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ABSTRACT Otitis Media (OM), predominantly affecting children, is a significant global health issue,
with an estimated 360 million pediatric cases yearly worldwide. OM causes mild and moderate conductive
hearing loss which can be disabling for young children, particularly during the first three years of life
when brain growth is rapid, resulting in poor speech and language development, poor communication skills,
and increased vulnerability on entering school. OM therefore contributes to the global burden of all-cause
hearing loss. This systematic review seeks to provide a comprehensive evaluation of pre-trained Artificial
Intelligence (AI) models, including both classical Machine Learning (ML) and Deep Learning (DL), in the
context of OM. This review proposes six research questions, and it summarizes the body of research
across multiple domains, including the diversity and quantity of source material for training and testing
models, including otoscopy images, videos, and tympanometry, and the methods used to assess quality and
effectiveness in real-time settings. In addition, the review aims to provide insight into the impact and potential
of AI in improving OM diagnosis and cast light on the existing challenges, such as model interpretability,
limited medical expert involvement, and the need for knowledge discovery and unanswered questions,
including the evolving landscape of OM diagnosis within this domain. The findings of this systematic
review emphasize the importance of developing more interpretable AI models that incorporate both still
images of the tympanic membrane and video recordings (with multiple frames) to maximize sensitivity and
specificity of the model. In addition, collaboration with consumers and medical professionals in multiple
specialties (general practice, pediatricians, audiologists and ear, nose, throat (ENT) surgeons) is needed
to ensure applicability and confidence of these diagnostic digital support systems in real-world healthcare
settings.

INDEX TERMS Otitis media, AI, datasets, otoscopy image, ensemble model, segmentation, tympanometry.

ABBREVIATION
AI Artificial Intelligence.
AOM acute otitis media.
AOMwoP acute otitis media without perforation.
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AUC area under the curve.
AM Augmentation.
AUROC Average area Under the Receiver Operating

characteristics Curve.
CBAM channel and spatial model.
COM chronic otitis media.
CSOM Chronic Suppurative OM.
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CAM class activation mapping.
CCV color coherence vector.
CAD computer aided diagnosis.
CV Computer vision.
CNN Convolutional Neural Networks.
DL Deep Learning.
DSC dice similarity coefficient.
DCT discrete cosine transform.
ENT ear, nose, throat.
EC Exclusion Criteria.
FNN Feedforward Neural networks.
FCN fully convolutional neural network.
GBM Gradient Boosting Machines.
GCM grid color moment.
HD Hausdorff distance.
HOG histograms of oriented gradient.
IP Image Processing.
IC Inclusion Criteria.
KNN K-Nearest Neighbors.
LBP local binary pattern.
LSTM Long Short-Term Memory Networks.
ML Machine Learning.
MAD mean absolute distance.
MED Middle Ear Disorders.
NLP natural language processing.
NOE no effusion.
OME OM with Effusion.
OM Otitis Media.
PPV positive predictive value.
PRISMA Preferred Reporting Items for Systematic

Reviews and Meta-Analyses.
PCA principal component analysis.
QE quality evaluation.
RAOM recurrent acute otitis media.
RNN Recurrent Neural Networks.
ROI region of interest.
RQ Research Question.
SQ Search Query.
Sen sensitivity.
SEO smartphone-enabled otoscope.
Spe specificity.
SVM Support Vector Machines.
TL Transfer learning.
TM tympanic membrane.

I. INTRODUCTION
Otitis Media (OM) is defined as any infection or inflamma-
tion in the middle ear, behind the tympanic membrane (TM)
[1]. It is one of the most prevalent conditions in the world [2].
It has been estimated that 80% of children suffer from OM
by the age of four years [3]. It is most common in the first
year of a child’s life and becomes less common in subsequent
years [4]. IN Australia, Aboriginal children have a higher
prevalence of middle ear infections than non-Aboriginal chil-
dren, and remote areas have a greater prevalence than rural or

urban areas [5]. OM is also the leading cause of conductive
learning loss in adolescents [6]. Depending on its severity and
duration, OMmay cause transient or permanent sensorineural
hearing loss. Moreover, hearing loss due to OMmay result in
an imbalance between sound perception of the two ears [7].

Children’s brains develop rapidly during the first three
years, reaching 90 percent of their adult size by age three. The
growth of various brain regions is dependent on stimulation
and the auditory stimuli that increase activity in the auditory
cortex create the conditions necessary for development of
sound processing [8].

A child who suffers from OM for an extended period
during these critical years of accelerated brain development is
therefore at risk of developing auditory and speech process-
ing disorders, which may impair cognitive development [5].
OM diagnoses reflect a continuum of fluctuating states,
mainly acute otitis media without perforation (AOMwoP),
OM with Effusion (OME) and Chronic Suppurative OM
(CSOM). AOMwoP, the most common type of OM in very
young children, often occurs after a cold or the flu and is due
to nasopharyngeal bacteria gaining access via the Eustachian
tube to the middle ear cavity [9], [10]. It frequently occurs
in children under the age of two years [11]. AOMwoP is
characterized by the presence of fluid in the middle ear,
bulging of the TM with possible erythema, fever and irri-
tability. Bulging results in reduced TM mobility, reduced
transmission of sound waves through the middle ear space
to the inner ear and brain, [12]. It can be categorized as mild,
moderate, or severe, depending on the characteristics of the
TM and clinical symptoms [13].
The second most prevalent type in young children, and the

most common in older children, is OME, which is character-
ized by accumulation of fluid in the middle ear in the absence
of acute otitis media (AOM) symptoms [14]. Early symptoms
of OME can be revealed by the otoscopic examination of the
TM, including mucoid deposition (‘glue’), the existence of
an air-liquid layer, bubbles, or loss of TM light reflex and
transparency [15], [16]. The least common and most severe
type of OM in children, but common type in adults, is Chronic
Supportive OM (CSOM) [17]. This is characterized by dis-
charge of pus through a perforation of the TM of at least
2 weeks duration, and size of at least 2% of the pars tensa.
CSOM can cause long-term harm such as degradation of the
ossicles in the middle ear. CSOM is preceded by acute otitis
media with perforation of the TM, AOMwiP, which is defined
also as discharge through a perforation of the TM but is of
duration less than 2 weeks and a perforation size less than
2%. Where the discharge resolves without repair of the TM,
the condition is described as a dry perforation. Conditions of
the ear canal such as foreign bodies (small beads, insects) or
infection and swelling of the canal wall (otitis externa) are
not related to the middle ear and do not cause conductive
hearing loss [18], [19]. AOM is one of the most common
reasons for the prescription of antibiotics in children [20], yet
controlled trials have shown that it is generally self-limiting
and can be managed with pain relief. OME affects more
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people than AOM. More than 360 million cases of OM in
children are found around the world yearly [21]. Additionally,
it is estimated that over 1.5 billion individuals, or roughly
20% of the global population, suffer from hearing loss and
around 2.5 billion people are predicted to have learning loss
by 2050 [22].

Tympanometry measures TM compliance, the mobility of
the TM under positive or negative pneumatic pressure. When
otoscopy identifies a TM as non-bulging (not AOM) but dull
and non-translucent, it can be difficult to distinguish no OM
from OME using otoscopy (appearance) alone [23]. More
commonly, the eardrum is inspected using an otoscope to
diagnose the type of otitis media (OM). However, it should
be noted that these otoscopes are not digital, and therefore,
images cannot be recorded or stored [24]. Increasingly, video
otoscopes are being used to enable the capture and review
of quality video frames to confirm the diagnosis of OM,
discuss with families and patients, and compare changes
over time [25]. However, inspecting a large number of video
frames is time-consuming and storage is likely problematic.
A comparison of video otoscopy diagnoses of AOM and
OME by pediatricians and otolaryngologists revealed that
the pediatricians made misdiagnoses in around 50% of all
cases, whereas the otolaryngologist had a misdiagnosis rate
of 27%. The average diagnostic accuracy for AOM utilizing
video otoscopy is only 51%. Consequently, a novel, accurate
and automated diagnostic method is required to enhance
diagnosis confidence to effectively screen patients with oto-
logic diseases based on aberrant otoscopic findings. Artificial
intelligence (AI) based tools, notably diagnostic screening
systems to assist clinician decision making, have influenced
and enhanced traditional healthcare delivery. Although the
diagnosis of OM is crucial in order to provide appropriate
treatment, it has not been studied as extensively as other
diseases [26], [27], [28].

Some of the studies [29], [30], [31], [32], [33] reviewed
the advancement of AI in the OM diagnosis, although there
are certain limitations. How often the researchers provide
explainability and clinical validation has not been thoroughly
discussed in state-of-the-art review papers. By addressing
these limitations, this paper’s primary objective is to evaluate
the current literature of AI-related studies that aim to employ
state-of-the-art models (classical machine learning and deep
learning) to assess, predict, classify, or otherwise enhance
the diagnosis of OM based on multiple diagnostic modalities
(otoscopy images, videos, and tympanometry).

