature preservation strategy. In the
preprocessing phase, we employ high-resolution resampling
and fine-grained cropping strategies to preserve detailed
spatial information from high-resolution images while alle-
viating less important region training. In network design,
the deep stem strategy is utilized to extract high-level
features in the high-resolution processing stage. More-
over, additional max-pooling, residual stage, and average-
pooling enhance preservation of spatial information during
feature extraction, thereby mitigating the rapid loss of
important features. Finally, the bottleneck is designed to
preserve local information by adding nonlinearity while
reducing the receptive field. Specifically, we focus on
the following points to construct a sophisticated diagnosis
pipeline:

FIGURE 1. Distribution of physical units per pixel in the axial plane image
from the CT dataset utilized in this study. A pixel spacing of
0.35mm3 constitutes the majority.

1) The loss of fine spatial information in CT images
arising from resampling can lead to a decline in
performance. For example, existing studies [14] nor-
malize high-resolution CT images with a pixel spacing
of approximately 0.34mm3 to a significantly lower
resolution with a pixel spacing of 1.00mm3. Such
approaches substantially diminish image resolution,
thereby compromising intricate spatial information.
However, the proposed methods alleviate this infor-
mation loss by normalizing to a pixel spacing of
0.35mm3 to preserve the detailed spatial information.
Fig. 1 delineates the distribution of physical units per
pixel before resampling within the axial plane imagery
of the CT dataset used in this study.

2) Although existing studies [11], [14] have shown
potential in the use of DNNs on GO diagnosis, they
lack a comprehensive theoretical or experimental basis
for network design. In contrast, we analyze several
network designs pertinent to improving predictive
performance. To enhance the extraction of fine CT
features, the proposed DNN employs a deep stem
strategy, which offers a larger receptive field and
greater non-linearity during the extraction of high-
resolution features. Furthermore, to preserve extracted
high-resolution features with reduced spatial distortion
at lower resolutions, one 3 × 3 × 3 convolution
is replaced with two 1 × 1 × 1 convolutions per
convolution block, and stride convolutions are replaced
with average pooling.

3) Resizing and coarse cropping of existing studies [11],
[14] can cause learning instability. Spatial axis mis-
alignment due to resizing can cause performance
degradation, as a deformation of the appearance of
structures is one of the symptoms of GO. Performing
coarse cropping can include regions that are less
relevant to GO during the decision of model. A network
trained on coarse cropping images may suffer from
regions that are less relevant to GO.
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The proposed method mainly consists of two stages: data
preprocessing and DNN architecture. The preprocessing of
the proposed method is distinguished from existing studies
by incorporating high-resolution resampling, fine-grained
cropping, and no-resizing. In terms of DNN architecture, the
proposed DNNwas improved from an existing GO diagnostic
DNN [11] based on a high-resolution feature enhancement
and low-resolution feature preservation strategy. Specifically,
we added max-pooling and a residual stage to the baseline
network for effective high-resolution CT data processing.
Furthermore, the bottleneck blocks and average-pooling were
adopted for low-resolution feature preservation. Finally, deep
stem strategy was exploited to extract better high-resolution
features.

The main contributions of our study are as follows:
1) This study introduces a DNN-based diagnostic method

for making treatment decisions for patients with GO,
demonstrating superior performance over two existing
methods across five evaluation metrics in experiments
involving a cohort of 1,832 patients at Chung-Ang
University Hospital.

2) This study tackles the problems of existing DNN-
based GO studies in terms of preprocessing, such as
the information loss from resampling and resizing, and
learning confusion from GO-irrelevant regions. Thus,
the proposed preprocessing includes high-resolution
resampling and fine-grained cropping to alleviate
information loss in CT data and focus on GO-relevant
regions.

3) To design a DNN specialized for the proposed
preprocessing, the proposed DNN exploits high-
resolution feature enhancement and low-resolution
feature preservation strategy including different archi-
tectural modifications.

The remainder of this paper is organized as follows:
Section II describes the literature review. Section III presents
the materials and methods. Section IV describes the experi-
mental results. Section V presents an in-depth analysis of this
study.

