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ABSTRACT In the realm of wireless communications, accurate Radio Signal Received Power (RSRP)
prediction serves as the foundation for improving user experience and optimizing network efficiency and
reliability. With the deep integration of Artificial Intelligence (Al) technology and the wireless commu-
nication network, Federated Learning (FL) is considered as a promising approach for enhancing RSRP
prediction while protecting user data privacy in the upcoming of 6G network. However, in practice, the
heterogeneity of User Equipment (UE) environments and the limitations of UE communication bandwidth
and computational capabilities can lead to poor model performance and inefficient model interactions in FL.
To address these challenges, this paper proposes a Multi-head DNN based FL algorithm for RSRP prediction.
The experimental results show that the proposed algorithm can enhance both RSRP prediction performance

and communication efficiency.

INDEX TERMS Wireless communication, RSRP prediction, federated learning, 6G network.

I. INTRODUCTION

The rapid evolution of communication network has witnessed
remarkable achievements with the advent of Fifth-generation
(5G) and Fifth-generation Advanced (5GA) [1]. As the 5G
landscape continues to flourish, the industry has already
embarked on the journey towards the Sixth-generation (6G)
[2]. As an important metric in cellular networks, RSRP
prediction also plays a crucial role in ensuring system
robustness and efficiency in the future 6G network. Due
to network densification, environment complexity and UE
mobility, RSRP typically exhibits a high degree of random-
ness. The accurate estimation and prediction of RSRP have
far-reaching implications, encompassing network optimiza-
tion, resource allocation, handover management and overall
network performance enhancement [3]. The lack of accurate
RSRP prediction may lead to issues such as network perfor-
mance degradation, resource wastage, and deterioration of
user experience. Thus, RSRP estimation and prediction is a
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fundamental and typical use case in wireless communication
networks.

To meet the requirements brought by diversified emerging
network services, the 6G wireless network is envisioned to be
integrated communication with Al. The computational capa-
bilities will be ubiquitous throughout the network including
end devices and the edge side of wireless communica-
tion network [4]. By leveraging the capabilities of Al, the
accuracy and efficiency of RSRP prediction can be further
improved. In recent years, in order to facilitate the intelli-
gent evolution and the deployment of Al algorithms in the
radio access network (RAN), the open-radio access network
(O-RAN) alliance designed the Radio Intelligent Controller
(RIC) platform, a key element in RAN architecture to achieve
monitoring and control of wireless network [5]. RIC platform
can be classified into non-real-time RIC (non-RT RIC) and
near-real-time RIC (near-RT RIC) based on the processing
latency characteristics. The near-RT RIC uses E2 interface
to communicate with Base Stations (BSs) and can apply Al
technology to use cases through centralized data processing
and model training and inference [6].
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The future trend in network deployment involves utilizing
Al technology for RSRP prediction, which is essential in 6G
network. Many studies have focused on the Al based RSRP
estimation and prediction [7], [8], which predominantly rely
on centralized Al methods. However, the conventional cen-
tralized data collection and model training methods struggle
to fulfill the stringent demands of ultra-low latency and
consumer data privacy. Similar to the conventional central-
ized training method, centralized RSRP prediction also faces
challenges such as high latency and poor privacy protec-
tion. Hence, the distributed machine learning approaches are
poised to find extensive utilizations in 6G network where
computational capabilities will be widely dispersed among
UEs and network and heightened focus will be placed on
user data privacy. As a prominent representative of distributed
machine learning approach, federated learning has garnered
extensive attention in academia and field of communications
due to its notable advantages [9]:

o Privacy preservation: During the process of FL, the
clients update the model using their local data and
upload the updated model instead of their private raw
data.

o Low latency: Since both model training and inference
decisions take place at the edge side in FL, latency can
be significantly reduced to some extent.

o High resource utilization: Unlike centralized training,
FL efficiently leverages the computational, storage, and
communication resources of UE and network edges.

Recently, there has also been researches proposing the
use of federated learning to train wireless signal strength
including RSRP prediction models [10], [11], which primar-
ily emphasize the privacy preserving characteristic of FL.
However, in addition to user privacy preserving, it is crucial to
focus on addressing the performance degradation of federated
models due to disparate data distributions among different
users and the feasibility of deploying complex models in real-
world network. In mobile communication network, one of
the primary reasons for varying user data distributions is the
differing geographical locations of users. This can potentially
result in non-independent and identically distributed (non-
IID) data among member UEs. A simple solution is to use
multiple DNNs, each corresponding to a geographic area.
However, using multiple models in FL scenario demands
considerably higher computational sources. The practical
deployment feasibility of FL algorithms should primarily
consider the overall communication bandwidth and the com-
plexity of machine learning (ML) model because of the
limited communication and computing resources of UEs.

