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ABSTRACT Improvement possibilities of industrial systems are driven by Industrial Internet of Things
(IIoT) and Industry 4.0 concepts. The basic enablers are related to interoperation, and some efficiency and
safety increasing solutions may be direct outcomes. Other benefits of interoperability are related to data inte-
gration, and the ability to analyze the collected information and to establish recipes for improvements. One
of the most important targets required by the industry is the prediction capability, to forecast equipment faults
or process values. The water industry with its specific characteristics is following the same path and needs
efficiency increasing solutions that could be applied on its many legacy systems. Any data-driven solution
is a case study driven solution. Therefore, the current research is started with deploying pilots that consists
of proactive historians applied to functioning legacy water sector facilities. The work is presenting a Long-
Short-Term-Memory (LSTM) neural networks-based prediction solution within the low-cost decentralized
proactive historian. The exposed case study technological process is a wastewater treatment plant, where
sludge pump failures are predicted to improve maintenance activities, as well as a chemical oxygen demand
water quality indicator to improve process control strategy adjustments. The algorithm is generated as a result
of a batch training and afterwards it is adapted also to incremental training. The solution is conceived for
the hardware and software conditions of the proactive historian and the deployment within the real scenario
proved excellent results, with the ability to provide 5 hours ahead correct predictions.

INDEX TERMS Proactive historian, IIoT, LSTM neural networks, industry 4.0, water industry, industrial
automation.

I. INTRODUCTION
The Industrial Internet of Things (IIoT) and Industry 4.0 con-
cepts are representing the pillars for new evolution in the
industrial world [1], [2]. The key enabler is the interoper-
ability and interoperation between entities and systems [3],
[4]. Although many interoperability solutions are researched
and solved [5], various challenges are still encountered
related to protocol improvements [6] and legacy systems
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integration [7]. Interoperability and interconnected systems
assure that data can be transferred. Interoperation is expected
to improve the process functioning [8], but it usually has
to follow an improvement strategy that could derive from
information/recipes obtained from data analysis [9].

Neural networks (NN) are used in the industry to develop
an improved decision making when data is accumulated (e.g.
image processing-based defect detection using deep learn-
ing [10], convolutional NN (CNN) used for layout fixtures
for sheet metal designs in automotive parts [11]. A synthesis
of deep learning techniques in IIoT is presented in [12].

99526

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-2519-7578
https://orcid.org/0000-0003-4985-3082
https://orcid.org/0009-0006-6108-9792
https://orcid.org/0000-0002-8145-7146
https://orcid.org/0000-0001-7643-2342


A. Korodi et al.: LSTM-Based Prediction Solution Inside a Decentralized Proactive Historian

Nowadays, the industrial world needs also prediction, for
future faults in the production lines that could cause delays
and resource expenditures, or for other uncertainties. Many
of the prediction approaches are including Long-Short-Term-
Memory (LSTM) recurrent NN for the data-driven models.
Work [13] presents a solution to predicts faults using a pre-
diction of an expected image 1 second before, while [14]
predicts the production progress in a manufacturing work-
shop. There are also other types of solutions, that may be
suitable for specific scenarios, like paper [15] that presents
a probabilistic temperature prediction in additive manufac-
turing. An important issue to be tackled is that a process
and data driven research targeting an improving strategy,
should rely on real data and should finally depict how to be
applied on real industrial systems. Research [16] proposes
an interesting, optimized LSTM based strategy to diagnose
faults in chemical processes, but the work should continue to
increase the technological readiness level and the industrial
deployment. Paper [17] also relies on LSTM in order to assess
short-term voltage stability for power systems, proving better
results than the traditional methods.