II. RELATED WORK
In recent years, a number of DNN-based diagnostic methods
have been studied based on different approaches in terms
of CT preprocessing, DNN designs, and training strategies
to address different medical objectives [16]. For drowning
diagnosis, a 2.5D method can be used for converting 3D
CT data into 2D images to train 2D DNNs [17]. The
CT images were processed by removing the background
and then input into Inception-ResNet-V2. A computer-
aided diagnosis framework based on multi-channel three-
dimensional DNN was developed for lesion diagnosis [18].
To exploit the energy-enhanced tissue features, each energy
imagewas used as one input channel for amulti-channel input
convolutional neural network. Non-contrast CT images can
be used for early diagnosis of pancreatic cancer based on
a multiple-instance-learning framework designed to extract

fine-grained pancreatic tumor features [19]. A patch-level
feature extraction was performed to obtain local fine-
grained features before inputting them into the graph
neural network. Different medical images, which can have
unique characteristics, including intensity variation, scale
variation, and location of interest, can improve diagnostic
performance when applied before feeding images into a
DNN [20]. The diverse DNN-based diagnostic methods [16],
[21], including the above examples, can indicate that GO
studies should further employ a wide range of methods
[10], [15].

For diagnosing GO patients, several studies [11], [12],
[13], [14], [22], [23] have explored various DNN-based
diagnostic pipelines. To assess GO activity, magnetic reso-
nance imaging (MRI) scans from 108 patients were analyzed
using two DNN models adapted from the VGG and ResNet
architectures, respectively [13]. In the MRI scans, the orbital
regions were extracted at a uniform size before being
randomly cropped to diversify the training dataset. Although
MRI provides enhanced contrast resolution over CT scans,
its application can be limited due to higher costs and the
limited availability of training datasets. Although CT data
is relatively suitable in terms of cost for training data
expansion, labor-intensive data preprocessing procedures
may be difficult to apply in clinical settings [24]. To diagnose
the severity of GO, multiple convolutional blocks were
employed to analyze information across the axial, coronal,
and sagittal planes [12]. Extracting latent variables from these
three distinct views enabled the model to effectively learn
3D spatial information. However, the manual rectangular
cropping procedure of all orbital regions for three views can
be considered a labor-intensive process. Although a large
number of segmented images can be a promising approach for
improving predictive performance [23], [25], labor-intensive
issues for segmentation data preparation should be addressed
for clinical field application. The ResNet-VGG pipeline was
designed to detect enlarged extraocular muscles, which are
considered the main symptom of GO [22]. The use of seg-
mentation neural networks can be a labor-intensive solution,
but it also requires a large amount of mask data for learning.
Thus, this study focuses on the 3D region-of-interest (RoI)
cropping strategy, which can be used at a relatively lower cost
than the segmentation strategy [26]. A modified 3D-ResNet
was developed to differentiate GO patients from healthy
subjects using 1,435 CT images [11]. These images were
cropped to a rectangular shape to display both the orbital bone
and the eyeball in the sagittal view. However, this cropping
approach inadvertently capturedmany areas not related toGO
diagnosis, negatively impacting the predictive performance
of DNN. Finally, the activity diagnostic performance of a
multi-channel convolutional neural network can be enhanced
by concurrently inputting orbital and single-photon emission
CT images [14]. However, resampling to pixels occupying
1.00 mm3 may represent a loss of information in CT data,
which is too low-resolution compared to the original CT
data.
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FIGURE 2. Visualization of an inference result of existing DNN-based GO diagnostic pipeline [11] including preprocessing and DNN archtecture. The left
figure demonstrates an image at a specific depth location of input CT image, and the right figure depicts the Grad CAM score overlay on the left figure.
Red indicates regions that contributed significantly to model predictions, and blue indicates regions that did not. The figure demonstrates that regions
outside the orbit, which are less related to GO, affect the model decision.

Our brief review shows that DNN-based GO studies
adopt different data preprocessing pipelines and model
architectures. Although segmentation-based procedures and
cropping procedures have their pros and cons, cropping-
based methods are promising for actual clinical applications.
However, in existing studies, the learning of DNN can be
interrupted by structures unrelated to GO [11] or information
can be lost during the low-resolution resampling process [14].
In this study, we propose a new data preprocessing pipeline
and DNN architecture to devise a DNN-based diagnostic
pipeline for treatment decisions of GO patients.

