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ABSTRACT The early detection of neurodevelopmental disorders in newborns is of utmost importance
in clinical practice. Recently, to predict the neurodevelopment scores in preterms, Artificial Intelligence
(AI) methods have been proposed mainly based on Electroencephalographic (EEG) or heart rate variability
(HRV) analysis. In this work, HRV measures of preterm newborns with and without Sepsis are computed
and used as input features of AI regression models. The study assesses the reliability of such features
in predicting BAYLEY-III scores obtained during the clinical follow-up at 6- and 12-months. Forty-eight
preterms (gestational age 27.8±1.8 weeks) were involved, 27 of which were diagnosed with Sepsis. HRV
analysis was performed on ECG signals recorded at the corrected term age. BAYLEY-III score prediction
was implemented, consideringHRV features as input predictors of ensemble regressionmodels.Models were
validated using the Leave-One-Subject-Out (LOSO) framework. Encouraging results were achieved, with
a Mean Absolute Error (MAE) < 5 points for the Sepsis group in the BAYLEY-III cognitive and language
scales at 6- and 12-months. Preliminary results suggested that the autonomic nervous system development
may be linked to central nervous system maturation. HRV features, and AI regression models could predict
alterations that affect the correct neurodevelopment of newborns.

INDEX TERMS BAYLEY-III, entropy, HRV, neonatal sepsis, neurodevelopment, preterm, support vector
regression.

I. INTRODUCTION
Almost 15 million infants are born each year prematurely,
about 10% of the worldwide neonatal population [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu .

In Neonatal Intensive Care Units (NICUs), at least 33% of
hospitalizations are related to preterm newborns. The preterm
birth rate, defined as the ratio between preterm births and
the number of newborns born alive, increased from 9.6% in
2005 [2] to 11.1% in 2010 [3]. The risk of death increases in
newborns with gestational age (GA) lower than 34 weeks [4].
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Moreover, neonatal death mainly occurs during the first
week of life (almost 80% [5]). The survival rate of preterm
newborns varies worldwide: in developed countries, the
percentage of survived newborns after the first week, with a
GA lower than 28 weeks, is 90%. Instead, in underdeveloped
countries, this percentage drops to 10% [6].
A preterm birth may carry several complications, such

as Necrotizing EnteroColitis (NEC) or Broncho Pulmonary
Dysplasia (BPD), which are the most common causes of
neonatal death, with almost 3 million deaths per year [3].
Among the death causes, Sepsis represents the third most
common cause for newborns [7].
In adults, Sepsis is defined as a life-threatening organ dys-

function caused by a dysregulated response to infection [8].
For newborns, still, a unique and shared definition of neonatal
Sepsis does not exist [9], [10], [11].

The clinical signs of a neonatal infection are numer-
ous, unspecific, and challenging to be detected. Recently,
improvements have been achieved in managing and treating
preterm newborns with Sepsis, and the survival procedures
increased the percentage of survivals. However, preterm
newborns are more sensitive to neurodevelopmental delay or
diseases when compared to at-term newborns [12]. More than
25% of newborns with GA between the 28th and 32nd week
show a neurodevelopment delay, usually related to several
degrees of impairment [5]. Recently, it has been argued
that Sepsis may negatively impact the neurodevelopment of
surviving newborns. It may cause significant alterations of
the cerebral networking in the neonatal period and could
harm brain development [13], [14], [15], [16]. Furthermore,
the early detection of neurodevelopmental disorders or delay
is of utmost importance in clinical practice, the first two
years of life being the most vulnerable and critical period
of neurodevelopment [17]. Thus, the newborn at risk or
with sepsis-related damages should be identified as soon as
possible to define the best neuro-rehabilitative program [17].
The clinical staff often uses neurodevelopment scales such

as the Bayley Scales of Infant and Toddler Development
or Griffiths Mental Development Scales [18] to monitor
neurodevelopment and detect abnormal behaviours. These
scales generally consist of a list of tests and tasks the
clinicians administer at different follow-up periods, usually
from 3-6 months after birth up to 18-24 months after
birth (considering the corrected age for preterms). Recently,
Artificial Intelligence (AI) methods were proposed to
predict neurodevelopment scores, mainly based on Elec-
troencephalographic (EEG) signals recorded from newborns
during or immediately after their stay in NICU [19], [20].
Thus, these methods could support the clinical staff in the
early detection of newborns at risk of neurodevelopmental
disorders. Moreover, neurodevelopment itself is altered by
preterm birth [21], and changes could be detected by the
analysis of the Autonomic Nervous System (ANS) [22].
Precisely, Heart Rate Variability (HRV) analysis reflects
changes in ANS activity and can provide information about
the development of newborns [23]. HRV analysis can be

