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ABSTRACT During the feature extraction study, the video behavior recognition algorithm had a limited
ability to extract remote target and time-motion information, resulting in unsatisfactory model classification
results. To enhance the network’s expression capabilities, this study proposes a video behavior recognition
algorithm that combines spatial long-distance modeling with a temporal shift. To efficiently extract
time-domain motion features in the 2D backbone network, the residual is coupled with the time shift
module. At the same time, a narrow and long core, namely 1 x N or N x 1 strip pool, is introduced to
make the backbone effectively capture the remote information in airspace and obtain the context relations
of long-distance targets. Experiments on Something-SomethingV1 and Jester datasets achieve an average
recognition accuracy of 45.82% and 96.89%, respectively. The experimental results demonstrate that the
proposed algorithm can fully extract time-space features of videos, which establishes certain advantages

compared with other existed behavior recognition networks.

INDEX TERMS Behavior recognition, deep learning, long distance modeling, neural network.

I. INTRODUCTION

With the advancement of artificial intelligence (AI) technol-
ogy, video behavior recognition, which is widely used in
security monitoring systems, smart home design, intelligent
video analysis, driverless systems, and other disciplines, has
progressively emerged as a vital technology in computer
vision. Video behavior recognition algorithms have evolved
from the initial manual feature extraction method to the
current deep learning approach.

