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ABSTRACT Medical text classification organizes medical documents into categories to streamline
information retrieval and support clinical decision-making. Traditional machine learning techniques,
including pre-trained language models, are effective but require extensive domain-specific training data,
often underperform across languages, and are costly and complex to deploy on a large scale. In this study,
we employed four datasets: Clinical trials on cancer, encompassing 6 million statements from interventional
cancer clinical trial protocols; the Illness-dataset, consisting of 22,660 categorized tweets from 2018 and
2019; the Multi-View active learning for short medical text classification in user-generated data, an extended
version of the Illness-dataset including 22,660 documents from the same period; and the Symptom2Disease
dataset, containing 1,200 data points used to predict diseases based on symptom descriptions. This study
uses ChatGPT, particularly its ChatGPT-3.5 and ChatGPT-4 versions, as a viable alternative for classifying
medical texts. We investigate essential aspects, including the construction of prompts, the parsing of
responses, and the various strategic use of GPTmodels to optimize outcomes. Through comparative analysis
with established methods like pre-trained language model fine-tuning and prompt-tuning, our findings
indicate that ChatGPT addresses these challenges efficiently and matches the performance of traditional
methods. Furthermore, the enhanced capabilities of the proposedMediGPT (Medical Generative Pre-Trained
Transformers) have led to performance improvements of 14.3%, 22.3%, 13.6%, and 13.7% across the
datasets, highlighting its adaptability and robustness in diverse medical text scenarios without the need for
specialized domain adjustments. This research underscores the capability of ChatGPT to facilitate a versatile
AI framework in medical text processing, which could revolutionize medical informatics practices.

INDEX TERMS Medical text, natural language processing, ChatGPT, classification, large language model.

I. INTRODUCTION
The exponential growth of digital medical data has created
an urgent need for efficient information management and
retrieval systems. Large Language Models (LLMs) and
Natural Language Processing (NLP) play a crucial role
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in medical text classification by enabling the automated
categorization of medical documents. LLMs, such as
ChatGPT-4, leverage vast amounts of data to understand
and generate human-like text, while NLP techniques pro-
cess and analyze this text to identify relevant medical
information.

Given the vast amount of unstructured medical content
available online, including electronic health records and
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research publications, accurate classification and organiza-
tion of this data are crucial for healthcare professionals,
researchers, and patients. Artificial intelligence, specifically
medical text classification, has emerged as a powerful
tool to automate categorizing and indexing this wealth of
information.

Text classification has long been a pivotal technique in
information retrieval and data mining, demonstrating its
value across diverse sectors such as healthcare diagnostics,
targeted marketing, entertainment, and data filtering. Recent
advancements in data mining and NLP have sparked global
research interest, leading to sophisticated automated text
classification systems. These systems have revolutionized
document categorization, enabling efficient organization
and analysis of vast textual content from various sources,
including substantial volumes of user-generated data from
social media platforms [1].

The processing of medical documents has utilized Deep
Learning(DL) methods, particularly pre-trained language
models(PLMs) such as BERT (Bidirectional Encoder Rep-
resentations from Transformers), BART (Bidirectional and
Auto-Regressive Transformer), and T5 (Text-to-Text Trans-
fer Transformer) [2], [3], [4]. These models have effectively
predicted disease trends, evaluated patient sentiments, and
extracted information from medical documents. However,
deploying these PLMs poses significant challenges, including
the scarcity of high-quality training data and the need for
substantial computational resources, like GPUs and TPUs,
due to the large size of the models [5].
Despite their potential, PLMs often need help with fine-

tuning, development, and deployment due to the scarcity
and low quality of training data, which can degrade
model performance [6], [7]. Obtaining high-quality annotated
datasets requires significant time and labor investment.
Even with sufficient data, supervised learning models often
struggle with generalization and maintaining robustness
across diverse scenarios, including cross-linguistic applica-
tions. Additionally, the extensive parameter count in PLMs
complicates deployment and necessitates high-performance
computing resources.

These challenges highlight the limitations of conventional
PLM-based methods in medical text classification, under-
scoring their shortcomings in achieving broader goals of
General-Purpose Artificial Intelligence. Recently, innova-
tions like OpenAI’s ChatGPT have led to breakthroughs in
NLP, recognized for their ability to deliver detailed responses
to complex inquiries and perform tasks like multilingual
translation, poetry creation, and code generation [5], [8].
The comprehensive language understanding and generation
capabilities of ChatGPT have also been leveraged in inter-
disciplinary research, including radiology interpretation and
sentiment analysis in healthcare settings [9], [10].
Given the capabilities of ChatGPT, it is compelling to

explore its potential to enhance applications in digital health-
care. This study examines how ChatGPT can be strategically

employed in medical text classification, assessing the
capability of ChatGPT-3.5 and its extension ChatGPT-4
in classifying medical-related documents. According to
ChatGPT-3.5, it can contribute tomedical classification tasks,
including disease identification, treatment recommendation,
and medication classification, among other applications in
Figure 1. Accompanying the proposed MediGPT framework,
this paper introduces a distinctive paradigm that sets it apart
from existing methodologies. By conducting a series of
comparative experiments involving several mainstream text
classification models, we systematically assess and showcase
the superior performance of ChatGPT in these tasks. This
marks a notable departure from conventional approaches.

In our experiments, we primarily evaluate the efficacy
of ChatGPT-3.5 [11] and its extension, ChatGPT-4 [9],
in classifying medical-related documents. Alongside the
proposed MediGPT framework, this paper introduces a
unique paradigm. We systematically assess and demon-
strate the superior performance of ChatGPT in medical
text classification tasks through a series of comparative
experiments involving various mainstream text classifica-
tion models, including traditional fine-tuned PLMs [1]
and prompt-learning based on auto-regressive generative
PLMs [12], [13]. This represents a significant departure from
existing methodologies.

Our comprehensive literature review on ChatGPT-based
question answering (QA) [14] and the prompt learning
scheme [13] indicates that most language understanding tasks
using ChatGPT can be interpreted as a novel form of prompt
learning based on PLMs. This paper highlights the significant
similarities and distinctions between the ChatGPT-based
NLP paradigm and traditional methods through detailed
examples and illustrations, as depicted in Figure 2.

Figure 2 offers a paradigmatic contrast between NLP solu-
tions powered by ChatGPT and current methods of prompt
learning, with medical data classification as an illustrative
case. Part (a) of the diagram delineates the prototype for
medical data classification, visually capturing the initial
setup for applying these models to real-world medical data.
Part (b) outlines the typical workflow for approaches based on
ChatGPT and explains howChatGPT processes and classifies
medical texts. On the other hand, part (c) compares this
workflow with masked language model (LM) prompt-tuning
methods, showing the traditional approach and its differences
in handling the same classification tasks.

Through this comprehensive exploration of ChatGPT’s
involvement in medical text classification, we aim to deepen
our grasp of its capabilities and methodically evaluate its
effectiveness using empirical evidence. By showcasing how
ChatGPT can contribute to various facets of medical manage-
ment, this research underscores the potential of ChatGPT to
revolutionize healthcare practices, thereby fostering a more
efficient and sustainable digital healthcare infrastructure.

The key contributions of this research are outlined as
follows:
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FIGURE 1. Recommendations from ChatGPT to improve medical governance (Query Date: 2024.4.14).