This paper takes into consideration the capabilities of near-
RT RIC, including AI model inference, decision-making,
QoS management, and its low processing latency. Conse-
quently, we proposed the FL. framework based on near-RT
RIC in wireless communication leveraging the near-RT RIC
as the central server in the context of FL to aggregate the
local updates uploaded by FLL member UEs. And to tackle
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the performance degradation problems while minimizing
communication and computing costs as much as possible,
we propose a novel FL approach within the framework of FL
called Multi-head DNN based federated learning (abbrevi-
ated as Multi-head FL). The main contributions of this paper
are summarized as follows:

+ We design a federated learning framework based on the
O-RAN architecture, which leverages near-RT RIC with
robust Al capabilities and low latency to enhance the
efficiency of federated learning.

o We propose a novel FL approach, called Multi-head
DNN based federated learning (Multi-head FL), not only
to address the global model performance degradation in
RSRP prediction caused by variations in geographical
locations and environmental differences among different
user data, but also to reduce the overall communication
costs.

o We compare the RSRP prediction performance and the
overall communication costs of the proposed Multi-head
FL algorithm with the federated averaging (FedAVG)
algorithm [12]. The results indicate that the Multi-head
FL algorithm can reduce the global test loss by up to
38.6%, and can reduce communication costs by up to
62.7% compared to FedAVG.

The rest of the paper is organized as follows. Section II
presents some existing research on RSRP prediction and FL.
We describe the RSRP prediction scenario in Section III.
Section IV recalls the principles of FedAVG firstly, and
then illustrates the details of our proposed Multi-head FL
approach. The experimental results and comparative analysis
are presented in Section V. In Section VI, we conclude this

paper.

Il. RELATED WORKS

Early RSRP prediction methods involved channel modeling
based on theories such as electromagnetic propagation, geo-
metric optics, and uniform diffraction. These methods rely
on extensive empirical data to fit the relevant parameters.
The most representative methods include Cost 231-Hata,
Okumura, Volcano, etc. [13], [14], [15] But the traditional
methods are constrained by complex propagation environ-
ment and require a substantial amount of additional measured
data to correct the propagation model. In contrast, employing
ML methods for RSRP prediction can reduce system com-
plexity and unearth hidden features within the measured data.
Many studies have been dedicated to using data-driven ML
model for RSRP prediction [16], [17], [18].

However, all of the above RSRP prediction methods are
based on the centralized intelligence. In the recent past, given
the concern over user privacy, few studies have leveraged
federated learning technology into RSRP prediction. The
author in [19] utilizes UEs’ location information in the con-
text of FL to predict RSRP and brings a privacy-preserving
approach with differential privacy (DP) against possible
privacy attacks. Reference [20] compares several so-called
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FIGURE 1. Reference system architecture of FL in wireless network with RIC platform as central server.

FL-native mechanisms including FedAVG and Federated
SGD (FedSGD) and additional privacy preserving techniques
such as DP and Secure Aggregation on two different datasets
for RSRP prediction. However, while privacy-preserving is
important in future wireless network FL, it is also crucial
to address the performance degradation of FL. model caused
by the differences in user data characteristics, such as geo-
graphical location and environment factors in practical RSRP
prediction scenarios. Additionally, challenges related to the
feasibility of algorithms due to limited capabilities in terms
of UEs’ communication and computing should be given due
consideration.

Due to the broad applicability of FL, there is a signif-
icant level of interest and rapid research progress in the
academic field. Reference [12] introduced FedAVG, one of
the most commonly used algorithms in federated learning,
and it serves as the primary object of comparison in this
paper. In this context, we also present some other relevant and
outstanding FL algorithms. Reference [21] proposed Local
Global Federated Averaging (LG-FedAVG) that combines
local models with a global model, which not only reduces
communication costs but also enhances flexibility in han-
dling heterogeneous data. But this method requires each FL
member to maintain an additional local model, which may
have limited practicality for UE. Reference [22] proposed
Multi-model FedAVG (Multi-FedAVG) and the experiment
proves that the performance is not worse than that of a single
model FedAVG. But for multi-model settings, the slow global
convergence speed may increase the overall communication
costs.