Early behavior recognition algorithms adopted a method
for manually extracting features. The method begins by sam-
pling the input video to create sampling points. Subsequently,
feature extraction was conducted on these sampling points
to generate manual feature descriptors. These descriptors are
then encoded to produce feature vectors that are subsequently
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trained. The final step involves the classification of the
trained feature vectors to generate the output classification
result. For example, Bobick and Davis [1] proposed to
use background subtraction to extract foreground contour
features from videos, and constructing Motion Energy
Images (MEI) and Motion History Images (MHI) to represent
motion information. Yang and Tian [2] used the depth image
to extract the position information of human body joint
points, collected the position coordinates of human body
joint points, and used the human body contour formed
by it for behavior feature recognition and achieved good
results. The above two methods are based on contour
silhouette and joint point human contour feature extraction,
both of which use the segmentation of foreground and
background. However, when the background is complex, the
feature extraction effect is not good. Some scholars propose
extracting behavioral features by tracking human motion
trajectories. Wang et al. [3] proposed a dense trajectory
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method that uses the optical flow field of dense sampling
points to obtain motion trajectory information. Then, Wang
and Schmid [4] proposed an improved dense trajectory
algorithm. Combining the Histogram of Orientation Gradient
(HOG) and the Histogram of Optical Flow Orientation (HOF)
can improve performance. Applying video optical flow to
match key points helps overcome interference caused by
camera changes and improves the robustness of features.
Manual feature extraction methods rely on human experience
and introduce complex data processing processes, which are
not ideal for feature extraction in complex and changeable
backgrounds, occlusions, and other challenging scenarios.
In recent years, video behavior recognition methods based
on deep learning have received significant attention, and
researchers have applied various neural network models to
algorithms. In terms of time-space feature network models,
the most classic approach is the feature extraction network
based on the dual flow model proposed in the literature [5],
in which the dual flow network is used to extract the spatial
flow of static apparent features and the time flow of motion
information, respectively. Finally, the dual flow 2DCNN
network is integrated to achieve enhanced classification
accuracy. Wang et al. [6] borrowed from the architecture of
literature [S] and also adopted the combination of spatial
flow network and temporal flow network. However, different
from the previous two-stream network, the long-term video
combined with the sparse sampling strategy proposes tem-
poral segment networks (TSN) that sparsely sample multiple
short clips from the video as network input. Each short clip
is input into the network for preliminary prediction. Finally,
the prediction and classification results of the entire video
are combined, and the excellent classification accuracy of
94.20% is achieved on the UCF101 dataset. In view of
the complex preprocessing of optical flow and the inability
to meet real-time performance, some researchers proposed
to expand the time dimension of the network to form a
3DCNN. For example, the literatures [7], [8], [9], [10],
and [11] used 3DCNN to create a spatio-temporal feature
extraction model. Among these, Tran et al. [7] proposed
a Convolutional 3D Network (C3D) using 3D convolution,
which is simple, compact, and efficient. It extracts the
spatial and temporal features of video sequences using
3D convolution kernels. Huang et al. [11] designed a 2D
inflated operation and a parallel 3D convolutional network
architecture. 2D-INFLATED Operation was used to convert
pre-trained 2D ConvNets to 3D ConvNets, avoiding the
pre-training problem of video data. Converting 2D convo-
lution operations to 3D convolution operations increases
the processing of time scales. Generally speaking, the
expansion of 2D convolution to 3D convolution will improve
the accuracy of network classification, but the amount of
computation will also be greatly increased. To this end, other
dimensions beyond the time dimension are considered in
the literature [12], such as frame rate, total frame length of
input data, network width and depth, etc. Also, to reduce
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the amount of computation, Luo and Yuille [13] proposed
a grouped convolution model to extract features efficiently.
Since the algorithm uses optical flow to extract time-series
motion information, the amount of data calculation is large
and time-consuming, so it is not suitable for demanding
real-time requirements. The 3D network requires a large
amount of computation and high hardware requirements.
In order to utilize 2D convolution to achieve the effect of
3D convolution, Zhou et al. [14] proposed multi-scale frame
tuples involving long-range video frames. Through temporal
inference on video frames of different lengths, spatiotemporal
feature information is extracted. Finally, the fusion results
are obtained, but the time and space of the algorithm
are less connected. To address the challenge of more
efficient spatiotemporal information extraction and fusion,
Lin et al. [15] proposed the incorporation of a temporal shift
module into the residual structure following the convolutional
layer of the spatial feature extraction network. The frame
information is fused, and the online recognition mode
can be formed by only merging the channel information
of the previous frame. The channel shift improves the
receptive field in the time domain and enables more
complex time-domain modeling. In order to softly connect
the network, literature [16] proposes a gate-shift model
(GSM) based on the time shift module to connect the
features. The features extracted by 2DCNN are divided
into two branches, which are adaptively selected by the
gating unit to enter the subsequent channel shift network
and spatial information extraction network. The branch
fusion is used for behavior classification. Starting with the
dynamics and time scale of the visual rhythm of action,
Liu et al. [17] proposed the Temporal Correlation Module
(TCM), which uses relevant operations to extract pixel-
level fine-grained temporal dynamics for fast-paced and
slow-paced actions, and considers cross-temporal dynamic
interactions. Adaptive selection and enhancement of the most
effective movement visual rhythm information. Using a 2D
convolutional neural network combined with related modules
can realize the modeling of time, which not only meets the
real-time performance but also solves the problem of high
hardware requirements of a 3D convolutional neural network.
Of course, for video action recognition models, temporal
modeling is essential, and spatial feature extraction cannot
be ignored.

Scene analysis and semantic segmentation in the video are
conducive to the acquisition of apparent features in video
behavior recognition. It is essential to capture remote context
information in the process of acquiring video features. In this
regard, existing methods, such as stacking local convolution
and pooling operations, Wang et al. [18] proposed a convo-
lution module to improve the long-range modeling capability
of CNNs. By computing the response of a local position as a
weighted sum of features at all locations, the model achieves
excellent results in video classification competitions.
Alam et al. [19] used spatial pyramid pooling and decoder
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FIGURE 1. Schematic diagram of the overall model architecture.

for scene analysis. They applied depthwise separable con-
volution to pyramid pooling and decoder modules, resulting
in a faster and more robust encoder-decoder network.
He and Deng [20] proposed an adaptive pyramid pooling
context network, which uses the global image to estimate
the sub-region correlation coefficient and calculates the
context vector with the correlation. However, these methods
are limited to the input features within a square window.
To capture discrete distributions that may have long-range
band structures in real-world scenarios, Hou et al. [21]
proposed a new band pooling strategy, which is different from
traditional spatial Compared with N * N pooling, it utilizes
strip pools formed by long and narrow nuclei to connect
long-range contexts. The fusion of spatial feature extraction
modules can effectively supplement the feature extraction
capability of the backbone network, enabling the backbone
network to model context dependencies effectively.