III. MATERIALS AND METHODS
The Institutional Review Board (IRB) of Chung-Ang Uni-
versity Hospital approved this study (IRB No. 2303-015-
19462), and the requirement for informed consent was
waived considering its retrospective design. This study was
conducted in accordance with the ethical standards outlined
in the Declaration of Helsinki.

A. MOTIVATION
Although orbital CT images can be acquired with higher
resolution [27], [28], [29], several existing DNN-based
GO methods resample the original CT images using
1.00 mm3 pixel spacing [11], [14]. Meanwhile, various
DNN studies show that high-resolution images can lead to
better predictive performance [30], which indicates that the
performance of GO diagnosis can be improved through a
high-resolution CT resampling process. Moreover, existing
cropping strategies that cover large regions of CT imagesmay
adversely affect model learning from unrelated GO regions
(Fig. 2.); thus, fine-grained cropping is required in pre-
processing. In addition, resizing approaches that distort the
aspect ratio of images can lead to performance degradation.
In this paper, we propose improved preprocessing guidelines,
including high-resolution resampling and RoI cropping to
alleviate information loss in CT data and focus on important
regions. Then, the baseline network [11] is equipped with
several modifications based on a high-resolution feature

TABLE 1. Subject characteristics.

enhancement and low-resolution feature preservation strat-
egy for processing high-resolution CT images effectively.
Specifically, four network modifications were considered for
effective dimensional compression, including an additional
max-pooling layer, a residual stage, bottleneck blocks, and
a deep stem stage. The proposed method, including data
preprocessing and network, is demonstrated in Fig. 3.

B. PARTICIPANTS
We obtained orbital CT scans (Philips Brilliance 256 Slice
CT, Philips Healthcare Systems, Andover, MA, USA)
without contrast from patients diagnosed with GO from
March 2004 to November 2022. A total 1,832 CT scans from
an equal number of GO patients were included in this study.
Each CT scan was classified as either positive, indicating
that treatment was recommended, or negative, indicating
that treatment was not recommended. GO patients were
diagnosed according to Bartley and Gorman’s criteria [33].
GO activity and severity were evaluated according to the
standardized criteria recommended by the European Group
on Graves’ Orbitopathy [5]. Patients with active, moderate-
to-severe GO were recommended to proceed with treatment,
which included intravenous (IV) steroid treatment. Two oph-
thalmologists, each with more than five years of experience
in oculoplasty, were blinded to the CT results and made
decisions regarding whether to recommend treatment. The
number of positive cases was 305 (88 males, 217 females),
and the number of negative cases was 1,527 (316 males,
1,211 females) (p-value<0.005). The mean ages of positive
and negative cases were 43.89 ± 12.98, and 35.72 ± 11.87,
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FIGURE 3. A schematic overview of the proposed method. First, the CT images were resampled based on B-spline interpolation with 0.35 mm3 pixel
spacing. Then, the images were normalized into values from zero to one by VOI-LUT function. The normalized CT image is cropped to the orbital region
and padded with zero for having a fixed pixel size (220, 350, 160) for DNN. In the figure of the neural network, Conv stands for convolution layer. BN and
ReLU denote batch normalization [31] and rectified linear unit [32], respectively.

respectively (p-value<0.001). Patients below the age of 18,
with a previous history of orbital surgery, orbital tumor,
blowout fracture, idiopathic orbital inflammation, those who
received IV steroid treatment or radiation therapy at the time
of the CT scan, or those with incomplete CT scans were
excluded. The demographic information for the patients is
described in Table 1.

C. DATA PREPARATION AND PROCESSING
Each CT image was resampled into 0.35 mm3 with B-spline
interpolation to obtain consistent pixel sizes across differ-
ent CT scans. The 0.35 mm3 pixel spacing represents a
more than two-fold increase in resolution compared to the
1.00 mm3 pixel spacing of the existing methods, resulting in
significantly higher image quality. Then, each pixel value in
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FIGURE 4. DNN architectural changes from the baseline [11] to the proposed model. a) First, a max-pooling layer is added to the stem stage of the
baseline. b) Then, an additional residual stage is attached. c) Basic blocks of the baseline are replaced with bottleneck blocks. When s = 2,
average-pooling is performed instead of strided convolution. d) Finally, two 3 × 3 × 3 convolutions are added to the stem stage.