The main contributions of this systematic review are:

• Providing a comprehensive analysis of different
pre-trained AImodels, includingML andDL, pertaining
to the diagnosis of OM.

• Exploring and reviewing the existing studies relevant to
otoscopy images, videos, and tympanometry, and pro-
viding an overview of existing public and private OM
datasets along with their limitations.

• Providing insight into the prospects of AI and its impact
on diagnosis, as well as describing the open questions,
challenges, and potential future developments.

The outline of this review is illustrated in Figure 1.

II. MEDICAL IMAGES OF OM
Medical images contain intricate details that are important for
accurate diagnosis. Healthcare professionals rely on specific
features within images to identify diseases, abnormalities,
and other conditions. Understanding these characteristics
helps to train AI models to recognize these patterns effec-
tively, improving diagnostic accuracy. This is why it is
important to examine the domain images from a medical per-
spective before creating an automated diagnostic system [34].
It helps us understand the markers that experts use for diag-
nosis, and this medical knowledge can be integrated with AI
techniques to find the regions of interest (ROIs) of the images.
For example, in TM images, there are several relevantmedical
features, including visibility of the malleus bone, the position
and color of the TM, perforations, obstructive ear wax,middle
ear fluid, and reflected light. The TM position can be neutral,
retracted, or bulging (a convex tympanic membrane with a
near lack of malleus bone lateral process and manubrium
visibility). Middle ear fluid, the malleus bone, a cone of
light (reflection of the otoscope light), and perforation may
or may not be visible from the TM [35]. Since OM has
several classes, the imaging features are varied. Specialists
distinguish the OM classes based on these predefined fea-
tures. Figure 2 illustrates the different classes. The images
have been collected from reliable sources including Hawke
library (provided by Dr Michael Hawke), Özel Van Akdamar
hospital, and child patients during OM examination [36],
[37], [38].

III. ABOUT AI TECHNIQUES
A. HARNESSING CLASSICAL MACHINE LEARNING AND
DEEP LEARNING APPROACHES
In a broad sense, Artificial Intelligence refers to a machine’s
capacity to simulate human intelligence. To let comput-
ers perform tasks without explicit programming, classical
machine learning (ML) and Deep Learning both come under
the umbrella of AI [39], [40]. Mathematical model fitting is
a part of the learning process. Relationships between features
(or variables) are mathematically examined via multiple data
points, resulting in a best-fitting model. At a basic level,
ML involves providing computers with data from which to
learn and make proper decisions or predictions. AI mod-
els are often used for dealing with complicated problems
or uncovering hidden patterns [27]. The performance of a
model depends on the quality and the quantity of the training
dataset and the appropriateness of the selected algorithms.
Adoption of electronic health record systems makes it easier
to gather clinical data about patients. Imaging data, including
otoscopy images, drug usage records, surgical and pathol-
ogy records are among the types of information used. The
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FIGURE 1. Section organization of the research.

healthcare business collects data from large-scale genetic
research and consumer sources, including wearables and
cellphones, which provide physiological data. In contrast to
traditional hypothesis-based statistical approaches, ML algo-
rithms may be fitted with enormous quantities of data for
training purposes. ML algorithms can capture more com-
plicated, and nonlinear connections between features and
outcomes than traditional approaches [41], [42].

ML can also manage massive volumes of data and incor-
porate insights from various data types. DL [43], which is an
extension of classicalML, works with evenmore complicated
mathematical models than classical ML algorithms and is
more detailed. It is a data processing approach that employs
many processing layers with various nonlinear transforma-
tions [44]. Classical machine learning techniques, such as
Random Forest, Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), and Gradient Boosting Machines (GBM),
[45] have demonstrated robustness in classifying medical
conditions like otitis media. Random Forest is an ensem-
ble learning method that constructs multiple decision trees
during training and outputs the most frequently appearing
class. It can effectively handle complex datasets with various
features, making it suitable for medical diagnosis tasks [46].
SVM is a powerful classification algorithm that discovers
the best hyperplane to separate classes in feature space. It is
particularly effective in high-dimensional spaces, making it
suitable for medical datasets with many features. By utilizing
different kernel functions, SVM can handle both linear and
non-linear data, aiding in the diagnosis of otitis media [47].
KNN is a simple and intuitive algorithm that classifies a data
point based on the majority class of its k nearest neighbors.

In diagnosing otitis media, KNN can effectively identify pat-
terns based on similar cases in the dataset. It does not assume
any underlying data distribution and is suitable for datasets
with irregular or difficult-to-define decision boundaries [48].
GBM is an ensemble learning technique that sequentially
combinesmultiple weak classifiers to build a strong classifier.
It progressively improves the model’s predictive performance
by adding predictors that correct the mistakes of their pre-
decessors. GBM is particularly effective when the data is
imbalanced or when certain features have a higher impact on
the classification task, which could be the case in diagnosing
otitis media [49]. These models can accurately diagnose otitis
media when trained on relevant datasets containing features
related to patient symptoms, medical history, and potentially
medical imaging results. However, it is crucial to ensure
high-quality data and thorough validation to guarantee relia-
bility and effectiveness in real-world scenarios. Additionally,
interpreting the model outputs should always be done in
consultation with medical professionals to ensure accurate
diagnosis and treatment. Deep Learning models, including
Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), and Long Short-Term Memory Networks
(LSTM), excel in extracting intricate patterns from diverse
data types such as medical images, time-series data, and
natural language. CNNs are particularly notable for their
exceptional performance in image recognition, while RNNs
and LSTMs exhibit remarkable capability in sequential data
analysis, making them highly valuable for tasks such as
speech recognition and language translation. By integrating
these models into healthcare systems, practitioners can lever-
age their capabilities to derive actionable insights, facilitate
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FIGURE 2. Medical features corresponding to the OM classes.

diagnosis, and enhance patient care. In recent years, it has
produced significant advances in computer vision, speech
recognition, natural language processing (NLP), bioinformat-
ics and other fields [50]. DL tries to replicate the human
brain network. The original data is abstracted layer by layer
using nonlinear processing layers. Abstract characteristics
are extracted from the data and applied to the unseen data
for target identification, classification, or segmentation. This
has the benefit of replacing manual feature selection with
effective hierarchical feature extraction techniques and unsu-
pervised or semi-supervised feature learning [51]. Despite the
vast volume of available medical data, there are still several
concerns, including the diversity of the type of data (maps,
texts, films, etc.) and differences in data quality due to the
equipment utilized [52]. Medical images form an important
component of medical data which can be used with classical
ML and DL. There are several types of ML and DL algo-
rithms [53]. Tables 1 and 2 give an overview of the algorithms
that have been used most extensively. Figure 3 visualizes a
tree-based categorization of ML and DL algorithms used for
OM detection propositions.

B. AI MODELS FOR OM DIAGNOSIS
In recent years, image classification using deep learning and
its applications has been a major topic of research and devel-
opment. The CNNmodel, in particular has become one of the
most popular applications of DL for the analysis of medical
images [54]. CNN models can be employed in automated
tasks such as classification, detection, segmentation, and data
augmentation [59]. Theymay also be trainedwithOM images
to classify the different OM categories. The model is usually
trained with a large dataset, and a Deep CNN model can be

generated by integrating multiple CNNmodels. However, for
the sake of simplicity, we will discuss a shallow CNN model
with three convolutional layers, each followed by a max pool
layer, in this section. The input image size is 224 × 224 ×

3. All convolutional layers are configured with 8 kernels of
size 3 × 3, and softmax has been used as the activation func-
tion. The kernel size for all max pool layers is 3 × 3. When
a kernel is applied to an image, the filter moves along the
pixels of the image and outputs a two-dimensional array. Each
kernel is intended to detect some valuable image features,
but sometimes the value of these two-dimensional arrays is
’0’, indicating that no image features have been identified
for that kernel. These can be considered as black frames in
the two-dimensional array. Figure 4 depicts the architecture
of the shallow CNN model for OM classification showing
several black frames corresponding to the convolutional lay-
ers. In general, if the kernel is built to extract features such
as horizontal lines, vertical lines, edges, ridges, corners, and
more, and the image contains no vertical lines etc., the result
would be that no feature is recognized, resulting in a black
frame [60]. The convolution layer is comprised of a multitude
of fixed-size elements that apply complex functions to the
input image to extract relevant features. A sequence of convo-
lutional, nonlinear, and subsampling stages is used to recover
the high-level features [61]. The following convolutional
layer receives the feature maps from the previous one [62].
The feature maps of the previous layer are used to build the
feature maps of the next layer and the procedure is repeated
until the deep-level characteristics are achieved. Max pool is
a down sampling or pooling technique that reduces the height
and width of feature maps while preserving crucial informa-
tion. In addition, a dropout layer aids in keeping the deep
CNNmodel from overfitting. Fully connected layers are used
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TABLE 1. Different categories of ML algorithms.