Unlike multiple DNNs, multi-head DNN is a single DNN
augmented by multiple head models. The multi-head DNN
can adapt multi-feature learning tasks, mitigate overfitting,
and enhance overall model performance. Moreover, com-
pared to multiple DNNs, multi-head DNN can significantly
save computational resources [23], [24], [25].
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Based on an analysis of many existing FL algorithms and
drawing inspiration from the multi-head DNN, we believe
that the integration of FL with Multi-head DNN can effec-
tively address all of the aforementioned challenges. In this
paper, we propose a Multi-head FL algorithm and validate the
effectiveness through experimental results. The results show
that the Multi-head FL algorithm can reduce the global test
loss by up to 38.6%, and can reduce communication costs by
up to 62.7% compared to FedAVG.

Ill. SYSTEM ARCHITECTURE AND PROBLEM

FORMULATION
This section introduces the reference system architecture of

FL in this paper and provides a detailed description of the
RSRP prediction problem addressed in this paper.

A. SYSTEM ARCHITECTURE
Currently, most FL architecture in wireless communication
system are implemented with the base stations serving as
the FL servers [9]. However, FL typically involves a wide
scope and a large number of users where different users may
be connected to different base stations. If we select one of
the connected base stations serving as FL server, it would
involve frequent interaction between multiple base stations
to transfer model weights for every epoch of FL, leading to
inefficient communication in the entire FL procedure. There-
fore, this paper proposes using near-RT RIC as the FL server
to improve the communication efficiency. During the FL, all
member users directly upload their locally updated model
weights to near-RT RIC through the E2 interface between the
connected base station and near-RT RIC, eliminating the need
for model weights interaction between different base stations.
As illustrated in Figure 1, an O-RAN architecture based
FL framework is considered, which consists of a near-RT
RIC, users and base stations. With the capabilities of Al
model inference, decision-making, QoS management, and
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FIGURE 2. (a) Schematic map of the experimental area. (b) Schematic
diagrams of sub-areas and grouped areas.

low-latency processing, the near-RT RIC plays the role as
the central server in the context of FL to aggregate the local
updates uploaded by FL. member UEs and distribute the
aggregated global model to the members of next round. The
base stations connect to the near-RT RIC via the O-RAN
E2 Interfaces, and provides the wireless access capability for
UEs. As the FL. members, some UEs are selected to perform
local training in each round of FL training, and send their
updated local model weights to the near-RT RIC through base
station forwarding.

B. PROBLEM FORMULATION
There are total M = 90 users and B = 4 base stations in a
specific 400m*400m area, as shown in Figure 2a. Each user’s
raw training dataset is sourced from Huawei ModelArts plat-
form, and shares the same features and labels. The raw data
of i-th user can be represented as follow:

Di = {(k, ks hB R B Y =1 Ky ()

i 0t

where k denotes the k-th sample in a local training dataset,
and K; denotes the total number of samples of the i-th user’s
local training dataset. Each raw data sample consists of a
6 dimensional array. The input features lf-‘ = [xf, yf-‘ ] consist
of two dimensions, representing the horizontal and vertical
coordinates of the measurement point within the area. The
labels rf.‘ = [rik ’1, rf ’2, rl.k ’3, rl.k ’4] include four dimensions,
representing the RSRP values between the user and the four
base stations at the coordinate.

In order to better capture the distributed features and
the spatial heterogeneity within mobile communication net-
works, the specific area is divided into 25 sub-area, each
identified by numbers 0 through 24. The 90 users are divided
into 9 different groups. To simplify the problem and empha-
size the regional characteristics of user data, it is assumed that
the 10 users in the same group will only move within a fixed
subset of the sub-areas. Each group of users is confined to
a square moving area of 240m*240m, which includes 9 sub-
areas. The user groups with adjacent group number have their
moving areas arranged sequentially.

For example, the first group of users will only move within
the red area in Figure 2b (the sub-area numbers O, 1, 2, 5, 6,
7,10, 11, 12) while the second group of users will only move

97536

TABLE 1. Detailed user grouping and the corresponding sub-area
numbers for each user group.