obtained by Electrocardiographic (ECG) signals that are
less invasive and cheaper than EEG. Furthermore, previous
studies have suggested the associations between HRV and
neurodevelopmental outcome [24]. However, only a few
studies have investigated HRV dynamics and AI methods
to predict neurodevelopmental scores [23]. This work is the
first study concerning HRV analysis, BAYLEY-III scores and
AI regression models for newborns suffering from Sepsis.
We evaluated if HRV parameters applied as input features
of regression models may provide a reliable estimate of the
BAYLEY-III score during follow-ups at 6 and 12 months
for preterm newborns with and without Sepsis. This work
is organized as follows: Section II describes the dataset, the
pre-processing applied to ECG signals, the extracted features,
and the validation scheme applied to regression models to
evaluate their performance in predicting BAYLEY-III scores.
In Section III, the results are shown. Sections IV and V
discuss the results and conclusions about using HRV features
to predict neurodevelopmental scores.

II. MATERIAL AND METHODS
A retrospective dataset of ECG recordings was collected
at the Neuro-physiopathology and Neonatal Intensive Care
Unit of Careggi University Hospital (Firenze, Italy). ECG
signals were recorded using the Nemus ICU Galileo NT
Line system - EB Neuro S.p.A. (Firenze, Italy). The dataset
was collected in the years 2018 - 2023. Preterms with a
GA lower than 37 weeks were initially included in the
study. Infants with congenital brain malformations or severe
brain injury defined as the occurrence of intraventricular
haemorrhage ≥ 3 grade and cystic periventricular leukoma-
lacia were excluded. ECG signals were recorded within time
windows of about 54±9 minutes, with a sampling frequency
of 128Hz. The ECG signal is recorded with pre-gelled
disposable surface electrodes placed on intact and clean
skin of a bone surface. The recording follows the peripheral
bipolar lead D1. The landmarks are identified between the
right clavicle (negative pole) and the left clavicle (positive
pole). The study was performed according to the Declaration
of Helsinki and approved by the Institutional Review Board
of Careggi University Hospital, Firenze, Italy (Local Ethical
Committee approval code: DOL1 01/2018), for all newborns,
parents or guardians provided written informed consent.
It involved 64 preterm newborns with gestational age (GA)
between 24 and 31 weeks (27.8±1.8 weeks). None of the
considered newborns had heart disease, which could affect
the study results. The age of newborns at the time of ECG
recordings was between 37 and 43 weeks (38.5±1.5 weeks).
However, only 48 out of 64 subjects were considered,
as the ECG signals of 16 subjects were corrupted by
noise. Moreover, 27 out of 48 patients had Sepsis during
hospitalization. The distribution of cases between Sepsis (S)
and No-Sepsis (NS), as far as the age at the time of the
recording (i.e. the postmenstrual age PMA), gender, and the
GA, are shown in Figure 1. Further details about the subjects
involved in the study are reported in Table 1. Pearson’s χ2 test
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and Mann-Whitney tests confirmed no statistical differences
as far as gender, GA and age are concerned between the
two groups considered: S and NS (Table 1, Mann-Whitney
test, level of confidence 0.05). Because this is a retrospective
study, the exact PMA when these infants had Sepsis was not
recorded for all the infants. Therefore, this information was
not included in the study.

The BAYLEY-III scales were administered by an expert
psychologist at Careggi University Hospital, Firenze, Italy.
Each BAYLEY-III scale comprises different items, and their
administration is flexible but with a standard order.Moreover,
the number of items varies according to the subject’s age.
For example, the cognitive scale (maximum number of items
91) evaluates elements such as the development of spatial
exploration, memory, manipulation, the relationship between
objects and concepts, and information comprehension. It is
usually the first administered scale and requires a good
capacity of participation of the involved subject. According
to the BAYLEY-III tests, scores below 85 and 70/75 denote
a moderate or severe impairment, respectively [18], while
scores between 85/90-100 and higher are associated with
normality conditions. The cognitive, language, and motor
scores were collected at 6-month and 12-month follow-ups.
Table 2 shows the BAYLEY-III scores. As this study is still
ongoing, only the scores at 6 and 12 months of life were
available for a large enough number of infants.

Regarding ECG, the Bayley-II scores of each domain
were available for the whole dataset at six months, while
at 12 months, scores were available for 38 subjects only.
As shown in Table 2, statistically significant differences in
BAYLEY-III scores were found between the two groups
for the cognitive and language scales at 6- and 12-months,
respectively (Mann-Whitney test, level of significance 0.05).