Therefore, in Industry 4.0, systems have to be interfaced
and connected, data must be collected and analyzed, improv-
ing strategies must be researched, developed, respectively
applied on real systems. Generally, the industrial world
focuses in this moment on all mentioned aspects trying to
find the best answers to questions as ‘‘how to’’: interface,
collect data, use data, react. The water industry makes no
difference and presents particular characteristics like geo-
graphical and chronological development dispersion, various
local technologies and solutions, many systems involved
in a complete water cycle, sometimes considerable amount
of time necessary to move between functional regimes in
the treatment process, large lifecycles for local automation
and consequently many legacy systems, etc. The water sec-
tor is focused on improving issues related to consumption,
equipment failures and consequent improvements of the
maintenance strategies, safety, etc. (e.g. [18], [19]).
An issue that was intensely analyzed and approached in the

water sector is the interfacing. The Open Platform Communi-
cation Unified Architecture (OPCUA) protocol is considered
a key enabler of Water Industry 4.0, as in the manufacturing
industry [20], but other legacy protocols are still present in
the water sector (e.g. Modbus TCP, S7, Ethernet/IP). Other
aspects required in the water domain are related to improve-
ments and the majority are data-driven. The industry and the
literature are oriented towards NN (e.g. [21] where a CNN is
used for pipe leakage detection and localization, [22] where
CNN and LSTM NN are used for the underground drainage
system for software sensing, [23] where CNN and LSTMNN
is used along with a Raspberry Pi based image processing
local system added to a mechanical water meter to detect
leakages). But few works are encountered on prediction.
Paper [24] presents a good solution to forecast water quality
extremes, but it is unlikely to adapt the method to a local
water/wastewater facility. Work [25] focuses on forecasting

pipe failures in a water supply system, the provided data
does not clarify completely the prediction timeframe, respec-
tively the complete applicability. Work [26] was among the
online analyzed initiatives, with a good focus on a water
company needs, but the prediction timeframe required for a
real maintenance or control adjustments has to bemuch larger
and the authors could not obtain even the claimed prediction
timeframe using the provided guidelines.

The current interdisciplinary research team approaches
efficiency increase issues in the water sector focusing real
case studies and several installed pilots (see the research
strategy in chapter II). The current work is presenting the
prediction solution within low-cost decentralized proactive
historian applied on legacy systems. The research relies on
LSTM NN that are used to predict equipment faults and
analogue process values (see chapter III). The presented
case study technological process is a wastewater treatment
plant, where sludge pump failures are predicted as well as a
chemical oxygen demand water quality indicator (see chapter
III). The algorithm is conceived as result of a batch training
and afterwards is adapted also to incremental training. The
solution is tailored for the hardware and software conditions
of the proactive historian, and it is applied on real scenario
with excellent results, being able to make correct predictions
5 hours ahead. Discussion and conclusion is presented in
chapter IV.

II. RESEARCH STRATEGY FOR THE PREDICTIVE
HISTORIAN
The largely dispersed local systems in the water sector are
centralized in local, regional, central SCADA control centers.
But, going up the pyramid shaped hierarchical levels, the
information is filtered and reduced, the general knowledge is
increasing, the local processes related knowledge is decreas-
ing, respectively the capability to automatically react towards
the local automation is reduced. Therefore, most suitably,
the improving solution that exchanges data with the local
process and implements the LSTMNN based strategy should
be placed in the fog computing area, near the local SCADA
system or the automation panels.

The proactive historian is conceived as a low-cost decen-
tralized solution that is able to interface the local legacy
system and to collect and analyze data, to identify dependen-
cies, to reach objective functions considering constraints in a
process aware manner, respectively to act on the functioning
local automation in order to implement the obtained recipes.
The mentioned characteristics were proven in some specific
scenarios, a complete solution to increase energy efficiency
for drinking water facilities being addressed in [27]. But,
many opportunities for research arise for such proactive histo-
rian in the water sector when data from industrial functioning
systems are considered in specific scenarios and local process
structuring. This implies tailoring, longer term testing and
mandatory partnership with water companies. The research
team started in July 2022 an intensive project to develop and
test the capabilities of the proactive historian in a context
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of real scenarios. The steps of the research strategy along
with marking the limits of the current status are shown in
Figure 1. Pilot structures were started in connection with real
functioning drinking water and wastewater legacy systems.
Proactive historians were tailored and extended for specific
scenarios.