To increase the network’s spatiotemporal modeling capa-
bilities and connect contextual information and long-range
dependencies, this paper models video scene areas using an
efficient temporal channel shift module and a stripe pooling
network to extract spatiotemporal features. Due to the issue of
information redundancy between neighboring video frames,
this work first adopts a sparse sampling method. The visual
frames are then input into the network, which expands the
temporal receptive field and extracts motion information.
In conjunction with the channel shift module, the channel
information of neighboring frames of the video is exchanged
in a specific proportion to accomplish the impact of timing
information extraction. In airspace feature extraction, the
strip pooling module is fused, and the narrow and long
kernel 1 x N or N x 1 is selected to expand the airspace
receptive field. Connecting the remote contexts of discrete
regions in the scene, the overall network model in this paper
achieves the performance of 3D convolutional networks with
the complexity of 2D convolutional networks.
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A. VIDEO ACTION RECOGNITION ALGORITHM MODEL
BASED ON TIME-DOMAIN SHIFT AND LONG-DISTANCE
SPATIAL MODELING

Figure 1 is a schematic diagram of the overall structure
of the algorithm proposed in this paper. The time domain
shift module is positioned before the first convolution layer
of Resnet in order to augment the temporal information of
the input video. The stripe pool module is situated behind
a 3 x 3 convolution layer within Resnet’s residual block.
Its function is to model spatial remote information. The
concurrent incorporation of the two modules into Resnet can
enhance the network’s capacity to model temporal and spatial
remote information. The video behavior recognition process
can be divided into three steps. The initial input video is
subjected to preprocessing in Step 1 due to its large spatial
resolution and information redundancy. This is achieved
through downsampling. For a given video V, we first sample
the video T frame Fi,..., F;, in which a certain frame
is denoted as F;. The second step involves inputting the
pre-processed image frames into a two-dimensional convolu-
tional neural network in order to extract features. This paper
adopts Resnet-50 as the backbone network. Concurrently,
in order to extract a comprehensive set of timing features,
a portion of the extracted channel information is stored
and exchanged with the adjacent frame information. The
approach is implemented in the time shift module depicted
in Figure 1. It is important to note that in the specific
implementation, the time shift modules are connected in
a residual manner to form an offline channel shift mode,
which is used to extract spatiotemporal features. The strip
pooling module is integrated into the feature extraction
network, therby enabling further modelling of the scene
region. The internal structure of the strip pool module and
the backbone network also adopts the residual connection
mode, whereby additional features are incorporated into
the backbone extraction network without disrupting its
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FIGURE 2. Schematic diagram of time-shift module.
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FIGURE 3. Location diagram of shift module.

functionality. The combined fusion of 1 x N and N x 1 bands,
in the form of two channels, enhances the receptive field in a
comprehensive manner. Finally, the fully-connected layer and
the softmax layer must be linked to the video output, in order
to obtain the video behaviour recognition and classification
results.

Il. TIME DOMAIN SHIFT AND SPATIAL STRIP POOLING
A. TIME DOMAIN SHIFT MODULE

In the field of video action recognition, the temporal
motion information present in the video can be extracted
by inputting the image sequence into a 3DCNN network.
However, the memory consumption of 3DCNN is relatively
high and demands advanced hardware. The parameters
and computational complexity of 2D convolutional neural
networks are relatively modest, but single-frame 2DCNN are
unable to simulate temporal information to a greater extent.
In this paper, the modeling of time is realized by exchanging
the channel information of image frames.