FIGURE 2. Comparing ChatGPT-based NLP solutions with established prompt learning approaches: A case study in medical text classification Part (a): Task
prototype Part (b): Standard workflow of ChatGPT-based approaches Part (c): Standard workflow of masked language model prompt-tuning methods.

• We initiated a study on medical text classification
motivated by the capabilities of advanced PLMs like
ChatGPT. This led to MediGPT, a novel model powered
by ChatGPT’s architecture tailored for the medical
domain.

• In comparative evaluations, MediGPT outperformed
conventional approaches, showcasing enhanced seman-
tic comprehension and sophisticated reasoning skills in
particular medical contexts.

• Our few-shot, one-shot, and zero-shot learning tri-
als highlighted MediGPT’s ability to operate without
needing supervised training data, manual labeling,
or extensive medical expertise, showcasing its potential
as a scalable solution in healthcare AI.

• As a cost-effective alternative to complex PLM frame-
works, MediGPT offers a viable approach for integrat-
ing Artificial Intelligence technologies in healthcare
settings.

The organization of this paper is as follows: Section II dives
into a review of recent studies relevant to the classification
of medical data. In Section III, provide detailed description
of the MediGPT framework, explaining its algorithmic
foundations. Sections IV offer an extensive analysis of
experimental comparisons between MediGPT and other
prevalent methods based on PLMs, including a series of
ablation studies. Finally, Section V summarizes the findings
of this research study.

II. RELATED WORK
This section explores pertinent literature concerning
cross-linguistic medical text classification, recent break-
throughs with ChatGPT and its variants, and practi-
cal strategies employing fine-tuning based on PLMs
and prompt-tuning to address classification challenges
effectively.
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A. CLASSIFICATION OF MEDICAL TEXT
Over the past decade, conventional machine learning models,
including decision trees Convolutional Neural Networks
(CNNs) [15], Long Short-TermMemory Networks (LSTMs),
and Gated Recurrent Units (GRUs), have played pivotal
roles in the classification of medical documents [16]. For
instance, prior research has successfully employed Support
Vector Machines (SVMs) and decision tree classifiers
for regional medical data classification [17]. Additionally,
Bi-LSTM models with attention mechanisms have been
utilized to enhance semantic feature extraction inmedical text
classification [18]. The emergence of large-scale models like
BERT [2] and ChatGPT [16] has revolutionized this field,
often surpassing traditional methods by effectively handling
complex scenarios [19]. For example, recent work has
applied BERT to extract relevant information from unlabeled
medical news, thereby improving corpus construction and
classification accuracy [1].

B. CONVENTIONAL MACHINE LEARNING TECHNIQUES,
PLM-BASED FINE-TUNING
Traditional machine-learning methods were once the stan-
dard for medical text processing. These methods often strug-
gled to understand the complex nature of natural language,
especially in detailed contexts [20]. Pre-trained language
models (PLMs) have changed the field of NLP by con-
sistently outperforming older methods through fine-tuning,
which involves adjusting additional network parameters and
focusing on specific tasks.

C. CHATGPT
Deep learning has significantly impacted various sectors,
enhancing productivity and improving medical diagnostics.
ChatGPT, particularly in its latest iterations like ChatGPT-3.5
[8] and ChatGPT-4, has transformed conversational AI,
demonstrating exceptional medical data processing capabil-
ities. These advancements highlight the ongoing evolution
of AI technologies and underscore the critical need for
responsible AI practices to maximize benefits and mitigate
risks [8]. Millions of users utilizing language models
have led to a diverse array of applications, revealing the
capabilities of ChatGPT. Research findings indicate that
ChatGPT performs exceptionally well in translating multiple
languages, especially those with abundant resources [21].

III. MEDIGPT: CHATGPT-BASED MEDICAL TEXT
CLASSIFICATION
A. METHODOLOGY OVERVIEW
This paper presents MediGPT, a pioneering study investigat-
ing the application of ChatGPT for medical text classifica-
tion. This study is among the first to systematically adapt
ChatGPT technology for healthcare applications, employing
a systematic experimental analysis to explore its viability.
There was a noticeable absence of systematic research
utilizing ChatGPT for medical text classification before

MediGP. To bridge this gap, this study outlines a structured
workflow for implementingChatGPT in this context, drawing
heavily from the latest scholarly discussions.

The workflow of MediGPT illustrated in Figure 3 employs
various prompting strategies to formulate prompts. These
prompts are combined with the original sentence to create
the ChatGPT question [32] ChatGPT generates a response
based on these inputs. Answer alignment strategies are then
implemented to categorize the response into predefined cate-
gories, ensuring the reactions are relevant and appropriately
classified. The deployment of ChatGPT in medical text
classification involves three main phases:

• Prompt construction: Developing specialized prompts
for medical data to guide ChatGPT in generating
responses.

• Q&A Inference: Processing input prompts and
generating responses using ChatGPT as a closed system.

• Answer normalization: Translating ChatGPT’s
responses into categorized data based on a predefined
medical taxonomy.

While the Q&A process with ChatGPT follows a fixed pro-
cedure, optimizing prompt construction and response align-
ment offers significant improvement opportunities.MediGPT
operates as a pipeline where prompt quality, ChatGPT ver-
sion, and response mapping strategies collectively enhance
classification effectiveness.

This structured approach optimizes ChatGPT’s perfor-
mance in medical text classification by meticulously analyz-
ing and refining each phase. MediGPT aims to establish a
robust framework tailored to the unique challenges of this
domain.

B. PROMPT QUESTION CONSTRUCTION
Prompt engineering is acknowledged as a complex skill
requiring expertise and iterative refinement [13]. To harness
ChatGPT effectively for sentence classification, we con-
ducted thorough research to optimize prompt construc-
tion [7]. Figure 3 illustrates the strategies employed in this
study including:

1) Manual prompt definition,
2) Prompt generation triggered by ChatGPT responses,
3) Prompts derived from zero-shot similarity comparisons,
4) Chain-of-Thought (CoT) prompting.
These strategies, detailed in subsequent sections, aim to

enhance ChatGPT’s input to produce accurate and relevant
responses for medical classification tasks.

In our study, we have developed a set of manually
designed prompts, detailed in Table 1, to evaluateMediGPT’s
effectiveness in classifying medical texts across different
languages. These prompts are integral to our methodology
for assessing MediGPT’s ability to accurately interpret
and categorize medical statements into specific medical
specialties or categories. Each prompt is structured to
provide MediGPT with a clear objective in determining the
most suitable medical category for a given sentence. These
prompts are designed to simulate real-world clinical queries
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FIGURE 3. The workflow of proposed MediGPT method.

TABLE 1. Manually devised prompts for MediGPT.

and emphasize precision and contextual understanding. The
structure of each prompt includes the following:

1) Direct instruction to classify or analyze the sentence,
ensuring clarity of the task.

2) Placeholder for the sentence ([SENTENCE]), accom-
modating the insertion of the medical text to be
classified.

3) Options for potential categories ([CATEGORIES]),
guiding MediGPT towards the expected type of
response.

4) Response section ([Res]), prompting MediGPT to
provide its classification results.