FIGURE 1. The steps of the research.

After proper interfacing (mainly through OPC UA proto-
col), hardware and software deployment of the historian with
possibilities to monitor and easily upgrade the solution, local
technological process basic knowledge being integrated, the
following first two steps were covered:
Step 1: Data collection and analyze. Historians gathered

data for more than 8 months in continuous functioning (see
Figure 2). Data was continuously analyzed, dependencies
were obtained.
Step 2: Identify improvements. Available solution allowed

to validate, adapt and extend energy reduction strategies in the
drinking water sector and to identify recipes and scenarios
in this direction. But, together with process and mechan-
ical engineering specialists from the water company, the
following improvement possibilities were targeted: reducing
the energy consumption; reducing the consumption of sub-
stances; non-invasive process control adjustments on existing
functioning automation; equipment fault prediction.

The current research is focusing on prediction. Prediction
is essential for improvements and in order to have a meaning
it is mandatory to be engendered using real scenarios and
systems. Two prediction targets were established:

- the main target consisted in equipment fault prediction,
as being an important research requirement in the industry.

- additional target was related to predict analog process
values to be used in non-invasive process control adjustments
on existing automation. The necessity to predict values is
reasoned by the higher time constants that are present in

FIGURE 2. Data collecting using the installed historian.

parts of the treatment process in the water industry. It means
that sometimes is not possible to generate the desired effect
by adjusting suddenly the control strategy. This types of
situations are usual in the biological phase of the wastewa-
ter treatment, but also in the drinking water treatment (e.g.
chlorine correction).

The research continued with the third step divided into
two branches for the prediction algorithm, and with the
fourth step that adapts the strategy to the low-cost historian
infrastructure:
Step 3 – Branch 1: Fault prediction. The fault prediction

strategy required the presence of equipment faults within the
data collected by the historians. All process equipment was
monitored, and the process and mechanical experts from the
research teams pointed out elements that are important for
improvements and time objectives for prediction. The main
condition for training and validation of the algorithm is to
observe previous equipment faults (the quantity influences
correctness/completeness) and to correlate the faults with
other tag values in the system.

The chosen prediction strategy was the LSTM recurrent
NN. The approach in step 3 of the research was to:

- train the LSTM NN based on the first set of stored data;
- validate the obtained NN based on a second dataset;
- validate the LSTM network using newly acquired data.
Step 3 – Branch2: Process value prediction. The actions

within branch 2 were somehow similar with those in branch 1
but for stateless variables. The target was to obtain sim-
ilar algorithm with its instance tailored for analog value
prediction.
Step 4:Adapting to low-cost decentralized historian infras-

tructure. Regarding that the proactive historian is designed
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for a decentralized perspective, applied in connection with
local legacy systems using a low-cost infrastructure (e.g.
Raspberry Pi), the prediction strategy had to be adapted for:
reduced sampling rate (the higher the sampling rate, the
bigger the volume of stored data and the processing time);
reduced NN model complexity; reduced set of variables.

An additional target of the research was to obtain inde-
pendent and automatic improvement of the algorithm by:
developing an incremental training solution for the algorithm
within the historian infrastructure; validating the incremental
training solution.

After this point, future research that will be undertaken
will consist of comparing the on-condition triggered batch
training with the incremental training solutions.

Also, as future step of the research would be:
Step 5: Choosing new objectives autonomously. Other AI

techniques will have to be added and evaluated to be able to:
- establish prerequisites for predicting faults (e.g. number

of faults limit for training) or process value (e.g. process
value that could cause better system performance influencing
higher time-constrained process parts).