The temporal shift module TSM is depicted in Figure 2.
The data input to the network model is represented by the
matrix A € RV*T*CxHxW \here N is the batch size, T is the
number of frames, C is the number of channels, and H and W
are the spatial resolutions. For the input image frame Fr,
use convolution to extract features, move S channels in the
feature channel number C by +1 and S channels by —1, and
the remaining channels do not move. The choice of the shift
scale hyper-parameter § is discussed in a subsequent section.
The temporal shift module combines multi-frame channel
information with zero parameters and zero computational
cost. Although traditional 2DCNN is used, the time domain
Ft — 1 frame, Ft frame, and Ft 4 1 frame image information
fusion is capable of effectively obtaining temporal motion
information.
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Assuming a conventional convolution operation with a
kernel size of 3, the weight of the convolution is w =
(w1, wa, w3). The input is an infinitely long one-dimensional
vector X. The convolution operation, represented by the
equation ¥ = Comv(W, X), can also be expressed as ¥; =
W1Xi—1 + wax; + w3xiy1. This equation demonstrates that
the convolution operation can be decomposed into two steps:
a shift operation and a multiply-accumulate operation. The
shift is shown in equation (1).

X=X X0 = XX = Xip1. 4))

The superscript in equation (1) indicates a shift operation.
The values —1, +1, and O indicates, respectively, a shift
to the left, a shift to the right, and no shift operation. The
subscript represents the result of the shift operation, X; to the
Xi_1 position after a shift to the left, X; to the X; ;| position
after a shift to the right. The multiplication and accumulation
operation can be expressed as:

Y =wiX 4+ woX? + wix )

The first shift operation only needs to move the address
pointer when it is implemented, without multiplying and
moving data. Compared to the basic 2DCNN model, the time
domain shift module in this paper combines multiplication
and accumulation into 2D convolutions. Although it will
occupy a certain amount of memory, it will not increase
the amount of extra computation. This operation can be
equivalent to a temporal convolution with a convolution
kernel of 3. Temporal shifting cannot move most of the
channels like spatial shifting. Excessive channel number
shifting not only consumes more memory resources, but
also loses current frame information and affects the spatial
modeling of convolutional neural networks. The results is
poor classification accuracy and high resource occupancy.
In order to address these issues, two distinct methodologies
have been adopted. One approach is to reduce the movement
of redundant data and reduce costs by selecting the optimal
channel shift number S. Secondly, in order to ensure that the
feature extraction capability of the model backbone network
is not affected, the temporal shift module is introduced before
the convolutional layer of the backbone network in the form
of a residual connection. When converting a large amount of
channel information, in order to avoid damaging the spatial
modeling capability of the backbone network by directly
inserting modules, this paper adopts the residual structure
shown in Figure 3.

B. STRIP POOL MODULE

In the context of a two-dimensional input vector, which is
represented as X € RP*W_ where H and W represent the
height and width of the space, respectively, in an average
pooling layer, the spatial range that needs to be pooled is
H x W. Following pooling, the output y is a two-dimensional
vector with a height and width of Hy = H/hand Wy = W /w,
respectively. In the majority of cases, the average pooling
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FIGURE 4. Schematic diagram of strip pool modeling speed.

operation can be expressed as:

1
Yig.jo = W w Z Z Xigxh+i joxw+j- (3)

0<i<h 0<j<w

Among them, 4 and w are the convolution kernel sizes,
0 < ip < Hyand 0 < jpo < Wp, the value in the output
matrix y corresponds to the value of the original matrix
pooling window, and related research shows that the spatial
pooling operation can successfully collect context informa-
tion. However, the pooling window in general operations is a
M x M square. When dealing with irregular images, irrelevant
noise information is inevitably doped.

Unlike spatial pooling, for the same input X € R7*W strip
pooling uses a strip pooling window whose spatial range is
H x 1or1 x W, and the output of strip pooling is a row
or a column of eigenvalues. The output of strip pooling is
the average of a row or column of feature values. The output
y € R after horizontal strip pooling is as follows (4):

1
h
W= 2 d @)
o<i<w
Similarly, for the output after vertical strip pooling, it is
shown in the following formula.