This setup adheres to established communication prac-
tices in medical consultations while incorporating specific
adjustments to optimize MediGPT’s performance:

1) Clarity and directness: Each prompt explicitly defines
the task, reducing ambiguity and focusing MediGPT’s
response mechanism on classification rather than
open-ended discussion.

2) Contextual relevance: By embedding medical context
directly into the prompts, we ensure that MediGPT’s
responses are evaluated within the appropriate clinical
context, enhancing the relevance and applicability of its
classifications.

3) Simplicity in design: The prompts are designed
to straightforwardly evaluate MediGPT’s ability to
classify texts under standardized conditions. This
simplicity also aids in reducing the cognitive load on
the model, focusing its capabilities on the classification
task.

Our evaluation approach employs a sampling method
to assess the effectiveness of these prompts. We select a
fixed number of samples from a cross-linguistic medical
text dataset and test the accuracy of each prompt. This
systematic evaluation helps identify the most effective
prompt configurations, ensuring that MediGPT is tuned to
provide the most accurate and clinically relevant responses.
A critical refinement in our approach is guiding MediGPT
to focus exclusively on category classification, minimiz-
ing extraneous information. This guidance is essential to
maintain clarity and precision in classification outcomes.
Through rigorous testing of these prompts, we aim to enhance
MediGPT’s reliability as a tool for cross-linguistic medical
text classification. This advancement aims to assist medical
professionals in swiftly and accurately categorizing clinical
statements.
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FIGURE 4. Illustration of the MediGPT framework using a typical example from the Medical Symptom dataset. (a) Various strategies are employed to
construct prompts, integrating them with original sentences to form ChatGPT questions. (b) ChatGPT generates responses based on these inputs.
(c) Strategies for answer alignment categorize responses into predefined categories.

C. MEDIGPT TRIGGERED PROMPTS
Based on prior studies [22], it was hypothesized that
MediGPT could effectively generate high-quality prompt
templates. Consequently, we utilized MediGPT to pro-
pose recommendations for template creation. Previous
research demonstrated that task-specific prompts could
be efficiently generated by directly engaging with human
input. For instance, they recommended utilizing the
query:

• Provide five succinct prompts or templates to address the
[x] task.

Here, [x] represents different types of tasks. Our experiments
confirmed this method’s effectiveness across various settings.

MediGPT provided several potential prompts that were
semantically consistent and exhibited unique stylistic varia-
tions. As shown in Figure 5; we asked MediGPT a similar
question:

• Provide five succinct prompts or templates that can
address the task of medical text classification.

We used a sampling-based evaluation method to select
the most effective prompt from the generated set for use in
subsequent comparative experiments. The selected prompt
for medical text classification is:

• Classify the medical text: [SENT] based on its primary
condition [CATE].

This method of usingMediGPT-triggered prompts helps us
understand how automated systems can improve task-specific

templates in medical text classification. The insights gained
are crucial for refining the interaction between human
operators and AI systems in clinical informatics. Building on
previous studies in few-shot and zero-shot learning using a
meta-learning framework [23], we developed new prompting
strategies called similarity-driven prompting. Traditional
few-shot object classification often uses examples and
classifiers from similar categories using distance measures
like cosine similarity and squared Euclidean distance. In a
few-shot learning scenario for image classification, an image
to be categorized is presented alongside a representative
image from each category. These images are embedded
into a shared feature space using Siamese, prototypical, and
matching networks. A similarity threshold is then set to
help classify the image by comparing it to the representative
images from different categories. Adapting this approach to
medical text classification, our Zero Shot similarity-based
prompting strategy involves:

1) Embedding generation: Medical texts are embedded
into a shared low-dimensional space using language
models fine-tuned for medical contexts.

2) Template creation: We generate initial prompt tem-
plates that capture the essence of potential medical text
queries.

3) Similarity assessment: Using the embedded represen-
tations, we evaluate the semantic similarity between
the prompt templates and an extensive repository
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FIGURE 5. Templates generated upon requests to ChatGPT (Version: ChatGPT-3.5, Date of Query: April 26, 2024).

of unlabeled medical texts using cosine similarity
measures.

4) Prompt refinement: Based on the similarity scores,
prompts are refined to more accurately match the
nuances of the medical texts they are designed to
classify.

This methodology allows us to use Zero-Shot learning
to generate effective and contextually appropriate prompts
without needing labeled examples for every possible medical
scenario. This approach aims to enhance MediGPT’s ability
to process and classify diverse medical texts with high
accuracy and minimal supervision.

D. QA-BASED SIMILARITY EVALUATION IN MEDICAL TEXT
CLASSIFICATIONS
We present a novel method using the ChatGPT interface to
measure text similarity, which is essential for medical text
classification. This approach implements two distinct QA
modes for evaluating sentence similarity:

• Direct End-to-End QA-Based Classification:
This method employs direct questions to classify texts.
For example:
– Given sentence S: [SENT1], which option, A:

[SENT2], B: [SENT3], etc., do you think is most
similar to sentence S? Please chooseA, B, etc., or C.

• This approach allows for quick classification based on a
single QA interaction, aligning the target sentence with
the most similar category, as shown in (Figure 6).

• Progressive Comparison QA-Based Classification:
This approach systematically compares pairs of sen-
tences, improving accuracy through incremental assess-
ments. Inspired by the bubble sort method. The prompt
used is:
– Given sentence S: [SENT0], which of the following

sentences, A: [SENT1] or B: [SENT2], do you think
is more similar to sentence S? Please respond with
A or B.

• This method is particularly effective for complex
datasets like medical texts, where subtle differences
between categories are crucial.

These methods leverage QA interactions to enhance the
classification of medical texts by focusing on sentence
similarity.

E. CHAIN-OF-THOUGHT TRIGGERED PROMPTS
We adopt a Chain-of-Thought (CoT) prompting strategy
where ChatGPT provides final classification outcomes
accompanied by detailed reasoning. The CoT approach
initiates with a directive that extends the original QA prompt:

• Explain the semantics and keywords, elucidating the
corresponding classification rationale.

Figures 6, 7, and 8 demonstrate these methods, high-
lighting progressive similarity measurement and the efficacy
of CoT strategies in text classification. In practice, both
manually crafted and ChatGPT-triggered prompts serve as
foundational references. Our research indicates that while
CoT-triggered prompts excel in datasets with numerous
classification categories, their effectiveness may diminish
in more straightforward datasets with fewer categories.
This investigation into QA-based similarity assessment and
CoT-triggered prompts underscores the intricacies of prompt
design in medical text classification, emphasizing how
dataset characteristics significantly influence the efficacy of
prompting strategies.

F. CHATGPT Q&A INFERENCE
ChatGPT is built on the Generative Pre-trained Transformer
architecture, specifically using ChatGPT-3.5 for this study.
This architecture uses a transformer framework with parallel
data processing and multi-headed attention mechanisms.
These features help the model handle and generate language
sequences based on the probabilities of different continua-
tions. Using an autoregressive inference process, ChatGPT
creates text by progressively building responses from a given
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FIGURE 6. Illustrating QA-Based prompting for text classification through end-to-end direct similarity measurement.

FIGURE 7. Advancing text classification with progressive similarity
measurement: A QA-Based prompting approach.

prompt and selecting subsequent words using a probabilistic
model. Trained on extensive text corpora, the model learns
complex patterns and dependencies in language, allowing
strong performance over long sequences.