- identify proper variable sets to predict chosen tag value.
- autonomously validate incremental training.
- establish conditions and constrains for the proactive his-

torian to properly evaluate, validate and deploy the newly
obtained algorithm in junction with the legacy system (pro-
cess knowledge and functioning related criteria, including
safety and ethical analysis, especially in the case of adjusting
legacy control structures; algorithm upgrade procedure).

III. PREDICTION SOLUTION IN THE PROACTIVE
HISTORIAN
A. GENERAL PREDICTIVE CAPABILITIES
In order to develop the ability to predict future evolutions,
complex patterns must be identified from historical data,
aspect which perfectly suits the use of artificial intelligence
technologies for this purpose. For the practical implementa-
tion of the current research, Microsoft Visual Studio Code
was used as source code editor and Python (version 3) as
programming language. Also, for structuring and displaying
data, the following software libraries were used: Pandas,
NumPy, Matplotlib, Scikit-learn (train_test_split), Beautiful
Soup. For creating the artificial intelligence model, the fol-
lowing software libraries were used: Tensorflow (Sequential,
Layers, MeanSquared, Adam) and Scikit-learn (MinMaxS-
caler, Normalize, Accuracy_score).

The subsequent step consisted in identifying the type of
NN model which would be most appropriate for the purpose
of predicting values in the future. Because the available data
represents a sequence recorded at successive equally spaced
points in time, the desired outcome of the research is a
solution to a time series forecasting problem. The authors
examined various types of NN that are applicable for this
kind of problem and decided to use LSTM because of its
ability to identify and maintain long-term dependencies to

make predictions in future time steps. Also, LSTM’s input,
output and forget gates allows to selectively retain or forget
information, which is very useful, especially under varying
operational conditions. The data is sequentially processed,
which preserves the order of events, making them ideal for
modeling time series data. Non-linearity and non-stationary
data are accommodated as well by LSTM, which are inher-
ently flexible, all of those attributes making them suitable for
the current case.

Moving forward with the research, 2 generic LSTM mod-
els were generated: a complex model with approximately
100000 parameters and a simpler model with approxi-
mately 19000 parameters. The complex model is presented
in Figure 3 and the simpler model is presented in Figure 4.

FIGURE 3. The complex model detailed.

FIGURE 4. The simpler model detailed.

Following later tests, the simpler model continued to offer
identical or superior results compared to the more complex
model (R2 0.546; MSE 1.568; RMSE 1.252 for the com-
plex model, compared to the values from Table 4 below),
which supported the decision to advance the current research
based only on the simpler model. However, it is possible that
the more complex model might be better suited for other
applications than the ones considered in the current paper.

The used simpler model, presented in Figure 4, is a
sequential model and consists of the following layers:

- InputLayer – receives the input data and specifies its
format. The size of the input is defined by timesteps (the
number of time periods considered in each sequence) and
nr_inputs (the number of characteristics/OPC UA tags used
in each datapoint).

- LSTM – this layer consists of 64 LSTM units, which
allow the model to learn complex sequential relations and to
capture temporal dependencies in input data.

- Dense – this layer consists of 8 units and has a Rectified
Liner Unit (ReLU) activation function, which introduces a
non-linearity in the model. The ReLU function returns 0 for
all negative values and keeps positive values unmodified,
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which helps at learning non-linear characteristics in input
data.

- Dense – the last layer contains a number of nr_outputs
units, which correspond to the number of output charac-
teristics. This layer uses a linear activation function, which
produces continuous outputs and allows themodel to generate
predicted values without restrictions.

An interesting perspective is brought by the possibility to
build an automated learning ability for the AI model through
the implementation of Incremental Training concept, which
could help improve the accuracy of the model in time, after
the real world deployment. Also, the Incremental Training
concept allows themodel to adapt to changes in data over time
and to adjust its predictions based on the new information.
However, it is important to establish and enforce mechanisms
through which to ensure that the incremental changes to
the model will not have an unwanted negative impact over
its accuracy. Also, adding the Incremental Training ability
requires an evaluation of the processing requirements and the
capability of the hardware platform that supports the smart
software tool to meet those requirements as compared to the
similar model without Incremental Training. The trade-off
betweenmore demanding processing requirements and possi-
bility to obtaining accuracy improvements must be carefully
considered for each particular application.

