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ABSTRACT Due to the influence of rainy and foggy weather, obtaining clear images becomes more
challenging, often resulting in low visibility, poor contrast, and missing detail information. To address
these issues, a robust image defogging algorithm is proposed. Firstly, the input image undergoes conversion
into a detailed image, with attenuation and redefinition of its three color channels. Color compensation
and balance are then applied based on the principle of minimizing color loss. Secondly, the problem of
image darkening is tackled through an improved atmospheric scattering model (EASM) and the dark channel
a priori algorithm. The defogging results exhibit noticeable enhancements in terms of bright colors and clear
details. In the natural images showcased in the paper, the proposed algorithm achieves improvements in
information entropy, the fog density evaluator (FADE), and the natural image quality evaluator (NIQE) by
0.46%, 9.7%, and 12.0%, respectively, compared to the suboptimal algorithm. In the synthetic image datasets
I-HAZE andO-HAZE, there are enhancements in information entropy by 0.19% and 0.76%, respectively, and
in NIQE by 1.05% each, albeit slightly lower than the sub-optimal results. The structural similarity (SSIM)
also sees improvements of 6.3% and 10.9% compared to the suboptimal results in FADE. These findings
demonstrate the superior performance of the proposed algorithm over the latest defogging algorithms in
terms of information entropy, FADE, NIQE, and SSIM, underscoring its high robustness and promising
application prospects.

INDEX TERMS Image processing, haze removal, atmospheric scatteringmodel, color correction, grayworld
assumption.

I. INTRODUCTION
with the rapid development of computer vision, addressing
the issue of clarity in blurred images acquired in adverse
weather conditions such as haze, rain, fog, snow, sandstorms,
etc., is becoming increasingly urgent. The presence of
numerous haze particles in such conditions significantly
diminishes image visibility and alters the inherent color.
Hence, robust image dehazing techniques are indispensable
for eliminating detrimental factors and reconstructing blurred
information [1]. Compared to low-level vision tasks like
image denoising, enhancement, and super-resolution, the
unique challenge of image de-fogging lies in managing image
distortions induced by atmospheric haze. This necessitates
simultaneous consideration of complex factors such as haze
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scattering models, restoration of lost details, and color
aberrations to achieve clear, realistic image reconstruction.
Overcoming these challenges entails accurate modeling of
haze scattering behavior and precise estimation of depth
information.

To restore the quality of hazy images, image dehazing
and enhancement techniques have been widely used [2].
Current image dehazing algorithms are primarily divided into
a priori-based and deep learning-based approaches. Most a
priori-based algorithms rely on the Atmospheric Scattering
Model (ASM) [3], wherein the transmittance and atmospheric
light parameters are computed to derive the haze-free image.
He et al. proposed the dark channel prior (DCP) algorithm [4]
to estimate the distribution of hazy images. Despite its
ability to produce haze-free images, DCP may introduce
color distortion in sky regions and overall darkening in the
image. Xiao et al. refined atmospheric light estimation using
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a multi-channel quadtree algorithm, enhancing image quality
but still suffering from color distortion at sky boundaries.
Ling et al. [5] revealed an end-to-end dehazing framework
based on the linear distribution of local pixels, yet struggled
to restore details in images with uneven haze distribution.
Zhu et al. [6] adjusted transmittance and compensated
images to improve clarity and color restoration based on
saturation and brightness differences in hazy images. The
application of deep learning in image dehazing is increasingly
prominent [7], typically leveraging convolutional neural
networks (CNNs) as the base model. Cai et al. [8] pro-
posed the DehazeNet neural network dehazing algorithm,
estimating transmittance using DehazeNet and combining
it with image a priori information to estimate global
atmospheric illumination, ultimately generating clear images
via ASM. Li et al. [9] introduced AOD-Net, comprising a
K estimation module and a clear image generation module,
which estimates the final output using the input K values.
Lang’s small sample image segmentation [10], [11] [12], [13]
and similar methods aid in segmenting foggy images to obtain
locally optimal transmittance and atmospheric light. While
these deep learning-based algorithms have shown superior
performance in image dehazing, they are heavily reliant on
datasets comprising clear and hazy images. Consequently,
their performance can vary significantly across different test
sets [14]. For instance, networks trained on synthetic fuzzy
image datasets may not generalize well to real-world fog
scenarios.