A. HRV ANALYSIS
For HRV analysis, a sliding time window of 5 minutes
duration without overlap was applied on the entire record-
ing [25]. Then, inter-beat-interval (IBI) time series were
obtained using the Pan-Tompkins algorithm [26]. Besides the
exclusion of the subjects with ECGs corrupted by noise, for
the remaining subjects, the time windows with ectopic beats
or QRS detection errors were visually evaluated and excluded
before the HRV feature extraction step.

The evaluation was done considering at the same time
the tachogram, the original 5-minute ECG window and
its corresponding R peak detections. This analysis was
performed using the MATLAB version of the Pan-Tompkins
algorithm proposed in [27].
According to [28], [29], and [30], 82 HRV features were

extracted to characterize the newborn’s ANS. Specifically,
the following features for all the 5-minute windows of each
subject were considered:

• Time-domain features: Heart Rate (HR), standard devia-
tion of RR intervals (SDRR) and successive differences
(SDSD), percentage of successive RR intervals >50ms

(pNN50), root mean square of successive RR interval
differences (RMSSD), HRV triangular index (TRI),
Triangular Interpolation of the NN interval histogram
(TINN), Poincarè plot standard deviation along the line
of identity (SD2), SD1/SD2, where SD1 is the Poincarè
standard deviation perpendicular to the line identity
(SD1SD2ratio), and correlation dimension (CD).

• Frequency-domain features: the absolute power of Very
Low Frequency (VLF), Low Frequency (LF) and High
Frequency (HF), relative power for LF and HF (pLF and
pHF), total power (TP) and LF to HF ratio (LF/HF).

• Entropy-domain features: approximate entropy (ApEn),
multiscale sample entropy from scale 1 to scale
20 (MSE1 · · · MSE20) [31], multiscale distribution
entropy from scale 1 to scale 20 (MDE1· · ·MDE20)
[31], multiscale fuzzy entropy from scale 1 to scale 20
(MFE1 · · · MFE20) [31] and Bubble Entropy [32]. The
Complexity Index (CI) [33] for MSE, MDE and MFE
was also computed.

Time- and frequency domain features were computed
using the tool proposed in [34]. According to [31], [35], and
[36], the frequency ranges were adapted to the neonatal case,
the LF range was set to 0.04Hz - 0.3Hz, and the HF range
to 0.3Hz −1.3Hz. For the VLF, the following range was
considered: 0.003Hz - 0.04Hz. For multiscale entropy, the
coarse-grained procedure was applied [31], [33]. For all the
entropy indexes, including ApEn, the embedding dimension
was set to m=2. For MSE, a threshold value r=0.2 of the
standard deviation of the epoch was considered. For MDE,
the number of bins was set as B=512. For MFE, the exponent
n was equal to 2 [31]. After the extraction of HRV features,
the following statistics descriptors were applied to each
subject: mean, median, standard deviation (std), kurtosis,
skewness, and interquartile range (iqr) [28]. Thus, each HRV
feature provided six different statistics descriptors. A matrix
of size Nx492 was obtained, where N is the number of
patients (48 at 6 months and 38 at 12 months), and 492 is the
number of statistics descriptors extracted from the original
HRV features. This high number of features was considered
because, to the best of our knowledge, this is the first attempt
at employing HRV features to a regression problem to predict
the BAYLEY-III scores in newborns with Sepsis. Combined
with feature selection methods, these features are evaluated
as input for the HRV-based regression models described in
section II-B.
In Figure 2, a diagram resumes the main steps for the

HRV feature extraction described in the current subsection.
Moreover, in Figure 2, an illustrating example for each step
from a single subject is shown (as HRV features, the HR one
and its statistics descriptor are reported).

B. REGRESSION ANALYSIS
Only the training features were normalised before performing
the regression model validation (Z-score). Figure 3 shows the
implemented training and validation process workflow.
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FIGURE 1. Histogram distribution of the ECG cohort. (a) The age in weeks at the time of ECG recordings for Sepsis and No-Sepsis cases.
(b) the GA distribution for Sepsis and No-Sepsis cases.

TABLE 1. ECG dataset details, µ=mean, σ=standard deviation.

TABLE 2. BAYLEY-III scores for all the sub-scales for both groups: Sepsis (S) and No-Sepsis (NS). The p-value is related to the Mann-Whitney test. Iqr =

interquartile range, m=months. (*) denotes a significant p-value (< 0.05).