B. INTEGRATION INTO AUTOMATED SOFTWARE
SOLUTION
To integrate the predictive capabilities obtained as a result of
the current research into an optimization strategy applied in
an autonomous manner by a software tool, the authors elabo-
rated the software architecture from Figure 5 for assimilating
the aforementioned capabilities into the proactive historian
solution.

FIGURE 5. Software architecture for integrating predictive capabilities
into the proactive historian solution.

Figure 5 highlights both the 4 general actions that are
required to be implemented for integrating an AI model
which generates predictions into a smart software tool and the
particularities suited for the practical applications addressed
by the current research.

The architecture consists of a loop managed by the Java
application from historian, the first step being represented by
the extraction of the required data from the SQLite database
into a Comma Separated Values (CSV) file. For this, all

characteristics that are expected at input for the trained LSTM
model must be considered from a time interval appropriate
for the specific application (the most recent 15 past hours
from the moment of execution, with a 1 min. interval between
successive data records in the case of the current research).
In the second step, the LSTM AI model must be executed
through the use of a Python script, which must initially load
the extracted input data from the CSV file and also load the
Tensorflow SavedModel from a file. Afterwards, the script
executes the computing of the prediction, which, in case of
integrating a self-learning model, also represents the incre-
mental learning step for the model. The obtained prediction
is finally processed by the Java application, which stores the
prediction into the SQLite database for future reference. Also,
the prediction represents the foundation on which the Java
application will act upon, the type of action being dependent
on the particular implemented optimizing strategy or objec-
tive. After waiting a specific amount of time, the described
loop repeats, thus providing periodic and continuous applying
of the proactive, intelligent capabilities over the technical
system’s operation.

If applicable, as in the case of the current research, the
Incremental Training means that the LSTM model supports
a new training round after executing each prediction, but
limited to the size of the newly received information only.
In order to persist, the last state of the model must be locally
saved in a file with .h5 extension, each iteration of the loop
requiring the file loading. After predicting, the new training
data must be defined by removing the unwanted layers of
previous data and a training process with low number of
epochs can take place. Basically, the new set of data is added
to themodel without the need to train it from scratch, a snippet
of the developed Python script for this feature being presented
in Figure 6.

FIGURE 6. Python script snippet for incremental training.

The adaptive mechanisms to incorporate real-time data
updates and unforeseen operational conditions include data
preprocessing, extraction of rolling averages and moving
medians, as well as algorithms for anomaly detection in real-
time, model retraining and updating (Incremental Training
and periodic Full Training when substantial changes in opera-
tional patterns are detected) and continuous predictive model
performance monitoring using key performance indicators
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(e.g. prediction accuracy, precision). Several strategies could
be considered for ensuring long-term accuracy and rele-
vance: (i) regular model validation using latest real-time data,
(ii) ensemble learning, (iii) adaptive hyperparameter tuning
using Bayesian optimization and (iv) domain expert review
for fine-tuning.

The Incremental Training is minimizing the prediction
latency, is computationally less demanding per update,
is more scalable than Batch Training, especially when the size
of data grows, but requires constant computational resources
and it cannot leverage the more advanced optimization tech-
niques that Batch Training can. The less frequent updates
in Batch Training can lead to slower responsiveness to new
trends or anomalies in the data. A hybrid approach, with
Batch Training during off-peak times and Incremental Train-
ing for continuous updates ensures that the system remains
scalable, efficient, and responsive to real-time data changes.