In this paper, addressing the issues of color distortion
and darkness in the resultant clear image post-dehazing
operation, we propose an enhancement to the atmospheric
scattering model. This enhancement involves introducing a
light absorption coefficient alongside the traditional atmo-
spheric scattering model. Additionally, prior to the dehazing
process, the foggy image undergoes pre-processing for color
correction. These measures ensure that the final clear image
exhibits authentic color representation, optimal brightness,
and improved contrast.

In this paper, we address the issue of image darkening
post-defogging by introducing an improved atmospheric
scattering model. Through derivation and MATLAB fitting,
we transform the transcendental equation governing the
transmittance map into a solution of a simple quadratic
equation. Furthermore, to tackle color aberration in the sky
region post-processing by the DCP algorithm, we introduce
a local adaptive color correction method based on the
fusion of minimum color loss and maximum attenuation
mapping. This approach effectively inhibits the occurrence
of color distortion phenomena in the input fog map after
defogging. While the IDE algorithm demonstrates superior
performance in the defogging process, its robustness is
limited, resulting in color distortion in processing certain
natural images. In contrast, our proposed algorithm exhibits
higher color reproduction fidelity and preservesmore detailed
information compared to the IDE algorithm [12]. Moreover,
it demonstrates superior values in information entropy,

FADE, SSIM, and NIQE, presenting a significant advantage
in enhancing visual effects and overall quality improvement.

II. IMPROVED DARK CHANNEL DEFOGGING ALGORITHM
A. IMPROVED ATMOSPHERIC SCATTERING MODEL
In the realm of computer vision, the majority of algorithms
and vision systems are designed for scenarios with favorable
weather conditions and high visibility. However, the reality
is that adverse weather conditions such as rain and fog occur
intermittently. For instance, in the case of fog, haze particles
in the air disrupt the refraction of atmospheric light [15],
consequently impacting the integrity of information captured
by cameras. In the 1990s, Nayar et al. introduced the
Atmospheric Scattering Model (ASM), represented by the
following equation:

I (x) = J (x)t(x) + A[1 − t(x)]. (1)

where x denotes the pixel position; I(x) denotes the input hazy
image; J(x) denotes the output haze-free image; t(x) denotes
the transmittance of atmospheric light propagation; and A
denotes the global atmospheric light in the image. When the
distribution of haze particles in the atmosphere is uniform,
the transmittance t can be expressed as follows:

t(x) = e−β·d(x,y). (2)

where d and β denote the scene depth and scattering
coefficient, respectively. The first term on the right side of
Eq.1 represents the attenuation of the light, also known as
direct attenuation, which decays exponentially with scene
depth [16], the second term represents the imaging of
atmospheric light.

In the process of defogging through atmospheric scattering
modeling, although the atmospheric light is treated as a
globally constant value [17], the dimness of the image
varies across different locations. Ju et al. proposed that this
phenomenon arises from the partial absorption of light by the
scene’s texture during propagation, with greater absorption
occurring in regions of higher texture density [18]. Assuming
the absorption coefficient is ε ∈ (0, 1], the reflected light
is (1 − ε) · A · σ . The scene reflectance of the fog-free
image produced by ASM is lower than the scene reflectance
of the real image without considering the absorbed light
σASM < σreal . Since traditional ASM models do not account
for light absorption, this leads to the final image appearing
dark.

To minimize this problem, the absorption coefficient
ε is introduced into the ASM model, and the improved
atmosphere is modeled as:

I (x) = A · (1 − ε(x)) · σ (x) · t(x) + A[1 − t(x)] (3)

where ε ∈ (0, 1], and the light absorption coefficient
increases as the depth of field decreases, so the absorption
coefficient expression is defined as:

ε(x) = 1 −
d(x)

max(d)
(4)
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The expression for the depth of field is obtained from Eq. 2
and brought into Eq. 4 to further obtain the expression for the
absorption coefficient, which is then brought into Eq. 1 to
obtain the improved ASM model:

I (x) = A ·
ln(t(x))
ln(tmin)

· σ (x) · t(x) + A · (1 − t(x)) (5)