TABLE 2. Different categories of DL algorithms.

after convolutional and pooling layers to collect high-level
features for classification or regression tasks. Utilizing oto-
scopy images, the CNN model described here performed

classification in accordance with this methodology. Other
deep learning architectures, such as AlexNet, GoogLeNet,
ResNet (ResNet18, ResNet50, ResNet101), Inception-V3,
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FIGURE 3. Tree-based categorization of ML and DL algorithms.

Inception-ResNet-V2, SqueezeNet, and MobileNet-V2 [55],
[58], have been extensively used in medical image analy-
sis. Each of these architectures offers unique advantages in
terms of depth, computational efficiency, and feature extrac-
tion capabilities. For example, AlexNet introduced the ReLU
activation function and dropout techniques to mitigate over-
fitting [63]. GoogLeNet [64] utilizes Inception modules for
multi-scale feature extraction. ResNet’s [65] deep residual
learning framework effectively addresses the vanishing gra-
dient problem, enabling the training of very deep networks.
MobileNet-V2 optimizes mobile and embedded vision appli-
cations by using depthwise separable convolutions, which
reduce the model size and computational cost [66].
Moreover, advanced models like Inception-ResNet-V2

[67] combine the benefits of Inception modules with residual
connections to enhance performance and convergence speed.
Furthermore, DenseNet [68] and EfficientNet [69] have
gained traction in medical image classification. DenseNet’s
connectivity pattern interconnects each layer to every other
layer in a feed-forward manner, improving the flow of infor-
mation and gradients within the network, resulting in more
accurate and efficient training. On the contrary, EfficientNet
systematically scales up the network’s depth, width, and res-
olution using a compound scaling method, striking a better
balance between performance and computational efficiency.

IV. LITERATURE REVIEW
Diagnosing OM using AI has emerged as a promising and
novel procedure in recent years. This technological advance-

ment has the potential to revolutionize how clinicians identify
and treat OM infections.

Some recent papers [29], [30], [31], [32] have reviewed
the advances in the field of otitis media diagnosis using AI,
although the number is minimal. Ngombu et al. [30] evaluated
the most recent applications of AI in diagnosing OM in both
pediatric and adult populations. After screening numerous
articles published between January 2010 and May 2021,
25 relevant studies were identified. The most prevalent AI
techniques utilized for OM diagnosis were machine learning,
natural language processing, and prototyping. While some
of these technologies are still in the developmental and test-
ing stages, the review highlights their potential to improve
the efficiency and accuracy of OM diagnoses. A systematic
review by Song et al. [33] was conducted to examine the
use of AI models in diagnosing otitis media through medical
imaging. The review included a total of 26 studies that utilized
tympanic membrane images, with an average accuracy rate
of 86%. Additionally, three studies incorporated segmenta-
tion and classification methodologies, resulting in an average
accuracy rate of 90.8%. These findings suggest that AI has
the potential to significantly improve diagnostic accuracy
in otitis media, which can have significant implications for
telemedicine and primary care. However, this review has
limitations, such as inadequate analysis of explainability and
insufficient involvement of clinical experts. These limitations
must be addressed to ensure patient safety and achieve opti-
mal outcomes. Another review by Esposito et al. [31] delves
into the difficulties in reliably diagnosing acute otitis media
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FIGURE 4. Otitis media disease detection using shallow deep learning network.

(AOM). It emphasizes the significance of comprehending
AOM risk factors and implementing more effective pre-
ventive measures, especially for AOM-vulnerable children.
Diagnostic uncertainty often leads to antibiotic overuse and
therapeutic errors. The paper investigates novel approaches
and technologies, such as light field otoscopy, optical coher-
ence tomography, low-coherence interferometry, and Raman
spectroscopy. However, the majority of these have not yet
been implemented in clinical practice. The article emphasizes
the potential of video-otoscopy, particularly in conjunc-
tion with telemedicine and artificial intelligence. Promoting
otologic telemedicine and artificial intelligence among pedi-
atricians and ENT specialists raises awareness of AOM
diagnostic errors and improves patient care. The review by
Ding et al. [32] emphasizes the use of AI in diagnosing, treat-
ing, and managing OM. AI has shown promise in healthcare,
particularly in disease detection, image interpretation, and
outcome prediction. The review emphasizes successful OM
diagnostic applications of machine learning algorithms such
as ResNet, InceptionV3, and Unet. AI’s potential in OM is
manifest but the application is still in its infancy. This article
discusses the current use of ML and AI, key concepts, and
future challenges in developing AI-assisted OM technologies
However, this study has not discussed the explainability of
the AI-based models and clinician involvement. In another
study, a systematic evaluation of sixteen ML models for
classifying Middle Ear Disorders (MED) using Tympanic
Membrane (TM) images is detailed by Cao et al. [29]. The
study was completed per the PRISMA guidelines, where
sensitivity, specificity, and area under the curve (AUC) were
considered when extracting results. The evaluation of 20,254
TM images across 25 ML approaches yielded an accuracy
range of 76.00% to 98.26%, with 68.8% of studies exhibiting

a low risk of bias. The suggested conclusion indicates thatML
can effectively differentiate between normal ears and MED,
highlighting the importance of establishing a standardized
protocol for acquiring and annotating TM images.

In addition, the classification of emotions through the
recording of EEG signals has proven to be highly beneficial
for diagnosing Otitis Media. Haapala et al. [70] conducted
a study to examine the impact of recurrent acute otitis
media (RAOM) on involuntary auditory attention in toddlers.
They found that children with a history of RAOM exhibited
reduced lP3a amplitude and delayed LN latency, suggest-
ing potential long-term effects on the neural mechanisms of
attention. These findings indicate that RAOM may impede
the development of involuntary attention control in young
children. In another study, Jotic et al. [71] aimed to assess
the severity of symptoms of depression, anxiety, and stress in
patients with chronic otitis media (COM), as well as explore
the influence of patient demographics and COM characteris-
tics on these symptoms. The results revealed that a significant
proportion of patients experienced anxiety (70.57%), stress
(49.37%), and depression (13.29%). Moreover, more severe
COM symptoms were found to be positively correlated with
higher levels of these mental health issues. Factors such as
hearing loss and symptoms like drainage, hearing problems,
and tinnitus were significant predictors of increased anxiety,
stress, and depression. Ahmed et al. [72] introduced a novel
method called InvBase for baseline removal in EEG-based
emotion classification. This method demonstrated significant
improvements in the accuracy of classifying valence and
arousal compared to traditional subtractive and no-baseline
correction methods.

As discussed, the number of survey papers for AI-based
diagnosis of OM is limited, although a few studies [73], [74]
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TABLE 3. Research questions.

reviewed OM diagnosis. Based on the preceding analysis,
none of the examined studies have adequately elucidated the
precise contributions of AI to the field of OM diagnosis.
The crucial issue is whether AI can actually aid clinicians
in their diagnostic processes and whether these healthcare
professionals comprehend the results of AI-generated predic-
tions. It is essential to recognize that the intersection of AI and
OM diagnosis remains a challenging, dynamic, and complex
domain. However, these obstacles are thoroughly addressed
in our review. Through our analysis, we seek to shed light
on the current state of AI applications in OM diagnosis,
examining its potential benefits and the obstacles that must
be overcome to realize its maximum potential.

V. METHODOLOGY
In our review of AI-based Otitis media diagnosis, we adhere
to a systematic review approach to ensure the highest quality
of research synthesis [56], [57]. In this section, we first
conduct a systematic review approach of diagnosing OM
utilizing AI, and then analyze the quality of the papers in a
more in-depth overview.

A. RESEARCH QUESTIONS AND OBJECTIVES
The research questions presented in this review paper focus
on diagnosing otitis media using AI and are illustrated in
Table 3.
The objective is to investigate the advancement of AI tech-

nologies and their practical implementation in OM diagnosis.
The research questions illustrated in Table 3 aim to evaluate
the role of AI,ML, and DLmodels in diagnosing otitis media.
This evaluation includes assessing improvements in diagnos-
tic accuracy, the significance of image/video preprocessing
in healthcare informatics, integrating explainability features
in the models, and studying the impact of collaboration with
medical experts. Additionally, the objective is to investigate
strategies for obtaining high-quality and diverse aural images
for training models and examine the prevalence of web appli-

TABLE 4. Identification of sources for relevant research papers.

cations in AI-based studies. This approach will enhance the
effectiveness of AI in diagnosing otitis media.

B. SYSTEMATIC REVIEW OF EXISTING PROPOSALS TO
DIAGNOSIS OM UTILIZING AI
Kitchenham [75] state that a systematic review is an effec-
tive method for compiling existing studies and identifying
research gaps that may lead to new areas of inquiry. As such,
a comprehensive overview of the present state of AI-based
diagnosis in the context of OM was generated through a
systematic review. The review protocol is divided into two
phases: (1) the initial search and (2) the formulation of inclu-
sion and exclusion criteria.