Frequent retraining can be avoided by adjusting the learn-
ing rate dynamically, which allows quick adapting to recent
changes without drastically altering established knowledge.
Also, a sliding window approach is appropriate, shifting
as new data arrives, the size of the sliding window being
adjustable based on the rate of change in the data. Other
solutions are: (i) prioritizing the memory update, ensur-
ing that significant changes are quickly incorporated while
minor fluctuations are smoothed out or (ii) regular mini-batch
updates at regular intervals.

The concept drift can be detected through usage of sta-
tistical tests, such as the Page-Hinkley test or the Adaptive
Windowing (ADWIN) method.

C. APPLICATION – CASE STUDY AND RESULTS
The WWTP targeted by the case-study serves an area con-
taining around 6000 inhabitants and is based on a classical
sequential technological process. Briefly, two wastewater
treatment lines are implemented, and after mechanical treat-
ment of the inlet, the biological treatment contains two
sequential batch reactor tanks where the aerobic and anoxic
treatment is time based. The sludge line and bypass lines are
also included. The control system consists of 9 S7-1200 PLCs
that are connected with the redundant SCADA WinCC V13
SCADA system using a redundant fiber optic ring. The pilot
structure integrated the proactive historian by interfacing the
two OPC UA servers of the WinCC SCADA servers.

By deploying the proactive historians, two issues were
identified. First, two sludge pumps within the biological
reactors were frequently failing causing problems for process
continuity and maintenance. Secondly, the process engineer
pointed out that for large sudden variations of the chemical
oxygen demand (CODcr) the biological treatment is not able
to respond properly and it would need some more time to
adapt. If the pump fault would be predicted at least 3 hours
ahead, respectively if the CODcr indicator would be fore-
casted at least 1 hour in advance, the company and the local
control system would be able to react properly.

To apply the general purpose algorithm to the case study,
a data preprocessing was required before implementing and
testing. The available data was stored starting with July
2022 by the historian application in a SQLite database,
which has been retrieved and used in the current research.
460 different OPC UA tags were monitored by the historian,
using a value sampling of approximately 20 seconds. The data
is structured in a database table containing 461 columns (for
each OPC UA tag + timestamp), a new row being added at
20 sec. intervals. An insight on the data format is presented
in Figure 7.

FIGURE 7. An insight on the available data’s format.

For the batch training, the available data was exported into
a CSV file, which was used in the Python preprocessing
script.

In order to manage the large volume of information
(database size was approximately 3.5 GB) and reduce the
processing effort, a 10 min. timeframe window was chosen
further (every 30th row of initial data was considered).

After filtering initial data, the preprocessing script struc-
tured the data in a format that is appropriate for usage in a
LSTM model, by performing the following operations:

- Select only the relevant columns for LSTM’s input and
output (only a subset from the total of 460 OPC UA Tags
were used for applications).

- Convert the data in NumPy format.
- Build the input and output datasets using a specified

number of time steps for each sample.
- Store the input values into a matrix and the corresponding

output values into a vector.
The last step in the preprocessing of data consisted in divid-

ing the data into separate datasets for training, testing and
validating, which was done by making use of train_test_split
function from Scikit-learn library. The outcome of this
approach was the splitting of data in the following shares:
63% of data for training, 30% of data for testing and 7% of
data for validating.

All boolean values were replacedwith the numerical values
0 and 1 respectively. All the records that contained at least
one missing value (null or nan) were removed. The input data
was normalized in the [0-1] numerical interval to ensure con-
sistent scaling. For anomaly detection, the statistical method
of Z-Score analysis was used, with a threshold of 3 being
chosen for anomaly filtering. In order to safeguard against
erroneous predictions, the method of Cross-Validation was
used for model validation and testing, using historical data
to ensure that the model generalizes well to unseen data.

The generic LSTM NN model presented in chapter III A
represented the basis for the 2 different practical applications
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in the current research, both of which being further detailed
in the current section.

1) STATUS PREDICTION OF SLUDGE PUMP
The first practical application is oriented towards the pre-
diction of the status information of a sludge pump from the
WWTP, in line with the predictive maintenance objective
fixed for the current research.