CT images was normalized to a range of zero to one using
the values of interest look-up table (VOI LUT) operation,
with a window center of 50 and a window width of 200.
To mitigate the confusion of training from GO-irrelevant
regions, fine-grained orbital cropping was performed based
on two rectangular boundaries containing both orbits. Before
being inputted into the networks, the CT images were zero-
padded to a fixed size of (220, 350, 160), avoiding the resizing
approach used in existing methods [11].

D. DEEP NEURAL NETWORK
The proposed network adopts the high-resolution feature
enhancement and low-resolution feature preservation strategy
for processing the high-resolution CT images effectively.
Specifically, the proposed network exhibits architectural
changes using four steps, from the baseline network [11]
as demonstrated in Fig. 4. First, the incorporation of max-
pooling layers enhances feature extraction for high-resolution
images, mitigating the potential for drastic information loss
during global average pooling before the final FC layer.
Second, an additional residual stage enhances the feature
extraction for low-resolution features. Then, Bottleneck and
average down-sampling facilitate the preservation of low-
resolution features. Bottleneck alleviates spatial information
distortion while improving non-linearity by replacing a 3 ×

3 × 3 kernel with two 1 × 1 × 1 kernels. In addition,
average-pooling entails a lower risk of information loss
compared to strided convolution. Finally, the deep stem
strategy enhances the learning ability from high-resolution
feature maps. We utilize a 7 × 7 × 7 kernel and two 3 ×

3×3 kernels to enlarge the receptive field instead of stacking
three widely used 3 × 3 × 3. The next paragraph provides a
detailed description of the overall model architecture.

The proposed network consists of a stem stage f s, five
residual stages f 1, . . . , f 5, and a classification stage f c. The
positive and negative score vector, which is the output of
proposed network, can be defined as ŷ = f c ◦ f 5 ◦ . . . , ◦f 1 ◦

f s(x), where x ∈ [0, 1]220×350×160 is a preprocessed CT
image. The stem stage f s includes three convolution layers
and a max-pooling layer, motivated by the work of [34]. All
convolution layers in the proposed model are accompanied
by batch normalization (BN) [31], and rectified linear unit
(ReLU) activations [32]; these details have been excluded
for the brevity of the paper. The first convolution layer of
the stem stage f s has 7 × 7 × 7 kernels with a stride of
2. The other two convolution layers in the stem stage f s

have 3 × 3 × 3 kernels with a stride of 1. The feature
map extracted through three convolution layers outputs the
pixels with the highest activation in each region through a
max-pooling layer. In five residual stages f 1, . . . , f 5, two
types of bottleneck blocks [34] are employed: one with
stride 1 and another with stride 2. The first residual stage
f 1 has two bottleneck blocks with a stride of 1. The late four
stages f 2, . . . , f 5 have a bottleneck block with a stride of 1,
and a bottleneck block with a stride of 2. The bottleneck
block with a stride of 2 can be used in the late four stages
f 2, . . . , f 5 for down-sampling based on average-pooling.
Each bottleneck block has three convolution layers with
another convolution layer in skip connection. A bottleneck
block with a stride of 2 includes an average-pooling layer
in the main branch and skip connection. In the classification
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stage f c, the feature maps generated from five residual stages
are compressed into (1, 1, 1) fixed size by global-average-
pooling. Then, a fully connected (FC) layer outputs two
scalar values from 512 scalar values. Finally, the positive
and negative score vector ŷ is output by a softmax layer.
The source code for the proposed model is available at
https://github.com/tkdgur658/GOTDNet.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
The methods of Yao et al. [14] and Song et al. [11] were used
as the comparative methods for the evaluation of the proposed
method. Each method, including data preprocessing and
DNN architecture, was reproduced based on our CT data. The
experiments were implemented with Python 3.8 and PyTorch
library 2.0. The weights of each model were optimized by
using Focal loss [35] with a gamma value of 2.0. AdamW [36]
was employed as the optimizer. The weight decay was set
to 1e-4, and the learning rate varied from 1e-3 to 1e-6
by the cosine annealing scheduler over 50 epochs. Each
model was optimized for a maximum of 50 epochs. An early
stopping criterion was used, which terminated the training
if there was no improvement in the loss for 20 epochs. The
batch size was set to 8. In each experiment, the data was
stratified and randomly sampled into three sets: 60% for
training, 20% for validation, and 20% for testing. Training
and testing were performed five times for each method. The
training and testing were performed on twoNVIDIAGeForce
RTX 3090 GPUs with a data-parallel environment.