The search phase includes defining academic databases,
digital libraries, and search engines that can be used to search
for eligible studies. The most recent access to these reputable
electronic databases, such as Scopus, web of science, and
Google Scholar, was recorded on 5 October 2023 as part
of our research, see Table 4. We used a predefined search
strategy that included specific keywords and inclusion crite-
ria to identify relevant articles pertaining to AI-based Otitis
media diagnosis. The selection procedure involved evaluating
the relevance of titles and abstracts, followed by a thorough
review of the full texts of potentially eligible studies.

An extensive literature search has been compiled to find
most recent research articles. Table 5 presents a list of key-
word searches for retrieving relevant articles and studies at
the intersection of AI and ML technologies, including con-
cepts such as deep learning, convolutional neural networks,
data mining, computer-assisted diagnosis, computer-assisted
surgery, and computer vision. Simultaneously, it aims to
investigate medical subjects related to OM, including terms
like ‘‘ear,’’ ‘‘eardrum,’’ ‘‘tympanic membrane,’’ ‘‘ear dis-
ease,’’ and various abbreviations for OM. Using these
keywords, we effectively identified and gained access to
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TABLE 5. Literature search keywords.

TABLE 6. Inclusion and exclusion overview.

scientific publications and research findings pertaining to the
application of AI and ML techniques within the context of
OM, thereby facilitating a thorough investigation.

The subsequent phase entails establishing inclusion cri-
teria (IC) and exclusion criteria (EC) based on previously
established standards. These criteria were carefully formu-
lated to improve the accuracy of our research paper selection
procedure. Table 6 provides an exhaustive list of IC and EC
for this study. Studies that fell under the EC category were
immediately deemed ineligible. To obtain a more refined set
of search results, we screened the titles, abstracts, and full
texts of the studies more thoroughly.

(a) Title: Excluded were papers that did not match at least
one of the keywords enumerated in Table 5.

(b) Abstract: Only papers meeting at least 40 percent of the
ICs were retained for evaluation.

(c) Full text: Papers were required to discuss proposals that
addressed AI-based diagnosis of OM.

Figure 5 shows the visualization of the PRISMA diagram,
representing the systematic review methodology used in this
study. Five hundred thirty papers were initially identified
in the identification stage. During the Screening Stage, the
abstracts and titles of these papers were carefully examined,
resulting in 252 papers. In the Eligibility Stage, the full text of
the papers was thoroughly evaluated, resulting in the selection
of 131 papers that met our inclusion criteria. Finally, in the

last inclusion stage, only 32 papers met our criteria and were
included in our analysis.

C. QUALITY ASSESSMENT OF SYSTEMATIC REVIEWS
In this review, we employ evaluation techniques to ensure
that the papers selected for inclusion in this systematic review
satisfy stringent criteria for credibility and suitability. Utiliz-
ing quality evaluation (QE) queries from a prior systematic
literature review [76], [77]. Each QE is scored as ‘‘No’’ (0),
‘‘Partial’’ (1), or ‘‘Yes’’ (2), with a total of four questions per
exam. The cumulative score for each query ranges from 0 to 6,
giving each publication a maximum possible score of 24. All
reviewers unanimously concurred that papers with a cumula-
tive score between 0 and 12 should be deemed insufficient
and excluded from the review. In contrast, papers with a
cumulative score between 13 and 24 are eligible for inclu-
sion in the review. The outcomes of the quality assessments
conducted on the selected papers for this systematic review
are summarized in Table 7. In addition, the rigorous quality
assessment process ensures that only papers meeting the
highest standards of dependability are included in the review,
thereby enhancing the integrity of the overall findings. This
meticulous evaluation is essential for maintaining the credi-
bility and validity of the conclusions of the systematic review.

According to the results, all 32 papers met the required
criteria and are therefore included in the review.

VI. DIAGNOSIS
As previously stated, OM classes are diagnosed using oto-
scopy images, videos, and tympanometry. Consequently,
different researchers employed different AI methods to ana-
lyze OM diseases. Recent progress in the diagnosis based on
AI is described below. This section is divided into three sec-
tions: otoscopy images with three subsections (classification
of OM images using transfer learning, classification using
hybrid methods, segmentation and decision system based),
otoscopy videos, and tympanometry.

A. OTOSCOPY IMAGE BASED
The main goal of this part is to distinguish OM classes using
AI methods based on otoscopy images. This section contains
three subsections: classification of OM images using solid
deep learning methods, classification using hybrid methods
of deep learning and machine learning, segmentation, and
decision support system methods.

1) IMAGE CLASSIFICATION USING DEEP LEARNING MODELS
Basaran et al. [78] developed a computational model using
the Faster R-CNN and pre-trained the CNN model to differ-
entiate normal from abnormal TMs, using 1692 augmented
otoscope images (raw image 282). The Faster R-CNN finds
the TMs in otoscope images and produces a patch encom-
passing the TM only. Pre-trained CNNs were then re-trained
with these patches, utilizing a transfer learning strategy. The
VGG16 model provided a classification accuracy of 90.48%.
In another study, Raiaan et al. [79] utilized about 655 distinct
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FIGURE 5. Systematic review flow diagram.

otoscopic images of 63 cerumen impactions, 120 images of
tympanostomy, 346 images of normal TM, 50 images of
TM with myringosclerosis, 44 images of otitis externa, and
32 images of TMs with perforations. They proposed a CNN
model using three convolutional layers, batch normalization
and dropout layers. Their model had a 84.4% accuracy in
classification.

Khan et al. [80] developed a novel automated detection
CNN model (DenseNet) to diagnose TM and middle ear
infections. They utilized around 2,484 otoscopic images,
including normal, OME, and chronic OM (COM) with perfo-
ration. DenseNet161 outperformed other models with a high
accuracy of 94.9%, precision of 95.2%, a recall of 95%, and
an F1-score of 95.1% in classification. Furthermore, their
approach obtained 0.99 in terms of the Average area Under
the Receiver Operating characteristics Curve (AUROC) and
used class activation mapping (CAM) to ensure proper detec-
tion of the region of interest (ROI). Sundgaard et al. [81]
proposed an approach for classification employing deep met-
ric learning to the 1336 otoscopy images of three classes
including OME (533 image), AOM (145 images) and no
effusion (NOE) (658 images). They utilized circular hough
transform methods for cropping images and performed down
sampling and horizontal flipping techniques. Several loss
function techniques including constructive loss, triplet loss
and multi-class N-pair loss were employed where the triplet
loss function obtained the highest accuracy of 85% in classi-
fication. The deep metric methods provide useful insight into
the decision making of a neural network.

A study by Tsutsumi et al. [82] introduced a multiclass-
classifier network andwebsite for classifying TMpathologies
based on otoscopic images. They utilized about 400 normal
(196) and abnormal (204) images, including AOM (116),

otitis external (44), CSOM (23), and cerumen impaction (21).
They employed several deep learning models: ResNet50,
InceotionV3, InceptionResNetV2, and MobileNetV2. The
MobileNetV2 model had the best relative performance with
high AUC-ROC (0.902) and accuracy ranging between 73%
and 77% in binary classification. The macro-AUC-ROC and
the accuracy for multiclass classification were respectively
0.91 and 66%. They employed this MobileNetV2 model
as a proof-of concept publicly accessible website for real
time OM predictions. In another study, researchers [83] rep-
resented a novel computer aided diagnosis (CAD) support
model based on a CNN network. For improving the gen-
eralized ability of the proposed model, a combination of
the channel and spatial model (CBAM), residual blocks and
hyper column technique were embedded into the proposed
model. They used a total of 956 raw images of three classes:
AOM (119), chronic supportive otitis media (CSOM) (63),
and Earwax (140). Their proposed model achieved a 98.26%
accuracy in classification.

In another study [84] researchers focused on developing
the ‘‘ResNet18+Suffle’’ network to diagnose TM images into
four categories: normal (1180), OME (400), COM (627),
or cholesteatoma (165). They utilized cropping and resiz-
ing to eliminate unusual border lines from images and also
employed flipping and rotation augmentation methods to
balance the dataset. Their proposed method resulted in an
accuracy of 97.18% while a five k-fold cross validation
demonstrated that the network accurately diagnosed OM
with an accuracy greater than 93%. They also employed the
Grad-CAMmethod to identify the essential ROI from images.
Sandstrom et al. [85] utilized two different data sets: dataset1
consisting of normal (183), pathological (44), and wax (46)
and dataset2, also with normal (123), pathological (206),
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TABLE 7. A summary of scores used for determining the quality of papers.

and wax (60) images. They employed an image cropping
method to remove the black areas from the image and ran-
domly removed images from classes with a higher number of
images. In addition, they generated lowest resolution images
from a high-resolution image to increase the dataset. The
GoogleNet transfer learning model was employed to classify
the images. The overall accuracy of the convolutional neural
network was above 90% in all except one approach. Sensitiv-
ity to finding ears with wax or pathology was above 93% in
all cases and specificity was 100%.