The studied pump is one of the 2 pumps responsible for
disposal of sludge from the first biological reactor from the
2 reactors available in the WWTP.

The status of the pump is available in the data recorded
by the historian, as a numerical value of a specific OPC UA
tag, the association from Table 1 being applicable.

TABLE 1. Mapping of sludge pump status values to their significance.

The characteristics (corresponding OPC UA tags) from
Table 2 were used from the available data as input data in
order to train the aforementioned generic LSTM NN. The
pump status was used as output data.

The list of characteristics from Table 2 has been chosen by
the authors after a series of experimental tests in which the
performance of the trained model was analyzed. The research
team observed that adding any other characteristic to the list
did not bring a performance improvement, while removing
any of the mentioned characteristics from the list resulted in
negative impact over performance.

TABLE 2. List of characteristics used as input data for neural network
training – sludge pump status prediction.

The sample (time steps) was set at 30 units, which ensures a
prediction spanning over the course of 5 future hours and the
number of passes over the database (epochs) was set at 10.

The LSTM network parameters configuration included a
learning rate of 0.001, batch size of 32, 100 epochs and the
loss function was Mean Squared Error (MSE).

The authors applied both the training and testing of the
LSTM network for the status prediction of the sludge pump
on 2 scenarios. The difference between the 2 considered sce-
narios is represented by the time intervals fromwhich the data
was used for training, respectively testing, the same charac-
teristics being chosen and same LSTM generic model serving
as starting point. The time intervals used for training and
validating the LSTM model were extracted are summarized
for both scenarios in Table 3.

TABLE 3. Time intervals from which data was extracted to train and test
the AI model – sludge pump status prediction.

Graphical representations of the test results are presented
for both scenarios to compare the prediction with the actual
status recorded in the database (Figure 8 for scenario 1,
Figure 10 for scenario 2), and from the perspective of dis-
playing exclusively the prediction (Figure 9 for scenario 1,
Figure 11 for scenario 2).

FIGURE 8. An insight on the available data’s format.

In order to determine the accuracy of the trained model,
4 approaches were followed. Firstly, the r2_score function
from Scikit-learn library was used, which returns the coef-
ficient of determination (R2) between predicted values and
actual values, performing a computation with a 0 error mar-
gin. Also, the standard MSE and RMSE techniques were
considered. However, because the pump status values are
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FIGURE 9. Scenario 1: sludge pump status prediction.

FIGURE 10. Scenario 2: comparison of sludge pump status prediction
with actual values.

FIGURE 11. Scenario 2: sludge pump status prediction.

integers, a 0.5 error margin has been fixed for a value
to be considered wrong in the last performance evaluation
approach.

Values within the specified error margin can be easily
extrapolated in order to compensate for the prediction error.
For example, predicting the value 3.3 instead of 3 is con-
sidered correct in this second approach, which evaluates the
ratio of correct predictions to total prediction points under
those conditions. The described approaches for evaluating
the performance were applied in both scenarios, the outcome
being part of Table 4, which highlights very good results in
terms of model accuracy.

TABLE 4. Accuracy of trained models – sludge pump status prediction.

2) CHEMICAL OXYGEN DEMAND PREDICTION AT WWTP
INLET
The second practical application targeted the prediction of
a quality indicator, CODcr. The same generic LSTM NN
model serves as starting point, and the application pursued a
second improvement objective, to optimize the legacy process
control.

The list of characteristics that were chosen from the avail-
able data to be used as input data for the training of the LSTM
model are enumerated in Table 5. All values weremeasured at
the inlet of the WWTP. The output data was CODcr. Similar
with the first application, a sample of 30 units, ensuring a
5 hours ahead prediction and 10 number of passes over the
database were fixed.

TABLE 5. List of characteristics used as input data for neural network
training – CODcr prediction at WWTP inlet.

The LSTM model for the CODcr prediction was trained
and then tested on data spanning in the time intervals
presented in Table 6.