Userlgroup User ID Moving sub-areas
0 0~9 0,1,2,5,6,7,10,11,12
1 10~19 1,2,3,6,7,8,11,12,13
2 20~29 2,3,4,7,89,12,13,14
3 30~39 5,6,7,10,11,12,15,16,17
4 40~49 6,7,8,11,12,13,16,17,18
5 50~59 7,8,9,12,13,14,17,18,19
6 60~69 10,11,12,15,16,17,20,21,22
7 70~79 11,12,13,16,17,18,21,22,23
8 80~89 12,13,14,17,18,19,22,23,24

within the green area in Figure 2b (the sub-area numbers 1,
2,3,6,7,8, 11, 12, 13), and so forth. Due to the variations
of the moving area, the number of data samples for each user
slightly differs.

The detailed grouping and sub-area information is pro-
vided in Table 1. For each user, the input coordinates of data
sampling points are obtained by randomly scattering points
within the moving sub-areas. Due to environment factors,
users cannot guarantee reachability with every base station.
Each user has at least one reachable base station, and they
may have multiple (up to 4) reachable base stations. For
non-reachable base stations, the corresponding RSRP is set
to the integer 0.

According to the local datasets of UEs, the RSRP dis-
tribution map of all user samples for the 4 base stations
are depicted in Figure 3 respectively, where the white areas
represent the area where connectivity to the corresponding
base station is not available and the red spots are considered
as outliers or noisy data points which will be removed during
the subsequent data processing. Moreover, by preliminary
analysis of the datasets, there are 28 numbered grey boxes
considered as buildings in the area, where no samples are
located at these positions. From Figure 3, it can be observed
that the majority of buildings in the area are concentrated
in the central region. There are few buildings at the periph-
ery, leading to higher and more evenly distributed RSRP
strengths. In particular, the central sub-area number 12 and
the sub-area number 22 exhibit the most complex RSRP
distributions. Therefore, we focused on these two sub-areas
in the subsequent experiments.

IV. MULTI-HEAD FL ALGORITHM-BASED SOLUTION

In this section, we introduce the details of the deployment of
FedAVG and Multi-head FL algorithm within the proposed
framework.

A. FEDAVG ALGORITHM
In FedAVG, the local loss function of the i-th user is as follow:

1
Fi@)=— > f@;lir) )

! keD;
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(a) The RSRP distribution map for BS0

(b) The RSRP distribution map for BS1

FIGURE 3. Schematic representation of the RSRP distribution map in the training datasets for (a) Base station 0.

(b) Base station 1. (c) Base station 2. (d) Base station 3.

where d; = |Dj| is the total number of data samples of the i-th
user. The f (w, li.‘, rf.‘ ) is the error for input-output pairs given
the model parameters w. The overall objective is to find the
optimal global parameters which minimizes the loss function
on the whole training datasets D = {D;,i = 1,2, ..., M},

which is given by:

®" = argminJ () 3)

where the global loss function J(@) can be written as:
| M
J@) =~ Z;. diF (@) )
=

where d = Zf‘il d; is the total number of data samples of
the M users. In the 7-th round of learning, the near-RT RIC
first selects m(m < M) member users and distributes the
global model ' to these members. The set of member users
is denoted as S’. Then the member users locally update the
model for local epoch E; using stochastic gradient descent
(SGD):

W = @l —VF) forj=0,1,... Ei—1 (5)
where 1 is the learning rate. After local training, the user
upload the updated model to the near-RT RIC. When the
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near-RT RIC receives all updated model, it aggregate them
by applying:

m

d.
o't = Z jwﬁ“ (6)

i=1
w;H’El given in (5) is recorded as w?‘“ and uses in (6).
The overall process of FedAVG deployed in the proposed
framework can be referenced in Algorithm 1.

B. MULTI-HEAD FL ALGORITHM
Unlike the FedAVG algorithm, in our proposed Multi-head
FL algorithm, the global model employs a Multi-head DNN
as shown in Figure 4. The Multi-head DNN comprises a
Backbone network along with multiple head networks. All
the head networks have the same output dimension, which is
consistent with the labels. The Input-to-Head Mapper module
is used to determine which head network to connect based on
the input features during the forward propagation.
Considering the overall communication overhead, the first
step of the entire Multi-head FL involves the near-RT RIC
preconfiguring all candidate users and determining the corre-
sponding one or more head networks for each user. This step
can be completed by collecting relatively low-privacy-level
information from the users.
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Algorithm 1 Pseudo-code for Federated Averaging
(FedAVG) deployed in the pro-posed framework.