ChatGPT excels in nuanced language comprehension and
generation capabilities, particularly its 175 billion parameter
configuration (ChatGPT-3.5). Further enhancements are
achieved through supervised fine-tuning and reinforcement
learning mechanisms that refine responses based on user
interactions. The underlying mathematical foundation for
the question-answering process can be encapsulated in the
following formula:

p(y|x) =

T∏
t=1

p(yt |y1, . . . , yt−1, x) (1)

where
∏

denotes the product of probabilities, yt is the token
at time t , and T is the sequence length. This formulation
ensures that each generated token considers the contextual
information provided by preceding tokens and the input
prompt. Our investigation posits ChatGPT as a potent Zero-
Shot (ZS) text classification tool, especially in interactive
contexts. Each user query initiates a new conversational
context, ensuring responses remain consistent and contex-
tually independent from prior interactions. We have also
integrated ChatGPT-4 into our evaluations [8], using it on
three proposed datasets as shown in Figure 9. The figure
provides an example of prompt input and its response.Which,
as the latest iteration by OpenAI, demonstrated enhanced

TABLE 2. Medical text classification datasets categories for MediGPT.

capabilities in handling complex semantic classifications.
These findings will be further elaborated in the evaluation
section of this paper.

G. DATASET OVERVIEW
In exploring ChatGPT’s capabilities in medical text classifi-
cation, we employed four extensive datasets encompassing
diverse medical domains and languages. These datasets
form the empirical foundation for rigorously evaluating the
robustness and adaptability of MediGPT. Table 2 summarizes
the categories of our selected datasets, outlined as follows:

1) Clinical trials on cancer: This dataset is drawn
from 18 years of interventional cancer clinical
trial protocols to aid in understanding eligibility
criteria. It comprises 6 million free-text statements
annotated for eligibility in clinical trials, enabling
nuanced semantic analysis and drug-treatment
associations. 1

2) Illness dataset: This dataset is extended from the
one introduced in the EMNLPFindings 2022 paper
by Karisani. It encompasses 22,660 tweets from
2018 and 2019, categorized into Alzheimer’s,
Parkinson’s, Cancer, and Diabetes domains. A pos-
itive label denotes a tweet mentioning a diagnosed
individual. 2

3) Extended illness dataset: This dataset includes
22,660 biomedical documents collected between
2018 and 2019, covering Alzheimer’s, Parkin-
son’s, Cancer, and Diabetes. It provides valuable
resources for research in medical text classifi-
cation with user-generated data, distinguishing

1Dataset available at https://www.kaggle.com/datasets/auriml/eligibility
forcancerclinicaltrials.

2https://github.com/p-karisani/illness-dataset/blob/main/data.txt
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FIGURE 8. The CoT prompting strategy: Leveraging simple and direct QA approach. (Model: ChatGPT-3.5, Query Date: 2024.5.1).

between negative and positive instances (mentions
of diagnosed individuals). 3

4) Symptom2Disease dataset: Comprising 1200 data
points, this dataset is essential for develop-
ing models that predict diseases from symptom
descriptions in natural language. It encompasses
24 diseases, each described by 50 symptom
profiles, facilitating early diagnosis and remote
consultation application 4

Incorporating these diverse datasets, our evaluations of
MediGPT are comprehensive, covering various textual for-
mats and medical specialties. The model demonstrates its
adaptability to different document lengths, complexities, and
medical terminologies across these datasets, showcasing its
advanced linguistic and domain-specific understanding.

H. EXPERIMENTAL SETUP
Conventional ML methods and LLMs were constructed
using an experimental framework with libraries such as
Sci-kit-learn, Pytorch, TensorFlow, and additional language
modeling tools. The programming language selected for these
implementations was Python 3.10. The testing environment
for these experiments was a computer fitted with an Intel(R)
Core(TM) i5-10300H CPU, featuring 32 GB of RAM and a
processor speed of 2.50 GHz.

3https://www.kaggle.com/datasets/falgunipatel19/biomedical-text-
publication-classification

4https://www.kaggle.com/datasets/niyarrbarman/symptom2disease

I. BASELINES
In contemporary text classification research, the field is char-
acterized by five primary approaches to trainingmodels. Each
approach offers distinct methods to tackle the challenges of
understanding and processing natural language.

• Traditional ML Models: This approach includes Logis-
tics Regression and Random Forest methods. These
techniques rely on manually crafted features to distin-
guish between different classes of text data, providing
a baseline for understanding ML applications in text
classification [24].

• DL Models: Dominant architectures like CNN and
LSTM represent this paradigm. They utilize word
embeddings to represent textual information in a
continuous vector space, capturing complex semantic
relationships within the data.

• Fine-tuning of PLMs:Models such as BERT, BART, and
T5 fall under this category. These PLMs adapt to text
classification tasks by leveraging large-scale pre-trained
language representations, requiring minimal additional
training to achieve high performance [2].

• Prompt Learning with PLMs: This innovative approach
involves generating specific prompts that guide the
model’s responses, harnessing the rich internal knowl-
edge of PLMs for more precise and contextually relevant
text classification.

• Zero-shot(ZS) Learning: This cutting-edge paradigm,
exemplified by applications like ChatIE,
ChatEventExtract, and our MediGPT, enables text
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FIGURE 9. The intermediate responses generated by ChatGPT across three medical classification datasets showcase its remarkable proficiency in
delivering precise answers and elucidating the rationale behind them.

classification without explicit training on labeled
examples. It utilizes the model’s understanding of
language and context to perform classification tasks.

J. EXPERIMENTAL BENCHMARKS
To comprehensively evaluate these paradigms, our research
includes benchmarks against each method within their
respective contexts:

• Logistic Regression: Logistic Regression(LR) is a statis-
tical model used to estimate the probability of a binary
outcome, utilizing one or more predictor variables. [25].
It uses the logistic function to model a binary dependent
variable [26]. The formula for LR can be expressed as:

p =
1

1 + e−(β0+β1x1+···+βnxn)
(2)

where p represents the probability of the dependent
variable equaling a case (usually 1), β0, β1, . . . , βn
are the coefficients, and x1, . . . , xn are the predictor
variables.

• Random Forest: Random Forest(RF) is an ensemble
learning technique that constructs multiple decision
trees during training and outputs the most common
class in classification tasks or the average prediction in
regression tasks. It aims to enhance prediction accuracy
and robustness by averaging multiple trees, thereby
reducing overfitting [27]. The formula for prediction
using RF is typically given by:

Y = mode({y1, y2, y3, . . . , yn}) (3)

where Y is the predicted outcome, and y1, y2, y3 . . . , yn
are the outputs from the individual trees.