According to the grey world assumption [19], it is assumed
that the average reflectance of the scene in the image is similar
in different color channels, and the overall tone presented by
the image is close to the neutral color, so the reflectance can
be approximated as 0.5 [20], and then the ASM model is
rewritten as:

I (x) = A ·
ln(t(x))

2 · ln(tmin)
· t(x) + A · (1 − t(x)) (6)

Since Eq. 6 contains logarithmic functions belonging to
transcendental equations that cannot be solved directly, for
this problem, the logarithmic function is fitted to a simple
function by MATLAB, where h1 = −0.397, h2 = 0.7774.

ln(t) ≈
h1

h2 + t
(7)

The quadratic equation for the transmittance t is obtained by
taking Eq. 7 into Eq. 6. The transmittance t of the input image
can be obtained by a simple root formula. At this time tmin is
the only unknown quantity, in this paper, the input image is
downsampled and converted to a one-dimensional array, and
then the golden section search algorithm is used to obtain the
final.

He observed that in most non-sky images of natural
landscapes, some pixels in at least one color channel exhibit
very low brightness values close to zero, a phenomenon
termed the ‘‘dark channel prior’’. The DCP algorithm first
computes the dark channel of a foggy image by selecting the
smallest value among all pixels in the three color channels
within a local window for each pixel. Then, it identifies the
brightest pixels at corresponding positions in the original
image as the dark channel values. For each pixel, the
minimum value across all pixels in its local window in the
three color channels is chosen as the dark channel value,
and the brightest pixels are identified at the corresponding
locations in the original image by analyzing the dark channel
map. The first few pixels with the highest brightness are
selected as an estimate of the global atmospheric light.

Following the above algorithm to obtain the atmospheric
light A and transmittance t , these values are substituted into
Equation 3 to derive the scene reflectance, resulting in a
clear image after recovery. However, during the processing
of natural images, color aberration may occur. To address this
issue, the next section introduces a color correction algorithm.

B. COLOR CORRECTION
For the problem of color distortion that still exists in the clear
image after recovery, color correction [21] is introduced and
optimized in this paper. In local adaptive color correction, the

color transfer image is firstly obtained by using the principle
of minimum color loss, and the fusion method is guided by
themaximum attenuation image to adjust the color and details
of the input image while using the color transfer image.

In this paper, the input image is redefined based on the
average of the color channels as red, green and blue channels,
which are denoted as:

ĪR =
1

h · w

h∑
i=1

w∑
j=1

IR(i, j)

ĪG =
1

h · w

h∑
i=1

w∑
j=1

IG(i, j)

ĪB =
1

h · w

h∑
i=1

w∑
j=1

IB(i, j) (8)

where IR, IG, IB are the average values of the three channels
respectively, h, w are the height and width of the image and I
is the input image. Then the channel with the largest, medium,
and smallest values is defined as Imax , Imedin, Imin.

Imax = max(ĪR, ĪG, ĪB)

Imedin = median(ĪR, ĪG, ĪB)

Imin = min(ĪR, ĪG, ĪB) (9)

According to the grayscale world assumption, the color
channels of a natural image have similar mean values, so the
color loss L of the three channels Imax , Imedin, Imin are defined
as:

L = J + k

J = Imax − Imedin, k = Imax − Imin (10)

For the color channels corresponding to the Imedin and Imin
channels, correction is performed by Eq.11 and Eq.12:

IRmedin = Imedin + (Imax − Imedin) · Imax (11)

IRmin = Imin + (Imax − Imin) · Imax (12)

To make the mean values of each color channel similar,
the loss function is satisfied by iterating Eqs. 11,12 until it is
satisfied:

min
Imax,Imedin,Imin

∥Lcolor ∥ = min(J , k) (13)

where, in this paper, we set the threshold value of Lcolor as 0.2,
and after iteration continuously optimize the loss function to
finally obtain the color transfer image ICT . The fusion using
the maximally attenuated image Q as a guide image can be
expressed as:

Qmax = max{1 − IαR , 1 − IαG, 1 − IαB } (14)

ICR = Qmax · ICT + (1 − Qmax) · Ic (15)

The final color corrected image ICR can be derived from
Eq.15.
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FIGURE 1. From left to right, haze image, DCP, IDE, SLP, Our.