Caliskan et al. [19] performed the diagnostic task in two
stages. In the first stage, a CNN model was applied to
images obtained using the otoscope device and deep features
were obtained. To separate normal and abnormal images the
VGG16 model was used. In the second stage, the activation
maps of the fc6 and fc7 layers consisting of 4,096 features and
fc8 layer consisting of 1,000 features of the VGG16 model
were obtained. The deep features obtained from all activation
maps were then merged and a new feature set was created
and fed to the support factor machine (SVM) classifier. They

applied a total of 956 middle ear images of two classes: nor-
mal (535 images), and abnormal (421 images). The highest
accuracy of 82.17% was obtained for the fc6.

A study by Tseng et al. [86] used 834 otoscopic
images including cholesteatoma (197), abnormal non-
cholesteatoma (457) and normal (180). Their main focus
was to detect cholesteatoma. They applied eight retrained
CNN models: VGG19, MobileNet2, DenseNet201, Incep-
tionV3, ResNet152V2, Xception, InceotionResNetV2, and
NASNetLarge. Their final trained CNN’s model demon-
strated a strong performance, achieving accuracies of
83.8%-98.5%, 75.6%-90.1%, 87.0%-90.4% respectively for
differentiating cholesteatona from normal, cholesteatoma
from abnormal non-cholesteatoma, and cholesteatoma from
non-cholesteatoma (normal+abnormal non-cholesteatoma).
Viscaino et al. [87] explored color wavelengths dependence
in a model that diagnoses four types of middle and external
ear diseases including normal, COM, OME and ear wax plug.
They extracted around 22,000 key frames from 200 videos
(195 patients) from the otolaryngology department of the
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clinical hospital of the university of Chile (HCUCH). They
employed several methods including Kullback-Leibler diver-
gence score, variance of the laplacian method, analyzing
principal component analysis (PCA) and K- means clustering
for extracting key frames from videos. They also employed
multiple augmentation methods including rotations, zoom-
in, zoom-out, horizontal and vertical flips to overcome the
over fitting. Their proposed CNN model acquired a highest
accuracy of 92%, a sensitivity of 85%, a specificity of 95%,
a precision of 86% and an F1-score of 85% in diagnose.

Choi et al. [88] proposed a CNN model customizing the
EfficiemrNet-B4 architecture to predict the primary class:
OME (1,630 images), COM (1,534 images), and none (3,466
images) without OME and COM and secondary classes: attic
cholesteatoma (893 images), meningitis (1,083 images), ven-
tilating tube (1,676 images) and otomycosis (181 images).
In addition, the model accurately predicted the primary
class with a dice similarity coefficient (DSC) of 95.19%; in
secondary classes, the diagnosis of cholesteatoma andmenin-
gitis received a DSC of 88.37% and 88.28%, respectively.
Zeng et al. [89] developed and validated a DL model to
identify atelectasis and attic retraction pocket in cases of
OMEusingmulti-center otoscopic images. Threefold random
cross-validation has been utilized with 6393 OME otoscopic
images. The DLmodel exhibited a detection accuracy of 79%
for atelectasis and 89% for attic retraction pocket, with cor-
responding AUC values of 0.87 and 0.87. The DL algorithm
demonstrated promise as a valuable instrument for precise
diagnosis and identification of atelectasis and attic retraction
pocket in OME otoscopic images, as evidenced by Class
Activation Mapping.

Habib et al. [90] evaluate the applicability of DL-based
AI algorithms in detecting OM based on otoscopic images.
A comprehensive collection of 1842 otoscopic images was
gathered from three distinct sources. These images were
classified into diagnostic categories of normal or abnormal.
The internal performance of AI-otoscopy algorithms exhib-
ited notable accuracy (mean AUC: 0.95). However, when
evaluated on external otoscopic images that were not utilized
in the training process, a decline in performance was detected
(mean AUC: 0.76). In contrast to the algorithm’s internal per-
formance, its external performance was noticeably inferior.
Results emphasize the necessity for additional investigation
into data augmentation and pre-processing methodologies,
which can improve the algorithm’s applicability in clinical
settings. Table 8 illustrates all the details about these studies.

2) IMAGE CLASSIFICATION USING ENSEMBLE DEEP
LEARNING AND CLASSICAL MACHINE LEARNING MODELS
In this section, we try to gain insight in classifying OM
images using deep learning and classical machine learn-
ing techniques, reviewing papers where deep learning and
classical machine learning techniques were used to classify
OM images. Hermanus et al. [35] introduced an automated
approach using image processing methods to classify OM
classes into five categories: normal (n-TM), AOM, OME,

CSOMwith perforation, and obstructing wax or foreign bod-
ies (O/W). After assessment of ear images by experts, the
final dataset contained around 489 images, including O/W
(120), n-TM (123), AOM (80), OME (80), and CSOM with
perforation (86). The image was provided as an input image
to the system after image processing and feature extraction
were performed to classify unknown images. After extracting
features, the decision -tree (DT) classified the feature vector
associated with the input image. The output, which consists
of the extracted features and the final diagnosis, was then
presented to the user. An accuracy of 80.6% was achieved for
images taken with commercial video-otoscopes. In compari-
son, an accuracy of 78.7% was acquired for images captured
on-site with a low-cost custom-made video otoscope.

A study by, Cha et al. [91] utilized approximately 10,544
otoscopy images for training nine state-of-the-art models,
Squeezanet, AlexNet, ResNet18, MobileNet-v2, GoogleNet,
ResNet50, ResNet101, inceptionTrsnet-v2, for classifying
six classes of ear diseases (normal, attic retraction, tym-
panic perforation, otitis external, and tumor. After assessing
deep learning models, they integrated the InceptionV3 and
ResNet101 models based on their performance. Before that,
they employed several data augmentation methods (axis
translation, rotation, scaling, and flips) to balance the dataset.
The ensemble model obtained a mean accuracy of 93.67%
and a sensitivity and specificity for normal and abnormal
classes of 93.69% and 96.82%, respectively. The accuracy,
sensitivity, and specificity for the attic retraction or adhesive
OM are respectively 85.78%, 93.69%, and 98.25%. Similarly,
the accuracy, specification, and sensitivity for otitis externa
are 77.91%, 99.02%, and 89.33%.

In another study, Zafer et al. [92] combined fine-tuned
deep features along with classical machine learning mod-
els to obtain optimal results in classification. They focused
on classifying 956 images of normal, AOM, CSOM, and
ear wax. Initially, they trained several deep learning models
with images and generated a hybrid model consisting of a
combination of fused fine-tuned deep features provided by
DCNNs. Theweights of the last few layers of themodels were
updated, the results of the models evaluated and compared
to each other, and the updated final fully connected layers
of the DCNNs were concatenated. The new feature set was
used as input to the machine learning models and a support
vector machine (SVM) resulting in 99.47% accuracy, 99.35%
sensitivity, and 99.77% specificity in classification.

Viscaino et al. [93] also proposed an automated CAD
based on classical machine learning models and image pro-
cessing techniques for the diagnosis of OM images. They
used 880 images 220 in each of four classes: normal, ear
wax, myringoesclerosis, and COM. Several image process-
ing methods, including the Laplacian method’s variability
for evaluating the images’ blurriness and a Circular Hough
transform method, were employed to identify the ROI from
images. Three different feature extraction methods: filter
bank, discrete cosine transform (DCT), and color coherence
vector (CCV) were employed to extract the essential features
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TABLE 8. A literature demonstration of image classification using solely deep learning models.
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TABLE 8. (Continued.) A literature demonstration of image classification using solely deep learning models.

from images and then feed the classical machine learning
models to classify images. The SVM model obtained the
highest accuracy of 93.9%, a sensitivity of 87.8%, a speci-
ficity of 95.9%, and a positive predictive value (PPV) of
87.7% in classification.

Zeng et al. [94] utilized 20,542 images of eight classes,
including normal eardrum (4217), cholestestoma of the mid-

dle ear (818), CSOM (3169), external auditory cana bleeding
(694), impacted cerumen (5453), otomycosis external (2256),
secretory otitis media (2448), and tympanicmembrane classi-
fication (1037). Image cropping and scaling were performed
to process the data and they also employed augmentation
methods: flipping vertically and horizontally and rotation
(90 and 180 degrees) to overcome the overfitting issue.
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Afterward, they deployed DenseNet-BC1615 and DenseNet-
BC169 models along with their ensemble classifier. The
ensemble model consists of integrating different essential
features of the models. So, the classification accuracy was
obtained on DensNet-BC1615 and DensNet-BC169, and the
ensemble classifier reached 94.94%, 95.08%, and 95.59%,
respectively. Table 9 shows all the essential information cor-
responding to the literature.