The diagnosis of treatment decisions can be considered
a binary classification dealing with whether a treatment
decision is recommended. Thus, we employed five measures:
accuracy, F1 score, sensitivity, specificity, and Area under the
receiver operating characteristics (AUC) curve, widely used
in the study of binary classification to evaluate prediction
performance. Descriptive statistics are presented as numbers
for categorical variables and mean ± standard deviation
for continuous variables. A paired t-test was performed to
statistically evaluate the experimental results at the 0.1 and
0.05 significance levels. The null hypothesis states that the
mean difference between the paired observations is zero. The
t-test was performed for all possible pairs of comparison
models using Scipy 1.5.4, which is an open-source Python
library.

B. EXPERIMENTAL RESULTS
Table 2 summarizes the performance evaluations of the
proposed method and two comparative methods. The exper-
imental results show that the proposed method achieves
the best performance across five metrics, rejecting the null
hypothesis of statistical tests, which indicates the superiority
of the proposed model. The proposed method achieved an
average AUC of 0.793, outperforming the closest competitor
by a substantial margin of 0.122. In terms of accuracy, the
proposed model exhibited an average score of 0.699 with a

FIGURE 5. Performance changes over different input resolutions. Each
bar represents the prediction performance when the CT data set is resized
into different scales. For classification models, the model referenced
as [11] and three different models in Fig. 4 were used to prevent rapid
spatial information compression for each input scale. The brightest green
indicates the performance when the smallest resolution input, at 1/3 the
size recommended by the proposed preprocessing pipeline, was used
with the model referenced as [11]. The medium bright green represents
the performance using a medium resolution input, also at 1/3 the size
suggested by the proposed preprocessing pipeline, with the model
labeled ‘a)’ in Fig. 4. The dark green signifies the performance when an
unresized dataset was input into the model referred to as ‘b)’ in Fig. 4.

FIGURE 6. Performance improvements over different architecture
modifications. The performance improvements over different
modifications demonstrated in Fig. 4 are depicted. The proposed model
achieves performance improvement through a four-stage structural
enhancement from the baseline, which consists of adding a max-pooling
and a residual stage, and using bottleneck block instead of basic block,
and deep stem strategies. As a result, the average AUC improved from
0.728 to 0.793.

standard deviation of 0.021, demonstrating an advantage of
0.072 over the second-best model. The F1 score followed
a similar trend, with the proposed model leading at an
average of 0.416 with a standard deviation of 0.018. This
represented a difference of approximately 0.110 compared
to the second-best model. Finally, the model achieved an
average sensitivity of 0.723 and an average specificity of
0.694, which is considerably higher than all other models by
a difference of 0.115 and 0.063, respectively.

V. DISCUSSION
This study developed a DNN-based diagnosis method that
can be applied to orbital CT images to make the treatment
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TABLE 2. Experimental results. The average of the corresponding evaluation metric is presented in each cell with its standard deviation. The value in
parentheses denotes the average ranking of the corresponding model. If the best scoring model for each metric rejects the null hypothesis in a t-test with
all other comparison models, the asterisk (*) emphasizes the performance. * and ** indicate statistical significance at the 0.1 and 0.05 levels, respectively.

FIGURE 7. Performance changes over different deep stem strategies. The
light, medium, and dark blue mean the basic stem strategy, the deep stem
strategy with 3-3-3 kernels, and the deep stem strategy with 7-3-3
kernels, respectively.

FIGURE 8. Performance changes over different architecture resizing
scales. Each bar represents the prediction performance when our CT data
set is resized to different scales. As classification models, three different
models in Fig. 4 were used to prevent rapid spatial information
compression for each data size. Light blue is the smallest input at 1/3
size Dark blue uses a dataset resized by 1/2. When resized to 1/2 size,
a model with only max-pooling added is used. The bright green color
indicates that no resizing dataset was input to the Modif. b model.

decisions of GO patients, achieving an average AUC of
0.793, accuracy of 0.699, F1 score of 0.416, sensitivity of
0.723, and specificity of 0.694. To the best of my knowledge,
this is the first DNN-based GO patient treatment decision
prediction study. In recent GO diagnosis studies, several
DNN-based methods have been explored [12], [13], [23].
The activity of GO patients was evaluated using MRI [13]
and CT images [23]. In addition, the severity of GO patients
was classified using three different views of CT images [12].