The LSTM network parameters configuration was: learn-
ing rate 0.01, batch size 32, epochs 50 and loss functionMSE.

The result is shown in Figure 12 as a comparison between
prediction and actual result and in Figure 13 as prediction
only.
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TABLE 6. Time intervals from which data was extracted to train and test
the AI model – CODcr prediction at WWTP inlet.

FIGURE 12. Comparison of CODcr prediction with actual values.

FIGURE 13. CODcr prediction.

To compute the accuracy of the model, the coefficient
of determination (R2) was initially evaluated through the
r2_score function from Scikit-learn library. Also, the accu-
racy of the CODcr prediction was measured by using
the accuracy_score function from Scikit-learn library and
the standard MSE and RMSE techniques, the approaches
concluding with the results presented in Table 7.

TABLE 7. Accuracy of trained model – CODcr prediction at WWTP inlet.

IV. DISCUSSION AND CONCLUSION
Focusing on the equipment fault detection before occur-
rence, the accurate prediction of status obtained as a result
of the current research proved to be promising. Also, the
ability to forecast the water quality indicator to assure the
necessary time for process control reconfiguration, together
with the capability of the historian to react on the legacy
system by adjusting the anoxic and aerobic time intervals,
was considered successful. The 5 hours ahead prediction
exceeded the requirements of the water company experts,
offering the validation for tailoring the basic solution in other
scenarios. Therefore, transition towards a different objec-
tive (e.g. air blower faults) will be approached. Mainly,
the minimum number of defects within the stored data
that is necessary for training the generic LSTM proposed
network should be determined, and the dimension of the
OPC UA tags set used as input for the network should be
considered while following different objectives. The classic
issues of under fitting or over fitting the model must be
acknowledged.

Adapting and deploying the solution to work on lower
hardware and software resources represented also an impor-
tant target that was accomplished. Up to the authors knowl-
edge, there is no such low-cost decentralized proactive
historian as the one presented in the current paper.

Another reached objective was to include the possibility of
incremental trainingwithin the proactive historian. Regarding
the obtained results, there was no major difference from the
batch training which proved excellent results, but no detailed
and complete comparison was realized, this being a future
goal as mentioned in the research strategy.

Regarding the research strategy, the duration of step 3 was
consistent and had to be done for each pilot structure because
of the process and technological specificities. Some issues
were also impacting the results and needed corrections.
For example, local maintenance actions that were only par-
tially observable through local supervisory application tags
resulted in removing the functioning hours counting vari-
ables from the algorithm training, although there would have
been important in the decision making. The non-invasive
character of the historian is important and the goal for
the strategy was to function for any type of legacy local
solution.

In order to quantify uncertainty in LSTM’s predic-
tions, several approaches are suitable, among which Monte
Carlo Dropout, Bayesian inference or constructing prediction
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intervals through the Quantile Regressionmethod. The result-
ing uncertainty measures can help facility operators in
managing maintenance strategies by supporting informed
decision making processes. Also, high certainty predic-
tions could support the transition from reactive to pre-
ventive maintenance, with all the benefits of the latter
included.

The methodology of assessing the impact of the pro-
posed solution over the operational efficiency of the water
treatment facility could include comparative analysis in
which key performance indicators (KPIs) are compared
from before and after the implementation or even control
group comparison between different wastewater treatment
plants, simulation studies and maintenance logs analysis.
The most significantly affected performance indicators are:
mean time between failures, mean time to repair, system
uptime, equipment downtime, maintenance costs, energy
consumption.

In conclusion, the current research presented the gen-
eral overview of integrating predictive capabilities into a
software tool able not just to collect data, but to ana-
lyze it and proactively improve the monitored technical
system, in accordance with Industry 4.0 concepts. The
paper presented two generic LSTM models, which were
applied using real world industrial data. The solutions gen-
erated valuable results in terms of prediction accuracy,
both for predicting equipment status and process parameter
values.
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