• Convolutional Neural Networks (CNNs): CNNs for
text classification apply convolutional layers to extract
features from the text, transformed into a matrix via
embeddings [28]. Critical operations include convolu-
tion with filters, ReLU activation, max pooling to reduce

dimensions, and a softmax function for classification
[29]. The classification operation can be formulated as
follows:

y = softmax(Wc · maxpool(ReLU(Wf ∗ x + b)) + bc)

(4)

whereWf , Wc, b, and bc are model parameters.
• Long Short-Term Memory (LSTM): LSTM networks
are a type of recurrent neural network (RNN) ideal
for processing sequences. They are designed to address
the vanishing gradient problem in traditional RNNs by
incorporating gates that regulate the flow of information.
These gates include the input, forget, and output gates,
each playing a role in updating the cell and hidden state
[30]. The LSTM update equations are:

it = σ (Wxixt +Whiht−1 + bi),

ft = σ (Wxf xt +Whf ht−1 + bf ),

ot = σ (Wxoxt +Whoht−1 + bo),

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 + bc),

ht = ot ◦ tanh(ct ), (5)

where σ denotes the sigmoid function, ◦ denotes the
Hadamard product, and W , b represent weights and
biases, respectively.

• BERT-based Fine-tuning: Adjusts BERT’s pre-trained
embeddings to capture detailed semantic and syntactic
information tailored to specific text processing tasks
with limited data [2].

• T5-based Prompt-tuning: Activates T5’s internal knowl-
edge through targeted Text-to-Text tasks, using prompts
to generate appropriate responses [4].

• BART-based Prompt-tuning: Combines bidirectional
context modeling and auto-regressive transformers to
enhance the effectiveness of prompt learning [3].
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K. EVALUATION METRICS
This study used two evaluation metrics to assess the
effectiveness of the different technique models, including
our proposed MediGPT. These two metrics provide a
comprehensive view of model performance, accounting for
various aspects of prediction accuracy and reliability [31].

• Accuracy: Accuracy is a key metric used to assess the
overall correctness of amodel across all prediction tasks.
It is the ratio of correct predictions to the total number
of predictions made. The formula expresses this ratio:

Accuracy =
NumberofCorrectPredictions
TotalNumberofPredictions

(6)

• F1 score: The F1 score is a metric used to assess
the performance of a classification model, combining
precision and recall into a single value to provide a
balanced measure of both metrics. The F1 score is
calculated using the following formula:

F1Score = 2 ×
Precision× Recall
Precision+ Recall

(7)

IV. EXPERIMENTAL RESULTS AND ANALYSES
We started our study with comparison experiments to
build a foundation. We conducted ablation experiments to
understand the role of different factors affecting MediGPT’s
performance in medical text classification tasks. We also
explored how different prompting strategies impact text clas-
sification accuracy. Additionally, we integrated ChatGPT-4
into our analysis and compared its performance to the base
version, ChatGPT-3.5. Our extensive findings highlight the
significant potential, feasibility, and wide-ranging applicabil-
ity of ChatGPT in medical text classification tasks. We also
validated the competitiveness and effectiveness of MediGPT
compared to other state-of-the-art models.

A. ENHANCING CHATGPT THROUGH ADVANCED
PROMPTING TECHNIQUES
To comprehensively evaluate the enhancements facilitated
by advanced prompting strategies in generative pre-trained
transformer models within medical domains, Table 3 presents
a detailed analysis based on experimental comparisons
involving the base configuration of MediGPT (referred to
as MediGPT-base) and its variants augmented by diverse
prompting mechanisms. The study focuses on four critical
areas: clinical trials on cancer, general illness, medical
texts, and symptom-to-disease mappings, with performance
metrics, quantified through accuracy (Acc) and weighted
F1-score (W-F1), as reported in the table.

The baseline model MediGPT-base utilizes manually
defined prompts, establishing initial benchmarks of 83.2%
accuracy and 82.7% W-F1 for clinical trials on cancer,
82.8% accuracy, 82.3% W-F1 for illness categorization,
90.0% accuracy and 88.8% W-F1 for medical texts, and
achieves near-perfect performance with 99.0% for both
metrics in symptom-to-disease mappings. These figures are

foundational metrics used to assess the effectiveness of more
nuanced prompting strategies. The first variant employs Chat-
GPT Triggered Prompts, where the model dynamically gen-
erates prompts based on the immediate context of the query.
This approach yields marginal yet consistent improvements
across most tasks, enhancing accuracy by 0.8% and W-F1
by 1.0% for cancer trials, 2.1% and 1.4% for illness, and
0.5% and 0.9% for medical texts respectively, with no change
observed in the symptom-to-disease task. These increments
suggest that context-aware prompt generation can refine the
model’s response quality, particularly in complex scenarios
requiring nuanced understanding. The Zero-Shot similarity
prompts strategy, which utilizes the model’s capability to
generate suitable responses under a ZS learning paradigm
without explicit task-specific training, demonstrates more
significant improvements. This approach enhances accuracy
and W-F1 in illness categorization by 3.0% and 2.2%,
respectively, and by 1.2% and 1.4% in cancer trials, indicating
a robust capability of the model to generalize from limited
inputs effectively. However, a slight decrement of 0.3% in
both metrics for symptom-to-disease mappings underscores
potential limitations in ZS applicability to tasks requiring
deep domain-specific knowledge. Significant progress is
demonstrated through the implementation of CoT Triggered
Prompts. This method encourages the model to process
and articulate intermediate cognitive steps before reaching
conclusions. It aligns with the intricate decision-making
processes in medical diagnostics and significantly improves
outcomes. It elevates performance in illness categorization by
3.8% in accuracy and 3.0% inW-F1 and cancer trials by 1.8%
and 2.1%, respectively. This method also slightly improves
symptom-to-disease task scores by 0.3% in both metrics,
reinforcing the value of explicit reasoning in enhancing
diagnostic accuracy and reliability.

B. EXPLORING FEW-SHOT PROMPT-TUNING AND
ZERO-SHOT(ZS) CAPABILITIES OF MEDIGPT
Table 4 outlines two primary methodologies under investi-
gation: Transformer-based T5 and BART models in ZS and
few-shot learning scenarios. The ZS approach, where models
generate outputs without specific training on task-related
data, serves as a baseline. For instance, the T5model achieves
an accuracy of 55% and a weighted F1-score of 55.7% in
clinical trials on cancer, reflecting the difficulty of generating
accurate medical content without targeted learning. Similarly,
BART performs slightly better with an accuracy of 57.9%
and a w-F1 of 57.3% in the same ZS scenario. Both models
show poor performance in illness-related tasks, underscoring
the challenge of modeling medical data complexities without
fine-tuned datasets.

As themodel exposure increases to 10-shot learning, where
each model has been fine-tuned with ten examples from
the task-specific data, there is a noticeable improvement in
performance across all tasks. For instance, the T5 model’s
performance in clinical trials on cancer jumps to 63.9%
accuracy and 62.9% w-F1, demonstrating how even a
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TABLE 3. Comparative analysis of MediGPT variants utilizing advanced prompts: Evaluating the performance of MediGPT-base as the baseline (Query
Date: 2023.3.24.)

minimal amount of targeted training can significantly boost
model capability. BART shows a similar trend, achieving
66.1% accuracy and 64.3% w-F1 in the same category. The
trend continues with further improvement as the exposure
increases to 30 examples (30-shot learning), where T5
and BART register their best performances, with BART
reaching an accuracy of 72.8% and a w-F1 of 72.2%
in clinical trials on cancer, underscoring the effectiveness
of incremental learning in enhancing predictive accuracy
and model reliability in specialized domains. We observe
a significant improvement when comparing these results
with the specialized Zero-Shot performance of ChatGPT,
which benefits from extensive and nuanced pre-training along
with advanced prompt engineering. ChatGPT’s ZS model
scores extraordinarily high across all categories with 83.2%
accuracy and 82.7% w-F1 in clinical trials on cancer and
near-perfect scores in the symptom-to-disease category. This
illustrates the profound impact of advanced pre-training
techniques and model architectures optimized for generative
tasks, even without task-specific tuning. The improvement
percentages listed at the bottom of the table quantify the
relative gains offered by ChatGPT over the best-performing
few-shot models (30-shot BART), which range from 14.3%
in clinical trials on cancer to a notable 13.7% in both
accuracy and w-F1 in symptom-to-disease mappings. These
metrics underscore the advanced capabilities of ChatGPT
in managing intricate medical queries and highlight the
potential of generative AI to transform information synthesis
and decision support in healthcare settings. This capability is
achieved without requiring extensive task-specific data, thus
lowering the implementation barriers across diverse medical
scenarios.