Moreover, the validation sets were modified according to
the training statistics to avoid data leakage. Then, the highly
correlated predictors were removed by applying a threshold
equal to |0.80| to the Pearson correlation coefficient of all the
HRV predictors [37], keeping only one for each correlation
pair. The remaining features were ranked using the F-tests
for regression (FSR) [38] or the ReliefF algorithm [39]. FSR
tests the hypothesis that the response values grouped by the
variable predictor values are drawn from populations with
the same mean against the alternative hypothesis that the
population means differ.

Thus, the reordered HRV features were used as input
predictors of support vector regression (SVR) models (lin-
ear and Gaussian) or Ensemble regression models (Bag,
LsBoost) [40]. Briefly, SVR represents the version of the
Support VectorMachine (SVM) for regression problems [41].
They allow a generalization of the classification problem
by estimating a continuous-valued multivariate function that

defines relationships between input and output variables (in
our case, the HRV features and the BAYLEY-III scores). The
transition from SVM to SVR is possible by introducing an
ϵ-region (i.e. a margin of tolerance) around the so-called
ϵ-tube function [42], [43]. This function adapts the opti-
mization problem for SVR, defining a convex ϵ insensitive
loss function that will be minimized to find the flattest tube
that contains most of the training observations [41]. Then,
the multivariate function is built from the loss function and
the geometrical properties of the tube. As in SVM, all the
training observations outside the tube’s boundary are called
support vectors and define the hyperplane. SVR models deal
with both linear and nonlinear feature space. For nonlinear
functions, the observations can be mapped in the so-called
kernel space by applying a nonlinear transformation (i.e. the
kernel function). This work evaluated the linear kernel and
the Gaussian kernel for SVR models. For a more detailed
presentation of SVR theory, please see [41], [42]. Besides
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FIGURE 2. Diagram of the main steps described in Section IIA for the HRV
analysis applied on a single subject. A) The original ECG signal for one
subject. B) One of the 5-minute ECG windows extracted from this subject.
C) A detail of the R-peak detections from the 5-minute window reported
in B) - only 5 seconds are shown for resolution reasons. D) The tachogram
of the 5-minute window. E) The HR values for each window extracted
from the subject - a legend of the related statistics descriptors is reported
in the top right corner.

SVR models, in this work, ensemble models were evaluated.
The first kind of model was the Bootstrap aggregation
(Bagging, i.e. Bag) regressor ensemble model [44], [45].
In this work, the decision tree was considered a weak
learner. Moreover, the predictors for each decision split
were randomly selected for every tree in the ensemble
following the random forest technique. In our case, the final
prediction of BAYLEY-III scores was defined as the average
over predictions from individual weak learners. Furthermore,
in this work, the Least-Squares Boosting (LsBoost) regressor
ensemble was also evaluated [46]. The LsBoost fits to

FIGURE 3. Workflow of the regression model training and validation
procedure.

minimize the mean squared error between the target variable
(Y , in our case, the BAYLEY-III scores) and the combined
predictions of the weak learners (Ypred ). As for the Bag
ensemble, the regression trees were used as weak learners
(B). Weak learners are trained in parallel in bagging while
they learn sequentially in boosting. The algorithm starts with
an initial estimation of the aggregated prediction of the target
variable (Ỹ ) as a function of predictor variables (here, the
HRV features). During each training iteration, the LsBoost
fits a new learner to the difference between the observed
response and the aggregated prediction of all learners defined
in previous steps, according to a learning rate parameter η

(where 0 < η < 1 as defined in equation 1). Furthermore,
the LsBoost algorithm identifies misclassified observations
and adjusts their weights ω to minimize the training error.
Finally, LsBoost combines multiple regression models in a
weighted manner.

Ypred (HRVfeatures) = Ỹ + η

M∑
m=1

ωmBm(HRVfeatures) (1)

where M is the total number of weak learners for a
model. Like a forward selection, it started with models that
considered only the first feature ranked by F-tests or ReliefF
and ended with models that considered all the features. This
operation was performed during validation both for SVR and
Ensemble models.

To evaluate the developed models, the Leave-One-Subject-
Out (LOSO) validation was performed using the Bayesian
Hyperparameter Optimization, searching for the model with
the lowest Mean Absolute Error (MAE, equation 2).