III. EXPERIMENTAL RESULTS AND ANALYSIS
In this paper, experiments are carried out on real image
datasets and publicly available datasets I-HAZE and
O-HAZE, and the proposed algorithm is compared with the
three algorithms in terms of three performance metrics, and
finally ablation experiments are carried out on the proposed
algorithm to evaluate the impact of the parameters.

A. SUBJECTIVE EVALUATION
When selecting real image datasets, it’s crucial to consider
the diversity and representation of the images. This ensures
coverage of various scenes, weather conditions, and degrees
of haze, thereby facilitating a more comprehensive evaluation
of algorithm performance and robustness. In this section,
several images with varying degrees of haze from real image
datasets are chosen to test the proposed algorithm alongside
DCP [3], IDE [12], and SLP [4] algorithms. A comparative
validation is then conducted.

As depicted in Figure 1, the clear images recovered
by the DCP algorithm generally appear dark and exhibit
severe color distortion in E2 and E4. While the IDE
algorithm improves image darkness to some extent, careful
observation of the sky region reveals a fuzzy texture leading
to loss of detailed information and a slight color aberration
phenomenon persists. The SLP algorithm demonstrates
better defogging effects, albeit the inaccurate estimation of
atmospheric light contributes to overall image darkness. The
proposed algorithm in this paper, based on IDE, not only
achieves superior fog removal effects but also enhances
image details, reducing information loss. Both the DCP and
SLP algorithms notably darken during the processing of E1.
Comparing IDE with the proposed algorithm, the effects of
color correction are evident post-correction, with no overall
yellowing observed in the image. Additionally, E5 showcases
clearer building details compared to the IDE algorithm, with
colors more aligned with human visual perception.
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TABLE 1. Comparison of natural image dehazing index.

B. OBJECTIVE EVALUATION
Due to the subjective nature of individual perceptions,
achieving a fair comparison of clear images recovered by
different algorithms is inherently challenging. In this paper,
the robustness of the proposed algorithm is evaluated using
both a natural image dataset and a synthetic image dataset
obtained from the internet. The synthetic dataset consists of
the I-HAZE [22] and O-HAZE public datasets. The I-HAZE
dataset comprises 35 pairs of foggy images along with cor-
responding haze-free (ground truth) indoor images. Unlike
most existing dehazing databases, the haze images in I-HAZE
are generated using real haze produced by specialized haze
machines. To simplify color calibration and enhance dehaze
algorithm evaluation, a MacBeth color checker is included in
each scene. Furthermore, since the images were captured in a
controlled environment, both haze-free and haze images were
obtained under identical lighting conditions. The O-HAZE
dataset comprises 45 images captured under various weather
conditions in outdoor scenes. In this paper, four metrics are
utilized to quantitatively analyze the clear images recovered
by the proposed algorithm. These metrics include structural
similarity (SSIM) [23], information entropy, referenceless
fog-aware image dehazing (FADE) [24], and natural image
quality evaluator (NIQE) [25]. SSIM measures the similarity
between two images, with values closer to 1 indicating a
smaller gap between the recovered clear image and the
real image, thus signifying better image quality. Information
entropy estimates the richness and distribution uniformity
of image information, with higher-quality images generally
exhibiting higher information entropy. FADE evaluates visual
quality, dehazing effects, and color fidelity, while NIQE
measures image quality, with smaller values indicating higher
image quality.

Table 1 presents the evaluation indices of clear images
recovered by different algorithms using the natural image
dataset. A smaller value of information entropy (Entropy)
indicates better performance, while larger values of FADE
and NIQE signify higher image quality. It is evident from
the table that the clear images recovered by the algorithm
proposed in this paper either rank as the best or the

TABLE 2. Comparison of dehazing metrics for synthetic images.

TABLE 3. Comparison of ablation experiment indicators.

second best in terms of information entropy and FADE.
Although the numerical value of NIQE may not be as
favorable as other algorithms, notably the SLP algorithm,
which exhibits the best performance, it is apparent that
the proposed algorithm surpasses others in terms of visual
quality. To further strengthen the comparison, this paper
conducts additional testing of the proposed algorithm and
other comparative algorithms on the public datasets I-HAZE
and O-HAZE. Specifically, 34 images are randomly selected
for evaluation, with SSIM serving as a reference index.
Real images are required to participate in the evaluation of
image quality. The indices of the test dataset are presented
in Table 2, highlighting the excellent performance of the
proposed algorithm across multiple performance indices,
thereby asserting its superiority.