3) IMAGE CLASSIFICATION USING SEGMENTATION AND
DECISION-MAKING PROCESS
We also reviewed several papers where researchers focused
on segmentation methods to extract ROIs from images and
classify them based on accuracy while developing a decision
support system. Shie et al. [95] introduced the OM image
segmentation method in their work to classify OM. They
focused on diagnosing four classes, normal, AOM, OME,
and COM, using private datasets (865 images). They did not
apply any image processing and augmentation techniques in
their work. The TM area was segmented with an ‘‘active
contours’’ method, which minimizes an energy function to
evolve the active contour. The grid color moment (GCM),
histograms of oriented gradient (HOG), local binary pattern
(LBP), and gabor features were extracted from the segmented
images and classification was done using several machine
learning models. The AdaBoost model obtained an accuracy
of 88.06%, a sensitivity of 91.57%, a specificity of 79.87%,
and an F1-score of 0.914.

Pham et al. [96] proposed a segmentation method named
EAR-UNet by integrating EfficientNet for the encoder,
an attention gate for the skip connection path, and the decoder
part is constructed based on the residual blocks from the
Reset model. They also proposed a new loss function term
for the neural networks to perform segmentation tasks. They
used around 1012 images of normal and OM (AOM, OME,
and COM) classes. To prevent overfitting data augmentation
was done using rotation, and vertical and horizontal flipping.
Their proposed EAR-UNet model obtained an accuracy of
95.8%, a dice similarity coefficient (DSC) of 929%, a Jaccard
coefficient (Jac) of 868%, a sensitivity (Sen) of 92%, a speci-
ficity of (Spe) 976%, Hausdorff distance (HD) of 9.290 and
a mean absolute distance (MAD) of 2.984 in classification.

In another study [97] TMs were automatically segmented
from otoscopy images with a deep learning method. A hybrid
loss function, integrating the dice loss and active contour loss,
was applied with a fully convolutional neural network (FCN).
During learning, the model considers the Dice similarity
and the required boundary contour information, including
the contour length and areas within and outside the contour.
The proposed loss function was then used with the fully
convolutional network to segment the tympanic membrane.
They employed this approach to 1139 images of normal and
OM. Their method resulted in a mean Hausdroff distance
(AHD) of 19.189, DSC of 0.895, and HD of 19.189.

Chen et al. [98] collected 2820 images of ten classes,
normal, AOM, CSOM, OME, TM perforation, acute myrin-

gitis, cerumen impaction, ventilation tube, TM retraction, and
otomycosis. After image processing (canny edge detection),
augmentation (vertical and horizontal flipping and color
transformations), and splitting, images were fed to the CNN
model for training purposes. The best-performing models
were identified and integrated into a small CNNmodel which
was converted into a mobile phone-based program. CAMwas
utilized for identifying key features for the CNN model and
their method performed with 98.0% accuracy in classifica-
tion.

A study by, Kim et al. [99] proposed a ResNet152UNet++

segmentation method by applying the ResNet152 layer struc-
ture to the encoders in the UNet++ model to accurately
identify the TM location and affected area. This segmenta-
tion method was applied to 9792 augmented images (from
1632 real images). Their method performed well compared
with other segmentation methods and the DenseNet161
model had an accuracy of 91.4% and a recall of 90%. In con-
trast, without performing segmentation, the same model
classified OM classes with an accuracy of 90.5% and recall
of 87.5%.

Myburgh et al. [100] utilized a total amount of 389 images,
including normal (123), OME (69), CSOM (86), and W/O
(60) in their work. Image processing was focused on cropping
the unusual areas from images and detecting the blurry
images. After that, several features that are relevant to med-
ical structures (color detection, blob detection, and position
detection) were extracted from the images. They proposed a
neural network as a classifier and compared it to a decision
tree. The decision three achieved an 81.58% accuracy while
the neural network resulted in an 86.84% accuracy in diag-
nosis.

Table 10 gives an overview of all the literature discussed
in this section.

After reviewing all the papers, key and major limitations
are pointed out, such as

1. Most researchers employed private datasets with a lim-
ited number of images and then used several augmentation
methods to extend their dataset, see Table 9-10.

2. Since ear images include unusual backgrounds, reflec-
tion of lights, and other artifacts, it is usually necessary to
generate denoised and artifact-free images. However, there is
an absence of using proper image processing methods.

3. Although the proposed CNNmodels seemed to yield sat-
isfactory results, they were not evaluated with multiple new
large datasets. Table 9 shows that several studies proposed
an ensemble deep learning model by integrating various deep
learning model features.

4. In addition, some researchers extracted handcrafted fea-
tures (filter bank, DCT, CCV, etc.) from processed images to
classify them into various OM categories.

As a large data hub for OM is lacking, they employed
several augmentation techniques to increase the number of
images. However, a dataset with a large number of original
images would be preferable. As deep features often do not
provide essential medical information [101] it is worthwhile
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TABLE 9. Literature demonstration of image classification using hybrid (deep learning and machine learning) process.
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to identify the medical features first. For example, a normal
class image may include malleus bones, cones of light, flac-
cid, and umbo but classification using deep neural networks
does not provide insight in the biomarkers of the images. Seg-
mentation methods play a crucial role in identifying the ROIs
from images and discarding an image’s unwanted background
or areas. Segmenting essential markers and classifying them
using a decision tree method can aid the specialist in diagnos-
ing cases without increasing the model’s complexity.

B. OTOSCOPY VIDEOS
Although video-based classification has not been widely uti-
lized in diagnosing OM to date, its potential needs to be
explored. Despite the limited adoption of video technology at
present, its incorporation could result in significant positive
changes. Although video classification integrating AI has
not yet supplanted current methods of diagnosing OM, some
research has been conducted utilizing video only. To assess
vestibular impairment in children with OME and vertigo,
Tozar et al. [102] used the Video Head Impulse Test (vHIT)
and compared the results to those of healthy children. Thirty
pediatric OME patients with vertigo and thirty healthy chil-
dren aged 4 to 15 participated in the study. Mean vHIT
gains were comparable between OME patients with dizziness
and healthy children, indicating that significant vestibular
impairment is not typically present in these OME cases. How-
ever, covert saccades were observed in some OME patients,
indicating mild vestibular impairment.

Another research study conducted in pediatric emergency
departments by Chan et al. [103] compared the prescription
rates of antimicrobials by clinicians using a smartphone oto-
scope versus those using a conventional otoscope to diagnose
Acute Otitis Media (AOM) in children. There was only a
minor difference in the likelihood of prescribing antibiotics
between the smartphone group (18.8%) and the conventional
group (18.0%). However, most clinicians in the smartphone
group (73%) preferred the smartphone otoscope over the
conventional one.

The objective of the research of Moshtaghi et al. [104]
was to compare the efficacy of a smartphone-enabled oto-
scope (SEO) to microscopic otoscopy in detecting and
evaluating tympanic membrane (TM) pathology in an otol-
ogy/neurotology practice. The SEO had an accuracy of 96%
in identifying normal TMs and 100% at detecting pathology.
Patients were receptive to the technology, with 93% feel-
ing comfortable with its use and 88% finding the acquired
images helpful in comprehending their condition, indicat-
ing its potential as a useful screening tool, particularly in
telemedicine settings.

None of the studies mentioned in this section used video
and AI in their diagnostic procedures. However, incorporat-
ing AI into these studies can potentially accelerate diagnosis
and improve diagnostic precision. AI has demonstrated
extraordinary speed and accuracy in analyzing medical
images such as TM images. By incorporating AI algorithms
that can rapidly and accurately identify pathological patterns

in these images, diagnosing conditions such as OM could
be expedited significantly, reducing the time and resources
required for comprehensive evaluations.

C. TYMPANOMETRY
Tympanometry is a diagnostic tool used to evaluate the acous-
tic characteristics of the ear canal by employing an acoustic
probe at 226 Hz or 1 kHz and a microphone to measure
sound [25]. This analysis provides quantitative information
regarding tympanic membrane (TM) and middle ear health.
In addition, it helps detect the presence or absence of fluid.
Tympanometry is important for the evaluation and diagnosis
of OM. The accumulation of fluids can result in effusion and a
flat tympanogram when negative pressure persists in the mid-
dle ear for an extended period of time [25], [105]. As a result,
aberrant pressure readings can serve as an early indicator of
impending middle ear infection, allowing healthcare profes-
sionals to diagnose and treat the condition promptly [106].