For validating neonatal ML applications, the LOSO
framework is widely accepted in the presence of data
scarcity [47]. Thus, choosing LOSO allowed us to evaluate
and estimate how the models may work in the presence of
unseen data and different subjects. Certainly, using LOSO
reduces possible bias in performance but may increase
their variance simultaneously, depending on the dataset
considered. However, this work aims not to test a system
already validated in clinical practice but to validate a
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preliminary first version of the models on a retrospective
cohort. Therefore, the recruitment of further subjects as
dedicated test sets should be considered to validate the
methods in clinical practice. The number of iterations for
Bayesian Optimization was set up to 500. Furthermore,
the MAE metric was divided into MAE for the S group
(hereinafter MAE1, the MAE of regression models applied
only on subjects with Sepsis) and MAE for the NS group
(hereinafter MAE0). The MAE is defined as follows:

MAE =
1
n

n∑
i=1

|yi − ŷi| (2)

where n is the number of observations evaluated, yi the
i − th observed values and ŷi is the corresponding value
predicted by the regression model. In our case, the predicted
values were the BAYLEY-III scores for each scale. During
the LOSO validation, the following hyperparameters were
optimized:

• For the SVR models: box constraint and kernel
scale [29]. The Box constraint and Kernel scale were
evaluated during the Bayesian Optimization in the
10−5

− 105 range.
• For the Ensemble models: number of learning cycles,
minimum leaf size, maximum number of splits and learn
rate (only for LsBoost models). During the Bayesian
Optimization, the learning rate was evaluated in the
range 0.001 - 1, the number of learning cycles between
10 and 300, the minimum leaf size between 1 and 50,
the maximum number of splits between 1 and the size
of the current training set (e.g., for the cognitive scales
at 6-months, the upper limit was set to 47).

• For both models (SVR and Ensemble): number of
features, number of neighbours of ReliefF [39]. During
the Bayesian Optimization, the number of neighbours of
ReliefF was evaluated in the range of 1 - 15.

The Mean Squared Error (MSE) for both groups and the
R2 parameter was computed to have a complete overview of
the models’ performance. The MSE is defined as follows:

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (3)

R2, also known as the coefficient of determination, is a
measure of the goodness of fit of a regression model. The
R2 formula is reported in equation 4.

R2 = 1 −
SSres
SStot

(4)

where SSres is the residual sum of squares and SStot is the
total sum of squares. An ideal SVR model should obtain
an R2 equal to 1. This validation scheme was repeated for
all the BAYLEY-III scales, generating HRV-based regression
models. In other words, the output of each regression model
was the predicted BAYLEY-III outcome compared with
its real neurodevelopmental scores. Therefore, six different
models were developed (three for the cognitive, language and

motor scales at 6 months and another three at 12 months.)
Moreover, to evaluate the level of agreement [48] between
predictions and real BAYLEY-III outcomes, the Bland-
Altman and correlation plot analysis [49] were assessed
for each HRV-based model. For these evaluations, the
Pearson correlation coefficient (r), the related p-value, the
reproducibility coefficient (RPC) and the limits of agreement
were investigated. The results related to regression analysis
are shown in Section III.

III. RESULTS
This section reports themain results of the regression analysis
described in section II-B. Table 3 shows the results of the
LOSO validation for the BAYLEY-III scales using HRV
features. In Table 3 also 1MAE is reported, defined as
the ratio between the MAE and the difference between the
maximum and minimum values of the BAYLEY-III scores
for each scale.

For the 6-month scores, the lowest MAE value was
reached for the cognitive scale (MAE=4.8). It was obtained
by a Bag regressor (Ensemble Model), with FSR as the
feature selection method and using the following hyper-
parameters: number of learning cycles=83; minimum leaf
size=1; maximum number of splits=9 and number of
features=2. Specifically, the two features used are MSE2
(iqr) and the MDE18 (std). Note that for such a scale,
the MAE was < 5 points both for the S and the NS group.
No statistically significant differenceswere found in residuals
between S and NS groups. However, as shown in Table 3,
MAE1 obtained lower values than MAE0.

Furthermore, we analyzed MSE2 (iqr) and MDE18 (std)
individually in terms of R2 to confirm if this combination of
features via regression is necessary. Interestingly, MSE2 (iqr)
obtained a non-significant R2 (0.02), instead MDE18 (std)
obtained a statistically significant R2 (0.27, p-value e-04), but
still lower than the regression model (Table 3, R2 = 0.44).

Instead, for the 12-month follow-up, the language scale
was the best (Table 3, MAE=5.3 and R2=0.32). It was
obtained by an LsBoost regressor (Ensemble Model), with
FSR as the feature selection method and using the following
hyperparameters: learn rate=0.5488, number of learning
cycles=14, minimum leaf size=12, maximum number of
splits=23 and number of features=2. Specifically, the two
features used are LF (mean) and MFE12 (mean).