W =% Z Xij. )
0<j<H

Expanding the sensory field of the backbone network in
the video action recognition algorithm model facilitates the
understanding of the video scene. The strip pool module
(SPM) composed of strip pooling is shown in Figure 4. The
strip pooling module has strip pooling in both horizontal and
vertical directions so that it can connect long-range contextual
information from multiple directions. The input features are
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applied to the strip pool for context connection, and then the
original path is added to achieve the purpose of long-distance
modeling. In the stripe pooling module depicted in Figure 4,
the input size is assumed to be X € RE*H*W 'where C is the
number of channels. First, feed X into two parallel passes,
each containing horizontal or vertical strip pooling layers.
The position and neighboring features are then adjusted using
a 1D convolutional layer with a convolutional kernel size of 3,
and then unfolded in their respective directions to keep the
size of the original feature maps consistent. For the obtained
and to get an output that contains more useful global priors,
they are combined to obtain the output z as follows:

z = Scalse(x, o (f ())). (6)

Among them, Scalse() represents the product by site, o is
the activation function, and f represents the 1 x 1 convolution.
In contrast to global average pooling, strip pooling establishes
long and narrow ranges that can be embedded into the
network to capture long-range spatial dependencies. In the
event that there are ribbon structures or connections between
discrete regions within the scene, the role of the band pool
module is to facilitate the interactions between these discrete
regions. The kernel functions for horizontal and vertical strip
pooling operations included in the stripe pooling module are
of considerable length and narrow width. Consequently, it is
more straightforward to model the contextual relationship
of distant objects within the scene area. This approach can
achieve an excellent supplementary effect on the backbone
network. To a certain extent, this approach avoids the capture
of irrelevant area information under irregular targets by
traditional spatial pooling.

In order to fully model the video scene area and to
improve the temporal and spatial receptive field, the channel
shift module is embedded in the form of a residual block
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FIGURE 5. Fusion diagram of strip pool module.

before the convolutional layer of the backbone network. The
spatial feature extraction capability of the backbone is not
affected, while temporal features are still extracted. The stripe
pooling module is fitted directly after the last convolution
of each block of the Resnet-50 backbone, and after each
3 x 3 convolutional layers of the last block. The stripe pooling
module is integrated into the ResNet-50 backbone at the
3 x 3 convolutional layer of each block. Add a stripe pooling
module to a block of the Resnet-50 network as shown in
Figure 5 below. The temporal shift and special stripe pooling
network proposed in this paper, which combines a temporal
shift module and a stripe pooling module, is referred to as the
TSPNet network. The network is an end-to-end system.

Ill. EXPERIMENTAL SIMULATION

This research tests two action recognition datasets and
compares the performance of the proposed TSPNet network.
The Something-somethingV 1 dataset is a large-scale labeled
dataset that captures interactions between humans and items
in everyday life. There are 174 kinds of behavioral acts,
totaling 108,499 videos. This includes 86,017 videos for the
training set, 11,522 for the verification set, and 10960 for the
test set. Each video in the dataset is between 2 and 6 seconds
long. The major difference from a general dataset is that the
actions described by the dataset content focus specifically on
time-series relationships, such as pushing something from left
to right. Recognizing a video dataset is not enough to detect
a target, and understanding the interactions between video
contents is also crucial.

The video background in the Jester gesture recognition
dataset is relatively stable, and the amount of data and cat-
egories are adequate. The dataset contains 148,092 annotated
video snippets, each lasting roughly 3 seconds. The videos
include 25 categories of human gestures and two categories
without gestures. The video depicts a range of human
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movements, including swiping left or right, swiping two
fingers up or down, and waving forward or back. Predicting
these text annotations from video frequently requires the
network to comprehend these ideas. For instance, the degree
of freedom in three-dimensional space oscillates, swings, and
rises.

In experiments on two video action recognition task sets,
the Something-somethingV1 dataset reaches a steady state in
about 50 training epochs. The initial learning rate is 0.01, the
learning rate decays to 1/10 of the original every 20 epochs,
and the weight decays to le-4. Using the batch stochastic
gradient descent algorithm, the batch size is set to 8, and the
dropout rate is 0.5. The Jester dataset is trained for about
100 epochs, in which the batch size of Jester is 6 due to
limited experimental conditions, and the model is fine-tuned
with weights pre-trained by Kinetics. For testing, when
higher accuracy is pursued, follow the usual settings, sample
10 clips per video, and use full-resolution images at 256 for
evaluation. When considering efficiency, only one video clip
and an image with a resolution of 224 x 224 are used for
evaluation. The experimental hardware is the mainstream
NVIDIA GTX 1080TI graphics card for deep learning, and
the software environment is the deep learning framework
Pytorchl.1.