C. COMPARISION BETWEEN GPT3.5 AND CHATGPT-4
In comparing ChatGPT-3.5 and ChatGPT-4 across various
medical and health-related datasets, a noticeable improve-
ment in performance metrics is observed when transitioning
from ChatGPT-3.5 to ChatGPT-4. As illustrated in Figure 10,
both models were evaluated based on their accuracy and
weighted F1-score (W-F1) across four distinct datasets:
Clinical Trials on Cancer, Illness, Medical Text, and Symp-
tom2Disease. For the Clinical Trials on Cancer dataset,
ChatGPT-4 demonstrates an accuracy of 83.2%, compared
to 81.0% for ChatGPT-3.5, reflecting a 2.2% increase. The

W-F1 score also improves, with ChatGPT-4 achieving 82.7%,
2.3 points higher than ChatGPT-3.5’s score of 80.4%. This
improvement indicates that ChatGPT-4’s refined understand-
ing and processing capabilities better capture the nuances and
complexities inherent in clinical trial data related to oncology.
In the Illness dataset, both models performed closely, with
ChatGPT-4 slightly outperforming ChatGPT-3.5. ChatGPT-4
achieved an accuracy of 82.8% compared to ChatGPT-3.5’s
81.3% and a W-F1 of 82.3%, surpassing ChatGPT-3.5’s
score of 81.0%. These more minor improvements highlight
ChatGPT-4’s enhanced ability to interpret and classify data
about various illnesses accurately. Significant improvements
are evident in the Medical Text dataset, where ChatGPT-4’s
accuracy increased to 90.0% from 86.6%, and its W-F1 score
rose to 88.8 from 85.6. This dataset likely benefits from
ChatGPT-4’s advanced language models, which more effec-
tively grasp the specialized vocabulary and complex sentence
structures typical of medical texts. The Symptom2Disease
dataset showed notable gains, with ChatGPT-4 reaching an
accuracy of 86.2%, compared to 82.7% for ChatGPT-3.5,
and a W-F1 of 85.8, up from 83.3%. These results indicate
that ChatGPT-4 is better equipped to link symptoms with
potential diseases, a critical capability in medical diagnostics.
The comparative analysis shows that ChatGPT-4 consistently
achieves higher accuracy and weighted F1 scores across
all analyzed datasets. This improvement can be attributed
to ChatGPT-4’s enhanced model architecture, which likely
includes more advanced training algorithms and a larger,
more diverse training dataset. These enhancements enable
ChatGPT-4 to comprehend better and handle complex,
specialized content in the medical and healthcare domain,
resulting in more precise predictions and classifications.

D. PERFORMANCE COMPARISON OF DIFFERENT MODELS
AND TECHNIQUES
Table 5 presents an in-depth performance comparison of
different models and techniques. This comparison spans
traditional ML approaches, word embedding techniques, pre-
trained language models (PLMs), both Fine-Tuned (FT)
and Prompt-Tuned (PT), and our proposed MediGPT. The
traditional ML models, LR and RF, demonstrated moderate
performance across all datasets. LR achieved accuracy scores
ranging from 0.648 to 0.784 and w-F1 scores from 0.645 to
0.763. RF showed slightly better results with accuracy
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TABLE 4. Performance metrics of different methods.

TABLE 5. Performance statistics of baselines and MediGPT on adopted datasets. We underline the best values.

FIGURE 10. Comparision between ChatGPT 3.5 and GPT 4.

between 0.669 and 0.808 and w-F1 scores from 0.664 to
0.776. These models performed exceptionally well on the
Medical Text dataset but lagged on the Symptom2Disease
dataset. Word embedding-based models, such as CNN and
LSTM, improved upon the traditional models. CNN achieved
accuracy scores between 0.736 and 0.855 and w-F1 scores
from 0.725 to 0.837. LSTM showed similar performance
with accuracy ranging from 0.728 to 0.866 and w-F1 scores
from 0.718 to 0.848. These models excelled in handling

complex medical texts, indicating the advantage of DL
techniques in capturing semantic information. Pre-trained
language models fine-tuned on specific tasks, like BERT-FT,
enhanced performance. BERT-FT achieved accuracy scores
from 0.757 to 0.890 and w-F1 from 0.735 to 0.860. The
improved performance across all datasets highlighted the
effectiveness of leveraging large-scale pre-trained models
for medical text classification tasks. The fine-tuned PLM
models, such as T5-PT and BART-PT, demonstrated even
higher performance. T5-PT achieved accuracy scores ranging
from 0.785 to 0.895 and w-F1 scores from 0.774 to 0.878.
BART-PT showed similar results with accuracy from 0.778 to
0.896 and w-F1 scores from 0.788 to 0.886. These models
exhibited superior performance onmore challenging datasets,
such as Symptom2Disease, underscoring the benefits of task-
specific fine-tuning. Our proposed model, MediGPT, based
on a ChatGPT-based QA framework, outperformed all the
baseline models across all datasets. MediGPT achieved the
highest accuracy and w-F1 scores, with notable performance
on the Symptom2Disease dataset, scoring 0.992 for both
metrics. Table 5 also illustrates the improvement percentages
of MediGPT over BART-PT. MediGPT showed a 1.34%
improvement in accuracy and a 1.35% improvement in w-F1
for the Clinical Trials on Cancer dataset, a 6.43% increase in
accuracy and a 4.44% increase in w-F1 for the Illness dataset,
a 0.56% improvement in accuracy and a 0.11% improvement
in w-F1 for the Medical Text dataset, and an impressive
11.7% increase in accuracy and an 11.0% increase in
w-F1 for the Symptom2Disease dataset. These improvements
highlight MediGPT’s enhanced ability to handle diverse and
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complex medical datasets effectively. MediGPT’s superior
performance can be attributed to its ability to understand
and generate contextually relevant responses, thus enhancing
its classification capabilities. The performance comparison
highlights the progressive improvements from traditional
ML models to advanced pre-trained and fine-tuned language
models. MediGPT is the best-performing model, showcasing
its potential for advancing medical text classification tasks.
These results demonstrate the significant impact of leverag-
ing state-of-the-art natural language processing techniques in
medical informatics.