As for the 6-month follow-up, we analyzed LF (mean)
and MFE12 (mean) individually in terms of R2. We did not
obtain statistically significantR2 (0.05 and 0.01, respectively)
for both of them. A comparable result was also achieved
for the cognitive scale (MAE=6.0 and R2=0.27). Figure 4
shows the best HRV-based model prediction results obtained
with the LOSO validation among all 6-month follow-ups.
Specifically, Figure 4 illustrates the results for the Cognitive
Scale at 6months, comparing the predicted score with the real
outcomes. The left plot shows the correlation plot, while on
the right, the Bland-Altam plot [49] is reported. In Figure 4,
NS subjects are shown with (◦, blue circles) and S subjects
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TABLE 3. Results of the LOSO validation for all the BAYLEY-III scales considered, using HRV features (m=months). (*) denotes a significant F-value (level
of significance 0.05).FS = feature selection method, nf=number of features used in the best model.

with (⋄, red diamonds), respectively. Similarly, Figure 5
shows the correlation plot and the Bland-Altam plot for
the best HRV-based models obtained with LOSO validation
among all the 12-month follow-ups. Specifically, the results
related to the Language Scale at 12 months are shown.

Furthermore, a statistical analysis evaluated significant
differences between S and NS for each HRV statistics
descriptor introduced in Section II-A. Firstly, the Shapiro-
Wilk test was performed for each comparison to check the
normality assumption. When the normality assumption was
violated, the non-parametric Mann-Whitney test was consid-
ered; otherwise, the two-sample t-test was used. The level of
significance was 0.05. In Table 4, the statistically significant
HRV statistics descriptors are resumed. Noteworthy, most of
them were from the Entropy Domain. Instead, only pLF from
the other domains was found to be significant. For clarity,
most of these features were correlated with each other (e.g.
mean and median features for the same HRV parameter).
To remove redundancy from the dataset, feature selection
methods were considered during the development of the
regressor models (as explained in Section II-B). This analysis
strengthens that differences between S and NS subjects might
exist regarding HRV values and ANS functioning as already
reported in [50] and [51].

IV. DISCUSSION
This work reports a first attempt to apply HRV-based
regression models to predict the BAYLEY-III scores of
newborns with and without Sepsis at different follow-
ups. The research evaluates if the newborn’s electroclinical
characteristics at the corrected term age could predict their
neurodevelopmental scores. Also, preterm newborns with
sepsis episodes during their hospitalization were taken into
account, as Sepsis could affect their neurodevelopment.
Results suggest that the analysis of the ECG signal recorded
when the preterm newborn reached the term age could
support neonatologists or pediatric neurologists in the early
detection of newborns at risk of neurodevelopmental delays.

Results shown in Table 3 suggest that, for some BAYLEY-
III scales, HRV-based regression analysis could predict
the neurodevelopmental scores of the newborns at 6 and
12 months of life. For the cognitive scale at 6 months and
language scale at 12 months, regression models could predict

the BAYLEY scores with an MAE lower or close to 5 points
for the Sepsis group.

Interestingly, as reported in Figure 4, for the Cognitive
scale at 6-month a significant correlation was found between
the predicted score and the real BAYLEY-III outcome
(rho=0.68, p-value=1.3e-07). Instead, a weaker significant
correlation was found for the Language score at 12 months
(Figure 5 rho=0.60, p-value=7.7e-05). This might suggest
that these HRV models are more accurate for estimating
the neurodevelopmental scale closer to the physiological
recordings.

Furthermore, Table 3 shows that the motor scores always
gave the worst performance on all the metrics considered.
It suggests that such scales might not be predictable by
regression methods, and thus, any estimation of such scores
must be considered with caution. However, it was suggested
that BAYLEY-III motor scales, for the considered follow-ups,
tend to underestimate later impairment rates [52].

This study is one of the first studies, which considers
neurodevelopmental scores, regression analysis, and Sepsis.
Similarly, Alotaibi et al. [20] proposed a regression model
to predict BAYLEY-III scores on newborns with hypoxic-
ischemic encephalopathy. They obtained anMAE of 12.07 on
cognitive scores, confirming that the regression analysis
could be a valuable support in the neurodevelopment
assessment. Furthermore, several studies confirmed that HRV
features could predict neurodevelopment-related scales [22],
[24], [53], although most of them considered only univariate
analysis or did not consider newborns with Sepsis.

Since the presented work is a retrospective study, it has
some limitations: ECGs were recorded with a sampling
frequency of 128Hz, which may be considered almost
as the frequency limit for a reliable assessment of HRV
parameters [54]. Therefore, future studies could acquire
ECG signals with higher sampling rates (es. 500-1000Hz).
Moreover, it is well known that HRV parameters may be
influenced by several factors such as sleep stage, infant’s
position and the NICU environment, time after feeding,
as well [55]. Therefore, future studies could include these
factors to investigate their impact on HRV features and
indirectly on predicting neurodevelopment outcomes.