For complex video data, the processing method proposed
in our manuscript follows these steps: First, the video is
processed as a continuous image sequence. Due to the large
space size of the original image, it will bring more computing
costs. Therefore, we downsample the image sequence to
obtain a smaller space size. The down-sampled image
sequence is then fed into the Resnet network. To enhance
the modeling ability of time information, a time-domain shift
module is added to the convolutional layer of the Resnet
network to enhance the representation of time information
in the input image. After the input image sequence passes
through the time-domain shift module and the convolution
layer, the preliminary feature map is obtained. These feature
maps will be further extracted by residuals in the Resnet
network. A stripe pooling module is added behind the
3 x 3 convolution layer of residuals to enhance spatial remote
information. Finally, after the characteristics of the above
processing process, the video data is classified through the
full connection layer and the softmax layer to complete
behavior recognition.

A. SOMETHING-SOMETHINGV1 DATASET
In this section, we first experimentally verify the classifi-
cation accuracy of the proposed TSPNet network on the
Something-somethingV1 dataset. The TSPNet network uses
Resnet-50 as the backbone to fuse the shift module and the
strip pool module. Table 1 shows the experimental settings
and average precision comparison between this algorithm
and various mainstream algorithms on the Something-
somethingV'1 dataset.

The various advanced algorithms in Table 1 are consistent
with the algorithm proposed in this paper, and all use
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TABLE 1. Comparison table of algorithms in Something-somethingV1
dataset.

Model Backbone Network Pre-Training Accuracy(%)
TSN[6] BNInception ImageNet 193
TSN[6] ResNet-50 ImageNet 19.7
TRN-Multiscale[9] BNnception ImageNet 3356
ECO[22] BNInc+3D Resls Kinetics 414
NL I3D[18] 1D ResNet-50 Kinetics 44.4
MFnet-C50[23] ResNet-50 Kinetics 40.3
TSPNet(our) ResNet-50 Kinetics 45.8

TABLE 2. Experimental results of different design models of
Something-somethingV1 dataset.

Model Topl(%) Top5(%) Topl5(%) Top20(%)
Accuracy Accuracy  Accuracy  Accuracy
Resnet50 17.88 43.92 68.27 68.27
Resnet50+SPM 18.21 44.19 68.78 68.78
Resnet50+TSM 44.07 73.31 88.40 88.40
Resnet50+SPM+TSM 44.32 74.00 89.13 89.13

only RGB frames as network input. Compared with the
basic network model of TSN [6], the model proposed in
this paper is improved by about 25%. Compared with 2D
convolutional neural network models such as Non-local
and TRN, it still shows great advantages in the case of
low frame number input. Compared with 3D backbone
extraction networks such as ECO and I3D, the present
algorithm utilizing the 2D backbone networks also has
higher classification accuracy. The TSPNet algorithm model
completes spatio-temporal information extraction, leading to
improved behavior recognition and classification accuracy.
The first set of experiments shows the classification accu-
racy of the TSPNet network on the Something-somethingV'1
dataset. The second set of experiments will verify the
effectiveness of each module of the network, such as the
channel shift module and the strip pooling module. Table 2
below is the experimental data corresponding to the CMC
curve on the Something-somethingV1 dataset.
High-efficiency clipping is used in the experimental test.
The second row of the algorithm in the table is the Resnet-
50 and the strip pool module SPM fusion network. The third
row is the Resnet-50 and the time domain shift module TSM
fusion network, and the fourth row is Resnet-50 Integrate
with TSM and SPM modules. According to the experimental
results, it can be seen that the Topl accuracy of the network
with SPM on something-something V1 dataset is about 0.3,
0.7, and 0.8 percentage points higher than that without
the SPM module. Compared with no TSM module added,
Topl, Top5, and Top20 increased by about 16.1, 29.8, and
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20.3 percentage points, respectively. Adding the two modules
of TSM and SPM, the accuracy rates of Topl, TopS, and
Top20 are up to 44.32%, 74.00%, and 89.13%. The research
shows that adding the stripe pool module enhances the
network’s ability to extract long-range context information,
thereby improving the accuracy of the final classification.
Regardless of whether the channel shift module is added to
exchange adjacent frame information based on Resnet-50 or
Resnet-50+SPM, the timing information can be effectively
extracted, which significantly improves the classification
accuracy.