Moreover, DNNs can be used for screening GO patients from
normal cases [11]. However, studies related to GO treatment
decisions have not yet been reported.

Several ablation studies provide evidence of the perfor-
mance improvement achieved by the key designs of the
proposed method (Fig. 5-8). In terms of data preprocessing,
the proposed method includes a new pipeline compared to
the previous two methods [11], [14]. Firstly, a pixel spacing
of 0.35mm3 is used in the CT resampling process, while two
existing methods use a pixel spacing of 1.00mm3. Several
studies have been conducted in computer vision, focusing on
performance improvement with high-resolution images [30].
Similarly, our study found that performance reduction can
occur when we use low-resolution datasets demonstrated
in Fig. 5. This observation can be further supported by
the main experiments (Table 2), where the two comparison
methods employing low-resolution resampling techniques
consistently underperformed the proposed method. Second,
the resizing approach of previous work [11] for providing a
fixed input to the DNN can ignore spatial axis consistency;
thus, we exploit zero-padding instead of resizing. As can be
seen in Fig. 6, the padding approach yields an average AUC
that is 0.037 higher than the resizing approach. Finally, a fine-
grained orbital cropping strategy was employed to minimize
training confusion from regions that are less relevant to GO,
represented in Fig. 2.
In terms of DNN architecture, four modifications demon-

strated in Fig. 4 significantly contribute to the performance
improvement as depicted in Fig. 7. Firstly, the baseline model
by Song et al. [11] exhibits the lowest performance due to
drastic down-sampling in our dataset. The proposed model
addresses this issue by incorporating max-pooling and an
additional residual stage. The addition of max-pooling and
residual stages can alleviate information loss from rapid
down-sampling such as global average pooling. Specifically,
the model of Song et al. [13], which was originally designed
for low-resolution inputs (64, 128, 64), may not be well-
suited for our high-resolution dataset with dimensions of
(220, 350, 160).

Secondly, bottleneck blocks and average down-sampling
can improve non-linearity and spatial information preser-
vation. The basic residual blocks of the baseline use two
3×3×3 kernels, which can make too many distortions in the
spatial axis. Thus, we employ bottleneck blocks [34], which
consist of two 1 × 1 × 1 kernels and a 3 × 3 × 3 kernel.
Then, the convolution layer with stride 2 was replaced
with average-pooling for low-resolution feature preservation.
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These strategies can strengthen the nonlinearity of blocks
while alleviating information loss in the spatial axis.

Finally, the deep stem strategy was exploited for enhancing
high-resolution feature extraction. In the field of computer
vision, deep stem layers are widely utilized to reduce
computational costs in terms of the stem layer. However, the
proposed model adopts the deep stem approach to expand
the receptive field of low-level feature maps. The kernel
size of the general deep stem layer is 3-3-3 [34], but the
proposed model adopts a 7-3-3 kernel size for processing
high-resolution images. As demonstrated in Fig. 8, the
average AUC improves from 0.776 to 0.793, whereas the
3-3-3 deep stem reports 0.777.

Despite the notable results, this study has several limi-
tations. First, the fine-grained cropping strategy in prepro-
cessing is a labor intensive process. Thus, the automatic
orbit cropping process should be considered for clinical
applications in the future. Second, the proposedmodel has the
potential for performance improvement by combining recent
convolutional neural networks. Finally, a small number of
training samples may limit performance improvement. In the
future, label-efficient training methods should be considered
to overcome the small number of training samples.

VI. CONCLUSION
This study introduced a DNN-based pipeline for making
treatment decisions of Graves’ orbitopathy patients using
orbital CT images. The proposed method includes pre-
processing and DNN, which highlights that exploiting the
information from high-resolution CT images contributes to
predictive performance. The proposed framework outper-
formed two existing methods, achieving superior results
in AUC, accuracy, F1 score, sensitivity, and specificity.
Moreover, our ablation study delineates the performance
differences with existing models. Despite the promising
outcomes, labor-intensive preprocessing, integration with
advanced convolutional network architecture, and the limited
number of training samples should be discussed in the future.
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