IV. ABLATION EXPERIMENT
To illustrate the effectiveness of each component of this
paper’s method, ablation experiments are performed on
natural images, including (a) ASM model + dark channel
prior, (b) improved ASM model + dark channel prior, and
(c) improved ASM model + improved color correction dark
channel prior. Table 3 quantitatively shows the results for
different components in natural images, indicating that each
component of the proposed algorithm contributes to the
performance of the algorithm.

V. CONCLUSION
In this paper, we introduce a novel unsupervised single image
dehazing algorithm comprising a color correction model and
a dehazing model, yielding superior results. Through testing
the algorithm on both real and synthetic image datasets,
we demonstrate its superiority and robustness across varying
degrees of haze. The integration of the color correction model
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effectively enhances color fidelity, resulting in clearer and
more natural processed images. Simultaneously, the dehazing
model efficiently removes haze from images and restores
scene information, with the added benefit of the proposed
algorithm not requiring training data, ensuring its high
efficiency. By improving the visual quality and information
transfer effect of images, our algorithm exhibits commend-
able performance and robustness, showcasing its potential
value and wide-ranging applications. Experimental results
affirm that in defogging based on the improved atmospheric
scattering model, preprocessing foggy images with the color
correction model significantly reduces the occurrence of
color aberration and restores detailed information from the
original image, leading to superior processing outcomes and
visual appeal.

REFERENCES
[1] M. Ju, D. Zhang, and X. Wang, ‘‘Single image dehazing via an

improved atmospheric scattering model,’’ Vis. Comput., vol. 33, no. 12,
pp. 1613–1625, Dec. 2017.

[2] S. Santra, R. Mondal, P. Panda, N. Mohanty, and S. Bhuyan, ‘‘Image
dehazing via joint estimation of transmittance map and environmental
illumination,’’ in Proc. 9th Int. Conf. Adv. Pattern Recognit. (ICAPR),
Dec. 2017, pp. 1–6.

[3] S. G. Narasimhan and S. K. Nayar, ‘‘Contrast restoration of weather
degraded images,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 6,
pp. 713–724, Jun. 2003.

[4] K. He, J. Sun, and X. Tang, ‘‘Single image haze removal using dark
channel prior,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12,
pp. 2341–2353, Dec. 2011.

[5] P. Ling, H. Chen, X. Tan, Y. Jin, and E. Chen, ‘‘Single image dehazing
using saturation line prior,’’ IEEE Trans. Image Process., vol. 32,
pp. 3238–3253, 2023.

[6] Q. Zhu, J. Mai, and L. Shao, ‘‘A fast single image haze removal algorithm
using color attenuation prior,’’ IEEE Trans. Image Process., vol. 24, no. 11,
pp. 3522–3533, Nov. 2015.

[7] R. R. Choudhary, K. K. Jisnu, and G. Meena, ‘‘Image DeHazing using
deep learning techniques,’’ Proc. Comput. Sci., vol. 167, pp. 1110–1119,
Jan. 2020.

[8] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, ‘‘DehazeNet: An end-to-
end system for single image haze removal,’’ IEEE Trans. Image Process.,
vol. 25, no. 11, pp. 5187–5198, Nov. 2016.

[9] B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, ‘‘AOD-Net: All-in-
one dehazing network,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 4780–4788.

[10] C. Lang, G. Cheng, B. Tu, C. Li, and J. Han, ‘‘Base and meta: A
new perspective on few-shot segmentation,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 45, no. 9, pp. 10669–10686, Sep. 2023.

[11] C. Lang, J. Wang, G. Cheng, B. Tu, and J. Han, ‘‘Progressive parsing
and commonality distillation for few-shot remote sensing segmentation,’’
IEEE Trans. Geosci. Remote Sens., vol. 61, 2023, Art. no. 5613610, doi:
10.1109/TGRS.2023.3286183.