Another limitation of the current study was the visual
quality assessment of the ECG recordings and the R peaks
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FIGURE 4. On the left: the correlation plot for the BAYLEY-III Cognitive score at 6 months. r is the Pearson correlation coefficient, p is the
related p-value, and n is the number of observations. On the right is the corresponding Bland-Altam plot. The dotted line represents the limits
of agreement. RPC is the reproducibility coefficient, SD is the standard deviation, and CV is the coefficient of variation. S=Sepsis,
NS=No-Sepsis.

FIGURE 5. On the left: the correlation plot for the BAYLEY-III Language score at 12 months. r is the Pearson correlation coefficient, p is the related
p-value, and n is the number of observations. On the right is the corresponding Bland-Altam plot. The dotted line represents the limits of
agreement. RPC is the reproducibility coefficient, SD is the standard deviation, and CV is the coefficient of variation. S=Sepsis, NS=No-Sepsis.

detection before the HRV analysis. Future development of
the current methodologies could include automatic tools
for recognising contaminated windows and their correction
in the pipeline before the HRV feature extraction. To the
best of our knowledge, no studies on neonatal applications
exist on this topic. However, previous works on adults have
been investigated [56], and may be considered preliminary
evaluations.

Furthermore, a sleep stage classifier may be included
to split the observations based on belonging to a specific
sleep phase [57]. Mainly, it requires EEG signals that
are not part of the aims of the presented work. Sleep
staging in newborns using HRV features instead of EEG

may represent a remarkable development in this field. The
analysis of newborns with Sepsis and the prediction of their
BAYLEY-III scores by AI models required the analysis of
almost 80 HRV features previously used in other neonatal
applications without considering the statistical descriptors
expansion [58], [59], [60], [61], [62].

Considering the models shown in Table 3, it appears that
bagging models perform better on most of the BAYLEY-III
scores than others. This might indicate that the data or the
weak learners trained exhibited a high variance and low
bias. However, this cannot be considered general because,
for some BAYLEY-III scales (Motor 6m and Language 12m),
LsBoost was the best choice, while SVR obtained the highest
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TABLE 4. HRV features found statistically significant between S and NS groups. iqr=interquartile range, std=standard deviation (level of significance
0.05). (*) denotes the features with a p-value lower than 0.01.

performance for 12-month follow-up on Cognitive scores.
Therefore, it is not possible to assess that a model may
perform better than others in general, varying according to
the BAYLEY-III scale evaluated and the dataset.

However, future studies should evaluate other models
to confirm these results, such as Gaussian Processes or
Generalized Linear Models [61]. Moreover, FSR and ReliefF
were evaluated as feature selection methods here, but
other methodologies could be considered in future studies,
such as LASSO or mRMR [61]. HRV multiscale entropy
features were included in the validated models (MSE,
MFE, and MDE at different scale levels). These findings
confirmed that multiscale entropy indexes for HRV analysis
could add helpful information in evaluating ANS activity
in newborns [63]. HRV entropy features were already
found to be linked to altered cardiovascular dynamics in
newborns [31]. Furthermore, for the 12-month language
scales, the low-frequency feature (LF, statistics descriptor:
mean) was also included in the HRV-based regression model.
In previous studies [55], LF changes were associated with
ANS development. For clarity, it is well known that GA and
the age of newborns at the time of ECG recording can impact
HRV measures. However, as shown in Table 1, no statistical
differences in terms of age between the S and NS groups
were present. Therefore, future studies should check such
differences in their cohort to verify possible effects on HRV
parameters.

Regarding the statistical differences between S and NS
on HRV parameters reported in Table 4, previous studies
already showed possible impairments on ANS for infants
with sepsis [64]. However, they considered only time-
and frequency-domain features on a limited number of
subjects (4 septic and 6 non-septic). Furthermore, the work
presented here also evaluated HRV entropy-domain features
on newborns with Sepsis, obtaining significant differences
for most of them (as shown in Table 4). Recently, multi-
scale entropy features were found helpful in characterizing
ANS in newborns and their neurodevelopment [65], [66].
Moreover, in the literature, several works investigated if HRV
features could predict the sepsis onset [67] or characterizing
differences close to the sepsis event [68]. However, a direct
comparison should be carefully made because our analysis