V. CONCLUSION AND FUTURE WORK
Medical text classification is crucial in organizing a vast
and expanding volume of medical information. Current
PLM based models face challenges such as dependency
on annotated data, limited transferability across languages,
and deployment complexities. The introduction of ChatGPT
has provided new avenues to address these challenges,
particularly in enhancing the sustainable management of
medical information through text classification. In this study,
we explored the capabilities of ChatGPT in medical text
classification and introduced MediGPT, a novel framework
designed for this purpose. MediGPT represents an initial
qualitative assessment of ChatGPT’s application in health-
care text classification. Our research compared MediGPT
against conventional machine learning methods, PLM-based
fine-tuning approaches, and prompt-based learning tech-
niques. We conducted extensive evaluations across diverse
datasets and devised strategies for generating prompts to
enhance the quality of ChatGPT’s outputs. Furthermore,
we evaluated the performance of ChatGPT-4 through com-
parative experiments. MediGPT demonstrated significant
performance improvements across the four selected datasets,
with accuracy increases of 14.3%, 22.3%, 13.6%, and
13.7%, respectively. These enhancements underscore its
efficacy in handling diverse medical texts compared to
traditional models. Our findings affirm ChatGPT’s superi-
ority in medical text classification, representing substantial
progress in leveraging AI for managing medical information.
This research sets the stage for future applications in
advancing sustainable healthcare practices, promoting digital
innovation, and enhancing operational efficiency. The strides
made by MediGPT contribute to the evolution of medical
text classification, emphasizing the integration of advanced
AI models in healthcare to optimize the management and
utilization of medical information.

ACKNOWLEDGMENT
The authors would like to acknowledge Princess Nourah
bint AbdulrahmanUniversity Researchers Supporting Project
number (PNURSP2024R197), Princess Nourah bint Abdul-
rahman University, Riyadh, Saudi Arabia. The authors would
like to thank Prince Sultan University for their support.

REFERENCES
[1] R. Qasim, W. H. Bangyal, M. A. Alqarni, and A. A. Almazroi, ‘‘A fine-

tuned BERT-based transfer learning approach for text classification,’’
J. Healthcare Eng., vol. 2022, pp. 1–17, Jan. 2022.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[3] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, ‘‘BART: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,’’ 2019, arXiv:1910.13461.

[4] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu, ‘‘Exploring the limits of transfer learning with a unified
text-to-text transformer,’’ J. Mach. Learn. Res., vol. 21, no. 140, pp. 1–67,
2020.

[5] T. Eloundou, S. Manning, P. Mishkin, and D. Rock, ‘‘GPTs are GPTs: An
early look at the labor market impact potential of large language models,’’
2023, arXiv:2303.10130.

[6] N. Xia, H. Yu, Y. Wang, J. Xuan, and X. Luo, ‘‘DAFS: A domain aware
few shot generative model for event detection,’’ Mach. Learn., vol. 112,
no. 3, pp. 1011–1031, Mar. 2023.

[7] J. Gao, H. Yu, and S. Zhang, ‘‘Joint event causality extraction using
dual-channel enhanced neural network,’’ Knowl.-Based Syst., vol. 258,
Dec. 2022, Art. no. 109935.

[8] J. Achiam et al., ‘‘GPT-4 technical report,’’ 2023, arXiv:2303.08774.
[9] Q. Lyu, J. Tan, M. E. Zapadka, J. Ponnatapura, C. Niu, K. J. Myers,

G. Wang, and C. T. Whitlow, ‘‘Translating radiology reports into plain
language using ChatGPT and GPT-4 with prompt learning: Results,
limitations, and potential,’’Vis. Comput. for Ind., Biomed., Art, vol. 6, no. 1,
p. 9, May 2023.

[10] T. Susnjak, ‘‘Applying BERT and ChatGPT for sentiment analysis of Lyme
disease in scientific literature,’’ in Borrelia Burgdorferi: Methods and
Protocols. New York, NY, USA: Springer, 2024, pp. 173–183.

[11] T. Brown et al., ‘‘Language models are few-shot learners,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 1877–1901.

[12] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, ‘‘Pre-
train, prompt, and predict: A systematic survey of prompting methods in
natural language processing,’’ACMComput. Surv., vol. 55, no. 9, pp. 1–35,
Sep. 2023.

[13] Y. Shen, X. Ma, Z. Tan, S. Zhang, W. Wang, and W. Lu, ‘‘Locate and
label: A two-stage identifier for nested named entity recognition,’’ 2021,
arXiv:2105.06804.

[14] M. U. Haque, I. Dharmadasa, Z. T. Sworna, R. N. Rajapakse, and
H. Ahmad, ‘‘‘I think this is the most disruptive technology’: Exploring
sentiments of ChatGPT early adopters using Twitter data,’’ 2022,
arXiv:2212.05856.

[15] M. S. Islam, M. A. T. Rony, and T. Sultan, ‘‘GastroVRG: Enhancing early
screening in gastrointestinal health via advanced transfer features,’’ Intell.
Syst. Appl., vol. 23, Sep. 2024, Art. no. 200399.

[16] H. Lu, L. Ehwerhemuepha, and C. Rakovski, ‘‘A comparative study on
deep learning models for text classification of unstructured medical notes
with various levels of class imbalance,’’BMCMed. Res.Methodol., vol. 22,
no. 1, p. 181, Dec. 2022.

[17] A. K. Mohanty, M. R. Senapati, S. Beberta, and S. K. Lenka,
‘‘Texture-based features for classification of mammograms using deci-
sion tree,’’ Neural Comput. Appl., vol. 23, nos. 3–4, pp. 1011–1017,
Sep. 2013.

[18] Y. Li, S. Zhang, and C. Lai, ‘‘Agricultural text classification method
based on dynamic fusion of multiple features,’’ IEEE Access, vol. 11,
pp. 27034–27042, 2023.

[19] C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji, Q. Yan,
L. He, H. Peng, J. Li, J. Wu, Z. Liu, P. Xie, C. Xiong, J. Pei, P. S. Yu,
and L. Sun, ‘‘A comprehensive survey on pretrained foundation models: A
history from BERT to ChatGPT,’’ 2023, arXiv:2302.09419.

[20] I. Spasic and G. Nenadic, ‘‘Clinical text data in machine learning:
Systematic review,’’ JMIR Med. Informat., vol. 8, no. 3, Mar. 2020,
Art. no. e17984.

[21] J. Wang, Y. Liang, F. Meng, Z. Sun, H. Shi, Z. Li, J. Xu, J. Qu, and
J. Zhou, ‘‘Is ChatGPT a good NLG evaluator? A preliminary study,’’ 2023,
arXiv:2303.04048.

[22] Q. Zhong, L. Ding, J. Liu, B. Du, and D. Tao, ‘‘Can ChatGPT understand
too? A comparative study on ChatGPT and fine-tuned BERT,’’ 2023,
arXiv:2302.10198.

[23] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, ‘‘Generalizing from a few
examples: A survey on few-shot learning,’’ ACM Comput. Surv., vol. 53,
no. 3, pp. 1–34, May 2021.

103486 VOLUME 12, 2024



M. A. T. Rony et al.: MediGPT: Exploring Potentials of Conventional and LLMs on Medical Data

[24] J. O. Bappi, M. A. T. Rony, and M. S. Islam, ‘‘BNVGLENET:
Hypercomplex Bangla handwriting character recognition with hierarchical
class expansion using convolutional neural networks,’’ Natural Lang.
Process. J., vol. 7, Jun. 2024, Art. no. 100068.