Several studies [25], [106], [107], [108] have used tym-
panometry and Wideband Tympanometry (WBT) measure-
ments to diagnose OM. Analyzing WBT measurements,
Sundgaard et al. [25] presented an automatic diagnostic
algorithm that used a convolutional neural network to detect
OM. The method detected OM with a high overall accuracy
of 92.6% but did not differentiate between specific classes.
However, their study did show the potential of deep learning
for automatic OM diagnosis and demonstrated the superiority
of wideband tympanograms over conventional techniques.
In another study, Grais et al. [106] aimed to utilize ML
techniques to automatically diagnose middle ear conditions,
specifically otitis media with effusion (OME), by analyzing
Wideband Absorbance Immittance (WAI) data. They col-
lected 672 sets of WAI data from normal middle ears and ears
with OME and found significant differences in absorbance
values, allowing classifiers to attain an automated diagnostic
accuracy of approximately 80%. The research also identified
specific frequency-pressure regions, ranging from 1090Hz to
2310Hz and−40 to+90 daPa, as crucial for interpretingWAI
data, and demonstrated the potential of ML tools to improve
the diagnosis of OM.

A study by, Sundgaard et al. [107] intended to determine
the inter-rater reliability of diagnosing OME, AOM, and no
effusion cases using otoscopy images and, in some instances,
WBT measurements. Four physicians of the ear, nose, and
throat (ENTs) independently evaluated the otoscopy images
and WBT results of 1409 cases. The results revealed an
overall diagnostic agreement of 57% among the four ENTs,
with the highest agreement and certainty observed in cases
of AOM (77.0% and 90%, respectively) and the lowest in
cases with no effusion (34.0% and 58%, respectively). The
combination of WBT measurements with otoscopy images
improved diagnostic certainty and agreement, demonstrating
the value of incorporating WBT for more precise diagnoses
without invasive procedures.

In another study, Merchant et al. [108] examined the
effect of middle-ear effusion volume on wideband acoustic
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TABLE 10. Literature demonstration of image classification using segmentation and decision-making process.

immittance in children with effusion-associated OM. It was
discovered that absorbance, a specific measure of acous-
tic immittance, decreased systematically as effusion volume

increased, especially in the 1–5 kHz frequency range. A mul-
tivariate logistic regression approach demonstrated high
accuracy in classifying OM based on effusion presence and
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volume, with absorbance serving as a reliable indicator of
middle-ear effusion volume in children with effusion-positive
OM.

These studies indicate that tympanometry, specifically
WBT in conjunction with AI and ML, can potentially
improve the accuracy and efficacy of OM diagnosis. These
technologies enable automated OM detection with high
accuracy and the capability to differentiate between dis-
tinct OM classes. In addition, the combination of WBT
measurements and otoscopy images enhances diagnostic
certainty and agreement, thereby reducing the need for inva-
sive procedures. AI tools based on tympanometry have the
potential to provide valuable assistance to healthcare per-
sonnel, which may result in more precise and non-invasive
OM diagnoses, thereby enhancing patient care if these AI
tools’ black box nature can be made interpretable and
explainable.

VII. DATASETS
Table 11 presents a list of datasets used in various studies
related to OM image classification. Table 11 shows that most
datasets are private, and that images were collected from
different hospitals and resources.

For example, dataset 16 is a private dataset that con-
tains only 2820 images of ten classes (nine disease classes
and a normal class). Dataset 13 contains 20542 images of
eight classes. This dataset seems quite satisfactory com-
pared to others in terms of diversity. In contrast, dataset
5 contains 22000 images (frames extracted from 200 auto
endoscopy videos) but only four classes. So, there is a lack
of variation in this dataset. In other cases, the dataset con-
sists of a small number of images. As the third dataset is
a public dataset, most researchers have used it for clas-
sification tasks [78], although the number of images is
limited.

VIII. DISCUSSION
After conducting a comprehensive analysis of the 32 papers,
several crucial insights and answers to our research
questions.

A. RESEARCH QUESTION 1: EFFICACY OF AI MODELS IN
DIAGNOSING OTITIS MEDIA
Our review suggests that ML and DL models, specifi-
cally Hybrid CNN and Transfer Learning techniques, are
frequently utilized to classify OM. A smaller portion of
the studies employ UNet architectures for segmentation
purposes. The emphasis on these advanced methodologies
highlights their potential to enhance the accuracy of diag-
noses. In particular, Transfer Learning utilized pre-trained
models on extensive datasets, enabling improved general-
ization on OM datasets even with limited data availability.
These models have exhibited promising results in enhancing
diagnostic accuracy, mitigating the inherent subjectivity asso-
ciated with manual diagnoses, and facilitating early detection
and treatment.

B. RESEARCH QUESTION 2: SIGNIFICANCE IN AI-BASED
HEALTHCARE INFORMATICS
The role of image and video preprocessing is crucial for
the successful implementation of AI models in healthcare
informatics. Of the 32 papers reviewed, 19 (59.37%) included
preprocessing, while 40.62% did not. The studies that incor-
porated preprocessing generally reported better performance
metrics than those that did not. Preprocessing techniques,
such as noise reduction, normalization, and augmentation,
were found to improve the quality of the input data, thereby
enhancing the robustness and accuracy of the models. This
finding emphasizes the importance of integrating preprocess-
ing steps in the analysis of medical images to ensure the
development of reliable and effective diagnostic tools.

C. RESEARCH QUESTION 3: MODEL EXPLAINABILITY
FEATURES
Enhancing the explainability of AI models is crucial for
increasing trust and ensuring their suitability in clinical
environments. However, only 7 out of 32 papers (21.87%)
included explainability features such as Class Activation
Maps (CAM) and feature map extraction. This low adoption
rate emphasizes a significant gap in the current research
landscape. For AI models to be implemented in real-world
clinical practice, researchers must provide transparent and
interpretable outcomes that medical professionals can under-
stand and rely on. Therefore, future research efforts should
prioritize integrating explainability features to mitigate this
gap and facilitate broader acceptance and implementation of
AI-powered diagnostic tools in healthcare.

D. RESEARCH QUESTION 4: MEDICAL EXPERT
INVOLVEMENT
The involvement of medical experts in developing and val-
idating AI models for OM diagnosis is limited, as seen
from our literature analysis. The lack of medical expertise
in many studies creates a disconnect between AI research
and its practical application in clinical settings. Increased
collaboration with medical professionals can enhance the
relevance and accuracy of these models by incorporating
domain-specific knowledge, validating model outputs, and
ensuring that the developed tools meet clinical requirements
and standards. This collaboration is essential for translat-
ing AI advancements into reliable, effective, widely adopted
diagnostic instruments.

E. RESEARCH QUESTION 5: DATA QUALITY- ENSURING
ACCURACY AND DIVERSITY
The quality and diversity of ear images utilized in training
AI models are crucial for their effectiveness. Public datasets
for Otitis Media diagnosis are limited, while private datasets
are more common. These datasets include various modali-
ties, such as images, videos, and tympanometry, which can
enhance the training process. Ensuring data quality involves
strict annotation protocols, multimodal data integration, and
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TABLE 11. Dataset descriptions.

robust preprocessing techniques. High-quality and diverse
datasets are essential for developing accurate and general-
izable AI models that can be applied in various clinical
scenarios.

F. RESEARCH QUESTION 6: WEB APPLICATION-
INTEGRATION IN AI-BASED RESEARCH
Despite their potential advantages, only 12.5% of the ana-
lyzed papers incorporated web applications. Integrating web

applications can improve the accessibility and usability of AI
diagnostic tools, facilitating real-time analysis and broader
implementation in clinical practice. Web-based platforms
offer user-friendly interfaces for healthcare professionals,
streamlining the diagnostic process and enabling remote con-
sultations. Future research should prioritize the development
of web applications to maximize the impact of AI-driven
diagnostic tools, aligning with the need for increased involve-
ment of medical experts and practical applicability.
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The analysis of these 32 papers provides crucial insights
into the current state and future directions of AI-based diag-
nostic tools for Otitis Media. While significant progress has
been made in utilizing advanced ML and DL models, several
gaps persist in preprocessing practices, model explainability,
medical expert involvement, data quality, andweb application
integration. Addressing these gaps through focused research
and development efforts is essential for effectively translating
AI innovations into practical, reliable, and widely adopted
healthcare tools.

IX. IMPACT OF AI MODELS ON DIAGNOSIS
AI models have significantly impacted medical diagnostics.
Medical imaging is a key feature of this invention that has
become integral to modern healthcare because it facilitates
more precise diagnoses and informed treatment decisions.
Some key effects of AI models on medical diagnostics:

• The integration of AI with medical imaging has ushered
in a new era of precision and efficiency in diagnosis.
DL algorithms in particular have emerged as a powerful
tool for streamlining and enhancing image processing,
transforming the landscape of medical diagnosis.

• AI algorithms are very good at identifying patterns,
which is a necessary ability for the intricate interpre-
tation of medical imaging. Through training on large
datasets of annotated medical images, these algorithms
may be trained to identify abnormalities and crucial
patterns that would be imperceptible to the human eye.

• AI-powered image fermentation techniques facilitate the
identification of specific structures or ROIs, which is
highly advantageous for medical treatment and surgical
planning.