It can be seen from the two sets of experimental results
on the Something-somethingV1 dataset: (1) For behavior
recognition pre-training dataset, the large-scale image clas-
sification dataset ImageNet or the behavior dataset Kinetics
are generally selected. The backbone network is chosen from
deep neural networks, such as the Resnet series and Inception
series, as well as their deformations, such as 3D patterns.

(2) It can be seen from the second set of experiments
that the addition of the SPM module and the TSM module
can improve the network’s classification accuracy to a
certain extent. The introduction of the SPM module can
effectively model long-distance contextual relationships and
complement the backbone network. The TSM module
extracts timing information by exchanging adjacent frame
information to expand the temporal receptive field, while the
channel shift module significantly extracts features.

(3) Compared with other mainstream algorithms, the
TSPNet network with spatiotemporal feature fusion has
certain advantages in the classification accuracy of this
dataset. Compared to the 3D CNN network method, TSPNet
is based on the 2D CNN architecture, which is less costly
in terms of the number of parameters and the amount of
computation. In addition, TSPNet has certain advantages in
recognition accuracy. The relevant content is stated in the
conclusion of our manuscript.

B. JESTER DATASET

On the gesture behavior recognition dataset, this paper sets
up three groups of experiments. The basic conditions of
the experiment are roughly the same as the Something-
somethingV1 dataset. After fine-tuning the network, the
model is saved, trained, and tested using an average of 3 clips.
First, the initial set of experiments verifies the classification
accuracy of TSPNet on the Jester dataset. This involves
utilizing a spatiotemporal long-distance modeling network
that combines channel shifting and strip pooling. The study
also includes a comparison with existing algorithms using this
dataset.

From Table 3, it can be concluded that the TSPNet
proposed in this paper can achieve a classification accuracy of
96.89% on this dataset. The accuracy rate of Multiscale TRN
when choosing 10-crops during the test is still about 1.5%
different from that of TSPNet. Additionally, the SlowFast
frame rate network with 3DResnet-50 as the backbone
network is about 2% higher. Compared with 2D multi-scale
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FIGURE 6. Schematic diagram of strip pool modeling speed.

TABLE 3. Performance of algorithms on the Jester dataset.

Model Backbone Network Top1(%)Accuracy
3D-Resnet1 01124 3DResnet-101 85.98
ECORa BNInception-4a+3DRes 93.82
MEFNett??] BN Inception 96.68
SlowFast24 3DResnet-50 94.46
TPRE] BN Inception 95.34
Multiscale TRN(10 crops)®] BN Inception 95.31
TSPNet(ours) Resnet-50 96.89

TABLE 4. Experimental performance on a dataset with or without a pool
of strips.

Whether to use the

Data Set Parameter(M)  Top1(%)Accuracy  Top5(%)Accuracy
stripe pool module
Jester No 23.56 95.59 99.80
Jester yes 32.39 95.61 99.80

time series inference models such as TRN and ECO, the
module has a better effect on extracting spatio-temporal
information and achieves higher classification accuracy.

The second set of experimental settings validates the effect
of the strip pool module on the overall network. The feature
extraction is carried out through the basic network fusion
channel shift module. The experiment is carried out under the
condition of keeping a single variable. The Table 4 shows the
Top! and Top5 recognition accuracy of the network with and
without strip pooling on the dataset.