was performed after the sepsis event and not directly related
to it. In other words, our findings suggested that differences
between S and NS cases regarding HRV values might
exist after the sepsis event, and dedicated models could be
investigated to improve prediction (one for S and another for
NS cases). Unfortunately, the limited number of subjects in
this work made it impossible to evaluate them. Moreover,
our retrospective analysis did not have access to the exact
time of the onset of the sepsis event. Therefore, we did
not consider the delay between sepsis diagnosis and the
time of the ECG recording as a possible confounding effect.
Furthermore, we cannot evaluate if such differences may
have disappeared during the infants’ development. The only
available information was that at 6 months and 12 months,
infants with Sepsis obtained significantly lower scores on
BAYLEY-III scales (as reported in Table 2). All these limits
may explain the partial agreement between predicted and real
BAYLEY-III outcomes as illustrated in the Bland-Altam plots
in Figures 4 and 5. Therefore, future longitudinal ECG/HRV
studies are needed to monitor the possible effects of Sepsis
and determine if the infants may recover from it. It should
be necessary to confirm that Sepsis in preterm infants may
induce changes in the autonomic control of the heart, which
can be measured at term equivalent age, which persist and are
associated with neurodevelopmental outcomes.

To the best of our knowledge, there are currently no results
on this specific topic in the literature. Thus, an optimal
threshold for errors of regression models should be carefully
defined to be reliably valuable in clinical practice. As the
sensitivity of the BAYLEY-III scales is close to 5 points for
our cohort, it is reasonable to consider a model promising
when it provides an MAE (or MAE1/MAE0) value < 5.

Furthermore, most of the newborns considered in our study
had BAYLEY-III scores higher than the threshold usually
considered acceptable to exclude possible neurocognitive
impairments (i.e., ≥ 90, Table 1 and [18]). Therefore,
our methods should be evaluated on a more extensive
set of infants with severe impairments, with BAYLEY-III
scores <75. Significant differences for BAYLEY-III scores
exist between S and NS groups for the cognitive scale at
6 months, as well as for the language scale at 12 months
(Table 2), and these differences are detectable by the proposed
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regression models. However, it is impossible to confirm
whether the differences are due to preterm birth [21], Sepsis,
or their combination. However, even if the variations were
due only to preterm birth, the models could predict such
alterations, allowing early detection of newborns with low
BAYLEY-III scores at 6- and 12- months. Further studies are
required to confirm that Sepsis affects the neurodevelopment
of the involved infants and to evaluate if Sepsis might produce
irreversible brain damage. In fact, it is well known that not
all factors that contribute to neurodevelopmental outcomes
are due to the cause of stay in the NICU. Although in
the literature, several studies have confirmed that Sepsis
may significantly alter neurodevelopment and proper brain
functioning [69]. However, only a few works evaluate which
physiological mechanisms might cause such an effect. Shah
et al. [70] found that Sepsis may alter the white matter
of newborns and that it may produce long-term effects.
Thus, our results confirm that Sepsis may be active in
neurodevelopment. However, further analysis is required to
assess the localization or damaged entities in the Central
and Autonomic Nervous Systems. Regression models must
also be validated on the BAYLEY-III scores relative to
18-24 months of age to assess if and howHRV features might
be able to predict scores of these scales and, thus, different
periods of the infant’s neurodevelopment. The proposed
approach seems promising in predicting scores on the cog-
nitive scale at 6 months and the language scale at 12 months.
Neurodevelopmental tests, such as BAYLEY-III, are often
operator-dependent and present several intrinsic sources of
variability, limits, and pitfalls and tend to overestimate the
infant’s development [71]. Thus, obtaining an almost perfect
correspondence between models’ predictions and ground-
truth scores might be challenging. A possible solution may
be the combination of different evaluations made by several
experts on the same subject. This analysis will be considered
in future research.

V. CONCLUSION
This work exploits AI regression models to predict the
neurodevelopmental scores of preterm newborns with and
without Sepsis. The BAYLEY-III test computed the scores
in three domains: cognitive, language, and motor. The
quantitative HRV analysis was performed on ECG recordings
recorded when the preterm infants reached the term age.
Results are encouraging, giving an MAE lower than 5 points
for the BAYLEY-III cognitive and language scales at 6- and
12-months. Our results confirmed that ANS development
may be linked to CNS maturation and that HRV features
could predict alterations affecting the correct neurodevelop-
ment of newborns. If our results are confirmed, HRV-based
regression models might also be used to support the clinical
staff in the early detection of preterm newborns at risk of
neurodevelopmental delays. Such models could be integrated
into the clinical assessment as a pre-screening test before
administering neurodevelopmental tests planned at different
follow-up periods.
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