[25] A. Das, ‘‘Logistic regression,’’ in Encyclopedia of Quality of Life
and Well-Being Research. Dordrecht, The Netherlands: Springer, 2024,
pp. 3985–3986.

[26] M. S. Sayed, M. A. T. Rony, M. S. Islam, A. Raza, S. Tabassum,
M. S. Daoud, H. Migdady, and L. Abualigah, ‘‘A novel deep learning
approach for forecasting myocardial infarction occurrences with time
series patient data,’’ J. Med. Syst., vol. 48, no. 1, p. 53, May 2024.

[27] M. R. Ali, S. M. A. Nipu, and S. A. Khan, ‘‘A decision support system for
classifying supplier selection criteria using machine learning and random
forest approach,’’ Decis. Anal. J., vol. 7, Jun. 2023, Art. no. 100238.

[28] Y. Zhang and B. Wallace, ‘‘A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification,’’ 2015,
arXiv:1510.03820.

[29] J. O. Bappi, M. A. T. Rony, M. S. Islam, S. Alshathri, and W. El-Shafai,
‘‘A novel deep learning approach for accurate cancer type and subtype
identification,’’ IEEE Access, vol. 12, pp. 94116–94134, 2024.

[30] M. Alizamir, J. Shiri, A. F. Fard, S. Kim, A. D. Gorgij, S. Heddam, and
V. P. Singh, ‘‘Improving the accuracy of daily solar radiation prediction by
climatic data using an efficient hybrid deep learning model: Long short-
term memory (LSTM) network coupled with wavelet transform,’’ Eng.
Appl. Artif. Intell., vol. 123, Aug. 2023, Art. no. 106199.

[31] Z. Lian, Y. Ma, M. Li, W. Lu, and W. Zhou, ‘‘Discovery precision: An
effective metric for evaluating performance of machine learning model for
explorative materials discovery,’’ Comput. Mater. Sci., vol. 233, Jan. 2024,
Art. no. 112738.

[32] B. Zhao, W. Jin, J. Del Ser, and G. Yang, ‘‘ChatAgri: Exploring
potentials of ChatGPT on cross-linguistic agricultural text
classification,’’ Neurocomputing, vol. 557, 2023, Art. no. 126708,
doi: 10.1016/j.neucom.2023.126708. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0925231223008317

MOHAMMAD ABU TAREQ RONY received
the Bachelor of Science degree in statistics
from Noakhali Science & Technology University,
Noakhali, Bangladesh. Additionally, he possesses
expertise in devising advanced analytics strategies
using data. His diverse professional experience
includes three years of research in artificial
intelligence. He is working as a part-time Research
Data Scientist at AiQuest Intelligence. Dhaka,
Bangladesh. He has published articles in refereed

journals and conference proceedings, such as IEEE ACCESS, Data in Brief
(Elsevier), Children (MDPI), IEEE, and Springer international conferences.
Moreover, he actively engages in partnerships with international researchers,
recognizing that research is indispensable in fostering innovation. Overall,
he is hardworking and has taught himself various skills, such as data analysis,
statistics, ML, and DL.

MOHAMMAD SHARIFUL ISLAM received the
B.Sc. degree in computer science and telecom-
munication engineering from Noakhali Science
& Technology University, Bangladesh, in 2023,
brings a deep passion for cutting-edge technolo-
gies to the research community. His academic
journey, rooted in computer science and telecom-
munications, has evolved into a genuine pursuit of
specialized areas, including data science, ML, nat-
ural language processing, and image processing.

His work in these fields is driven by a quest to uncover hidden insights within
data, develop intelligent learning algorithms, bridge the communication gap
between humans and machines, and artistically enhance digital imagery.
As a Researcher, his approach is characterized by a blend of technical
proficiency and creative problem-solving, aiming to contribute significantly
to the frontiers of technology and its application in understanding and
improving our digital world.

TIPU SULTAN received the B.Sc. degree (Hons.)
in mechatronics engineering from Kyungsung
University, South Korea, and the M.Sc. degree in
data science from Fordham University, Lincoln
Center, in April 2024. Currently, interning as a
Data Analyst with the Authentic Brands Group,
he specializes in ML, Tableau dashboard creation,
Power BI, and SQL database management. With
over five years of experience in various industries
as a Data Analyst and a Machine Learning

Researcher, he brings a wealth of expertise to his roles. Proficient in SQL, R,
Python, Tableau, and Excel Power BI, he possesses a solid foundation
in machine learning. With a genuine passion for data analysis, he is
well-equipped to excel in data science.

SAMAH ALSHATHRI received the Bachelor of Computer Science and
Master of Computer Engineering degrees from King Saud University,
Riyadh, Saudi Arabia, and the Ph.D. degree from the Department of
Computer and Mathematics, Plymouth University, Plymouth, U.K. She
is currently an Assistant Professor with the Department of Information
Technology, College of Computer and Information Sciences, Princess
Nourah Bint Abdulrahman University (PNU), Riyadh, Saudi Arabia.
Her research interests include wireless networks, cloud computing, fog
computing, the IoT, data mining, machine learning, text analytics, image
classification, and deep learning. She has authored or co-authored many
articles published in well-known journals in the research field. She was the
Chair of the Network and Communication Department and participated in
organizing many international conferences.

WALID EL-SHAFAI (Senior Member, IEEE)
was born in Alexandria, Egypt. He received the
B.Sc. degree (Hons.) in electronics and electrical
communication engineering from the Faculty of
Electronic Engineering (FEE), Menoufia Univer-
sity, Menouf, Egypt, in 2008, the M.Sc. degree
from Egypt-Japan University of Science and
Technology (E-JUST), in 2012, and the Ph.D.
degree from FEE, Menoufia University, in 2019.
Since January 2021, he has been a Postdoctoral

Research Fellow with the Security Engineering Laboratory (SEL), Prince
Sultan University (PSU), Riyadh, Saudi Arabia. He is currently a Senior
Cybersecurity Researcher with the SEL Laboratory and an Assistant
Professor with the College of Computer Science and Information Systems.
Also, he is an Associate Professor with the Department of Electronics
and Communication Engineering (ECE), FEE, Menoufia University. His
research interests include wireless mobile and multimedia communications
systems, image and video signal processing, efficient 2D video/3D multi-
view video coding, multi-view video plus depth coding, 3D multi-view
video coding and transmission, quality of service and experience, digital
communication techniques, cognitive radio networks, adaptive filters design,
3D video watermarking, steganography, encryption, error resilience and
concealment algorithms for H.264/AVC, H.264/MVC, H.265/HEVC video
codecs standards, cognitive cryptography, medical image processing, speech
processing, security algorithms, software-defined networks, the Internet
of Things, medical diagnoses applications, FPGA implementations for
signal processing algorithms and communication systems, cancellable
biometrics and pattern recognition, image and video magnification, arti-
ficial intelligence for signal processing algorithms and communication
systems, modulation identification and classification, image and video
super-resolution and denoising, cybersecurity applications, malware and
ransomware detection and analysis, deep learning in signal processing, and
communication systems applications. He also serves as a reviewer for several
international journals.

VOLUME 12, 2024 103487

http://dx.doi.org/10.1016/j.neucom.2023.126708