Compared with the mainstream algorithms, the TSPNet
network has excellent accuracy. From Table 4, it can be
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concluded that adding the stripe pool module increases the
amount of parameters to a certain extent. The 3DResnet-50
network model parameter is 48M, which is much less than
the model parameter of this algorithm. But the network
in Resnet-504+TSM mode already has a relatively good
performance. Adding the strip pooling module on the
Something-somethingV1 dataset will increase by about
0.3%. The network classification accuracy of adding the
strip pooling module on the Jester dataset is the same.
Based on this, the performance on the Jester dataset does
not indicate that the strip pooling module does not extract
long-range contextual features. This paper mainly considers
the difference between the two datasets. For the Something-
somethingV1 dataset, it pays more attention to the temporal
relationship and interaction relationship. The extraction of
long-distance context information is beneficial to the feature
extraction of long-distance interaction relationships. The
simple schematic diagram is shown in Figure 6. However,
the background of the Jester dataset is relatively single,
without obvious long discrete regions, and lacks interaction.
Therefore, there are differences in the improvement of
network accuracy.

The third group of experiments in this section sets the
effect of different channel shift ratios on the network model.
First, Resnet-50 is selected as the primary network, and a
single variable is maintained for experiments. The sum of the
two-way motion ratios is set to 0, 1/16, and 1/4, respectively.
The classification accuracy on the Jester dataset is shown in
Figure 7 below.

The channel shift ratio depicted in the figure is calculated
according to the sum of the bidirectional shift ratios of
adjacent frames. It can be demonstrated that the model
classification accuracy rate is 82.08% when the channel shift

VOLUME 12, 2024



D. Sun et al.: Video Behavior Recognition Model Based on Spatial Long-Distance Modeling Combined

IEEE Access

100
——@—Shift ratio and accuracy
95. 31 i

9% / 95.59
>
o
2 90
=]
o
(s}
<

85

82. 08
80 T T T T T
0.00 0. 05 0.10 0.15 0.20 0.25

Store shift channel scale

FIGURE 7. Chart of channel shift versus accuracy on the Jester dataset.

module is not used. Furthermore, when the channel shift ratio
is only 1/16, the accuracy rate increases to 95.31%. As the
shift ratio increases, the classification accuracy also increases
to a slight degree. When the shift ratio is 1/4, the accuracy
rate is 95.59%. However, it is not the case that the higher
the shift ratio, the better. Furthermore, the corruption of
channel information is also a consequence of out-of-memory
conditions.

In this experiment, a 1/4 shift ratio is selected as the
basic setting. In comparison to the shift ratio, the presence
or absence of the shift module exerts a more pronounced
influence on the network. The channel shift module extracts
effective timing features by exchanging some adjacent
frame information, thereby improving the classification
accuracy.

IV. CONCLUSION

To enhance the geographical and temporal scope for the
extraction of long-range context information, this research
proposes a video behavior recognition TSPNet network
that integrates temporal features with long-range spatial
modeling. The process of channel shift is adopted to
extract temporal and action-related information from video
data, which is subsequently exchanged with adjacent frame
picture information following the extraction of pertinent
features. The narrow and long kernels of a strip-pooled
variety are conducive to the extraction of contextual and
long-range spatial information. The experimental results on
the Something-somethingV 1 and Jester datasets demonstrate
that the network with the temporal shift module is capable of
efficiently extracting temporal motion information, offering a
significant advantage over the basic network. The SPM strip
pool module performs a comparable function in the network.
The integration of the SPM into the network enhances the
classification accuracy of the data set that contains interactive
information. The video action detection method adopts time
series characteristics and long-distance spatial modeling to
extract a comprehensive set of spatiotemporal data. The
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utilization of strip pools and channel shifts can enhance
the accuracy of video action identification, providing a
foundation for future research into video action recognition
systems. The proposed method is constrained by its reliance
on a two-dimensional convolutional neural network (CNN)
architecture, which does not fully leverage the latest research
methodologies, such as transformer structures. Moreover,
the module under investigation in this research displays a
residual structure and lacks any structural innovation. Future
research should address the following areas for potential
enhancement: to begin, it is possible to examine the advances
that have been made in the field of residual module structure.
One such advance is the grouping of convolution and multi-
scale convolution. Secondly, the Transformer structure can
be adopted to integrate global data at the network’s edge.
It is important to note that the Transformer structure will
result in increased computing costs. Furthermore, it would
be beneficial to investigate the potential of incorporating 3D
CNN modules into the 2D CNN design, with the objective of
enhancing the capacity to extract space-time data.
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