• In massive datasets, AI algorithms can find biomarkers
and genetic markers that impact susceptibility to illness
and response to treatment. Clinicians can use this to
develop more successful individualized treatment plans
with fewer adverse effects. Improved AI-based image
interpretation accuracy leads to a decrease in diagnostic
errors, enabling more precise treatment and potentially
lowering the need for antibiotic prescriptions.

Although AI has great potential to revolutionize healthcare,
combining AI’s innovative potential with healthcare’s ethi-
cal standards is challenging, and it will need the combined
efforts of engineers, healthcare professionals, lawmakers, and
patients. When a doctor tries to diagnose the OM disease
manually, there is a high chance of human error that could,
directly and indirectly, affect the patients (child or adult),
especially in medical prescriptions. AI could aid them in
assessing otoscopy videos by converting them into frames
and selecting clear TM frames using an automated system.
In addition, AI can improve their efficiency and accuracy
by giving medical professionals data-driven insights to help
them make decisions and use their clinical knowledge to
understand AI recommendations. This reduces the time and
effort required and aids the patients and specialists in diag-

nosing OM diseases accurately. Thus, the advancement of AI
technology can lead to improved OM diagnosis.

X. OPEN ISSUES AND FUTURE SCOPE FOR RESEARCH
A. OPEN ISSUES AND DISCUSSIONS
After extensive review of the papers related to otitis media,
we have identified several unresolved questions and chal-
lenges in this research domain.

1) MODEL INTERPRETABILITY AND LACK OF MEDICAL
EXPERT INVOLVEMENT
In the context of OM diagnosis using AI, we conducted a
comprehensive review of 32 papers, revealing a pervasive
difficulty in applying ML and DL models within the medical
domain to diagnose ear infections. This challenge centers
on model interpretability, as these models often operate as
inscrutable ‘‘black boxes.’’ This dearth of transparency is a
major barrier for healthcare professionals who are seeking
insight into the decision-making process underlying the mod-
els. Given the critical implications of healthcare decisions
on patients’ well-being, this raises legitimate concerns about
the reliability and safety of these AI models for the real-life
diagnosis process. Interpretable models are crucial because
they equip doctors with the knowledge to use and effectively
employ these technologies when diagnosing OM. In this
context, informed decision-making requires a comprehensive
understanding of how these models generate their recommen-
dations. In addition, interpretability plays a crucial role in
ethical oversight, ensuring that irrelevant criteria or biases do
not exert an inordinate influence on ML and DL algorithmic
decisions. Notably, within the scope of OM diagnosis, the
absence of explainable models in the 32 reviewed papers
raises the question of whether AI is readily implementable in
real life since the studies focus on ensuring accuracy rather
than discovering the explain ability of the proposed model.
As discussed in this review paper, significant progress has
beenmade in the domain of AI to diagnose OM. However, the
models developed by data scientists frequently lack explain-
ability, as discussed, leading to challenges in collaboration
between medical experts and the AI community. Because the
results produced by these advanced models often lack clear
understanding, posing a challenge for healthcare practition-
ers to understand the fundamental mechanisms that decide
the outcomes. The lack of transparency in this model hin-
ders efficient collaboration among computer scientists, data
scientists, and medical professionals, thereby impeding the
progress and implementation of AI models in the health-
care sector. Medical professionals are concerned about the
absence of transparency, which causes them to be hesitant
to place trust in the outcomes generated by these models.
As a result, the incorporation of artificial intelligence into
medical practice and research has been constrained, empha-
sizing the critical requirement for AI models that are far more
transparent and interpretable to promote collaboration and
establish confidence among healthcare professionals. The
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limited participation of medical experts in the research pro-
cess, perpetuates the dominance of applied research within
the IT context and emphasizes the critical need for more
transparent and collaborative approaches in this domain for
knowledge discovery.

2) LACK OF KNOWLEDGE DISCOVERY
The lack of interpretability and the limited involvement of
medical experts have created a significant barrier to knowl-
edge discovery. This deficiency is especially apparent when
contemplating the potential insights that could be obtained
through collaboration between clinicians and AI specialists.
For instance, if clinicians actively participated and shared
their knowledge on distinguishing the position, degree of
bulging, and other clinically relevant information related
to eardrum abnormalities in medical images, AI experts
could use this valuable information to develop marker-based
approaches and facilitate knowledge discovery. Such col-
laborations could result in the development of more robust
decision support systems that incorporate a deeper under-
standing of the medical nuances, which is presently absent
and remains an open issue in this field.

B. FUTURE WORK
The future work outlined here holds significant promise in
advancing the application of ML and DL in the diagnosis
of OM, with potential benefits spanning various aspects of
healthcare:

1) IMPROVED MODEL INTERPRETABILITY
Enhancing Improved Model Interpretability: Enhancing the
interpretability of ML and DL models can have pro-
found benefits. By incorporating explainable AI tech-
niques and developing visualization tools, we can demystify
the decision-making process of complex algorithms. For
instance, to address middle ear issues using temporal bone
computed tomography, an automated segmentation tech-
nique can be employed to segment the significant ROI
from ear images. This involves implementing a 3D convo-
lutional neural network to extract the 3D ROI and diagnose
pathological ears and disease classes. Additionally, gradient-
weighted class activation mapping techniques can be utilized
to generate heatmaps that emphasize the crucial ROI of the
middle ear, aiding in decision-making processes. This will
help clinicians to trust these models and empower them to
understand the reasoning behind the AI-generated recom-
mendations. With improved model interpretability, clinicians
can confidently integrate AI suggestions into their clinical
decision-making processes, such as on which basis the mod-
els give predictions. Additionally, it will lead to the real-time
AI assessment of an image, ultimately leading to more accu-
rate and efficient diagnoses and treatment plans.

2) INVOLVEMENT OF MEDICAL EXPERTS
Collaborating closely with medical experts is crucial to
improving model performance and accuracy. Medical profes-

sionals possess valuable domain knowledge that can refine
data annotation and region of interest (ROI) segmentation,
ensuring that training data aligns closely with real-world clin-
ical scenarios. This partnership enhances the models’ ability
to detect diseases accurately, reduce false positives, and min-
imize biases. Ultimately, it results in AI systems that are
more reliable and clinically relevant, instilling trust among
healthcare providers and facilitating seamless integration into
medical practice.

3) ENHANCING DATA QUALITY
Critical to the performance of ML and DL models is the
quality of the data used for training. Hence, it is important
to ascertain that the aural images are precise, comprehensive,
and reflective of practical clinical situations. In the case of
OM, this may entail gathering data from diverse populations
and ensuring that the data encompasses a diversity of OM
diagnoses, informed by national OM guidelines. Currently
very few studies utilize more than four or five-class labeling.

4) HYPERPARAMETER TUNING
Hyperparameters are pre-training parameters that determine
aspects of a model, including the learning rate and the number
of layers. By fine-tuning these hyperparameters, the com-
plexity of the model can be reduced. It is evident that most
of the studies did not involve extensive hyperparameter tun-
ing. Additionally, studies have not included hyperparameter
optimization algorithms to improve their model. This can
be achieved using techniques such as grid or random search
and will eventually produce a more optimal model for OM
diagnosis utilizing AI.

Implementing these recommendations has the potential to
revolutionize the medical field by bridging the gap between
cutting-edge ML and DL technologies and their practical
application in healthcare. Improved model interpretability,
enhanced medical expert involvement, and interdisciplinary
collaboration are essential in developing AI systems that opti-
mize OM diagnosis and contribute to better patient outcomes,
reduced healthcare costs, and more efficient healthcare deliv-
ery. Ultimately, these advances will benefit both patients and
healthcare providers by providing them with powerful and
trustworthy tools to improve healthcare quality and accessi-
bility.

XI. CONCLUSION
OtitisMedia is a global public health issuewith a notably high
prevalence, tragically resulting in serious health concerns
in multiple age groups. Studies employing various ML and
DL methodologies in the field of OM diagnosis have shown
that the development of AI may facilitate disease detection.
This review is based on extensive literature research related
to the use of AI techniques to diagnose OM. The review
examines the applications of AI-based models for various
modalities, including otoscopy images, videos, and tympa-
nometry. In addition, it casts light on existing OM datasets
by revealing their limitations and constraints.
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It can be concluded that previous research employing AI
techniques has primarily focused on image-based applica-
tions. Despite the potential importance for real-time OM
detection, there has been limited exploration of video data.
Interpretability of models needs to be further explored and
collaboration with medical experts is crucial in these research
endeavors.

To improve the applicability of future research, it is nec-
essary to develop more interpretable model disease detection
systems that operate on both images and video recordings,
as well as otoscopy and tympanometry, and involve medical
professionals in knowledge discovery. Such an approach has
the potential to significantly enhance the applicability of this
research to actual healthcare settings.
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