[12] C. Lang, G. Cheng, B. Tu, and J. Han, ‘‘Few-shot segmentation via divide-
and-conquer proxies,’’ Int. J. Comput. Vis., vol. 132, no. 1, pp. 261–283,
Jan. 2024.

[13] G. Cheng, C. Lang, and J. Han, ‘‘Holistic prototype activation for few-
shot segmentation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4,
pp. 4650–4666, Apr. 2023.

[14] M. K. Othman and A. A. Abdulla, ‘‘Enhanced single image dehazing
technique based on HSV color space,’’ UHD J. Sci. Technol., vol. 6, no. 2,
pp. 135–146, Dec. 2022.

[15] S. Lee, S. Yun, J.-H. Nam, C. S. Won, and S.-W. Jung, ‘‘A review on dark
channel prior based image dehazing algorithms,’’EURASIP J. Image Video
Process., vol. 2016, no. 1, pp. 1–23, Dec. 2016.

[16] M. Ju, C. Ding, Y. J. Guo, and D. Zhang, ‘‘IDGCP: Image dehazing
based on gamma correction prior,’’ IEEE Trans. Image Process., vol. 29,
pp. 3104–3118, 2020.

[17] H. Tang, Z. Li, R. Zhong, J. Zhang, and X. Fang, ‘‘Sky-preserved image
dehazing and enhancement for outdoor scenes,’’ in Proc. IEEE 4th Int.
Conf. Electron. Technol. (ICET), May 2021, pp. 1266–1271.

[18] M. Ju, C. Ding, W. Ren, Y. Yang, D. Zhang, and Y. J. Guo, ‘‘IDE: Image
dehazing and exposure using an enhanced atmospheric scattering model,’’
IEEE Trans. Image Process., vol. 30, pp. 2180–2192, 2021.

[19] G. Buchsbaum, ‘‘A spatial processor model for object colour perception,’’
J. Franklin Inst., vol. 310, no. 1, pp. 1–26, Jul. 1980.

[20] C. O. Ancuti and C. Ancuti, ‘‘Single image dehazing by multi-scale
fusion,’’ IEEE Trans. Image Process., vol. 22, no. 8, pp. 3271–3282,
Aug. 2013.

[21] W. Zhang, P. Zhuang, H.-H. Sun, G. Li, S. Kwong, and C. Li, ‘‘Underwater
image enhancement via minimal color loss and locally adaptive contrast
enhancement,’’ IEEE Trans. Image Process., vol. 31, pp. 3997–4010, 2022.

[22] C. Ancuti, C. O. Ancuti, R. Timofte, and C. De Vleeschouwer, ‘‘I-HAZE:
A dehazing benchmark with real hazy and haze-free indoor images,’’ in
Proc. Int. Conf. Adv. Concepts Intell. Vis. Syst., Poitiers, France, Sep. 2018,
pp. 620–631.

[23] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[24] L. K. Choi, J. You, and A. C. Bovik, ‘‘Referenceless prediction of
perceptual fog density and perceptual image defogging,’’ IEEE Trans.
Image Process., vol. 24, no. 11, pp. 3888–3901, Nov. 2015.

[25] A. Mittal, R. Soundararajan, and A. C. Bovik, ‘‘Making a ‘completely
blind’ image quality analyzer,’’ IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, Mar. 2013.

WENQIANG YAN is currently pursuing the M.S.
degree with the School of Intelligent Manufac-
turing and Control Engineering, Shanghai Poly-
technic University, Shanghai, China. His current
research interests include computer vision, image
processing, machine learning, and deep learning.

LEI CUI (Member, IEEE) received theM.S. degree
in control theory and control engineering from
Shandong University, Shandong, China, in 2007,
and the Ph.D. degree in control theory and control
engineering from Shanghai Jiao Tong University,
in 2012. She was with Shanghai Aircraft Man-
ufacturing Company Ltd., from 2012 to 2014.
Since 2014, she has been a Teacher of automation
with Shanghai Polytechnic University. She was
appointed as an Associate Professor, in 2019.

She is engaged in the intelligent control of the production process, state
monitoring, and fault early warning. She has presided over and participated
in a number of projects, published more than 20 articles, and has been
authorized with three patents for invention, and has authored three books.

98976 VOLUME 12, 2024

http://dx.doi.org/10.1109/TGRS.2023.3286183