Input: Number of users, M; The training datasets, D =
{D;j,i =1,2,..., M}; Global Epoch, E; Local Epoch, Ej;
Learning rate, n;

Output: The global model »*.

1: Initialize

2: fort=0,1,...,E-1do

3 near-RT RIC determine m
4 near-RT RIC determine S’
5 for each user in S’ do

6: wﬁ’o PR

7 for]—O,l,.. Elldo
8

9

1

1

t,j+1 t,

“’1]+ <—w ! — nVFi(w; 7y
t,E;

ol —

0: near—RT RIC do
di
1 o't — 3 g
ieS?

12: near-RT RIC output the final global model w”

In the initial phase of federated learning, the near-RT
RIC first determines the number of head network N and
establishes the mapping relationships between inputs and
head networks. Furthermore, considering that the backbone
network typically contributes significantly to both uplink
and downlink communication overhead, our Multi-head FL
incorporates a designated epoch Ef for freezing the backbone
network. When the global epoch reaches Ef, the backbone
network will no longer be updated. This implies that after
completing E; global epochs, each user will only need to
receive the frozen backbone network once more. After receiv-
ing the frozen backbone once, users can store it locally,
eliminating the need for additional uploads and downloads,
which will significantly reducing communication overhead.

We use w to represent the backbone network, ,0 to rep-
resent the n-th head network, C; to represent the set of head
network IDs corresponding to the i-th user. Same as FedAVG,
at the start of the #-th round of learning, near-RT RIC first
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selects m member users. Then the near-RT RIC distributes the
backbone wf and the corresponding head networks {,,0, n €
C;} to the member users. After receiving the complete model,
the users divide their local training dataset into multiple
subsets based on the mapping relationships between inputs
and head networks, which can be written as:

Di — {Dix,k=1,...,¢} @)

where ¢; = |C;| is the number of head networks for i-th user.
Therefore, the local loss function for each user and the global
loss function become:

Fi(@,0) = Z > fl@inbi ) (®)

di nec, keD;,

1
J(©,0)= - ;diF,(w, 0) ©)
=

and the overall objective becomes:
(@, 0)" = argminJ(w, 0) (10)

(@.0)

The member users locally update the model for local epoch
Ej using SGD:

tj+1 ptj+1
@7, 6,

= (@, 0/) = nVFi(',8") forj=1,2,...E (1)

After local training, the user upload the updated the back-
bone and heads network to the near-RT RIC. When the
near-RT RIC receives all updated model, it aggregate back-
bone network by applying (6) and aggregate each head
network by applying:

Zn

t+1 t+1
10 Z d,n n0! (12)

where z, denotes the number of users that the correspond-
ing head networks contain the n-th head network. When
the global epoch E > Ey, the parameters of the backbone
are frozen, which means the backbone still participates in
forward propagation and does not participate in backward
propagation. Thus equation (11) becomes:

0! = 0! — yVFi(™,0")forj=1,2,....E, (13)

The near-RT RIC set a flag for each user, with the initial
value set to False. When a user’s flag is True, it means that
the user already has the @/ locally, and the near-RT RIC does
not need to send the backbone to that user. When the near-RT
RIC sends the @ to a user, it sets that user’s flag to True. The
overall process of Multi-head FL deployed in the proposed
framework can be referenced in Algorithm 2.

V. EXPERIMENT AND DISCUSSIONS
In this section, we introduce the experimental setup in detail,
the experimental results and the corresponding discussions.
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Algorithm 2 Pseudo-code for the proposed Multi-head FL.
deployed in the proposed framework.

Input: Number of users, M ; The training datasets, D = {D;,
i=1,2,...,M};Global Epoch, E; Local Epoch, Ej; Freezing
Backbone Epoch, E¢; Number of head networks, N; Learning
rate, n;

Output: The global model (o, 0%).

1: Initialize the mapping relationships between inputs and
head networks and (@°, 00)

2:fort=0,1,..., Ef-1do

3: near-RT RIC determine m and S’

4: near-RT RIC send backbone and the corresponding
heads to member users

5 for each user in S’ do
6: (wi’o, 0;*0) <~ (@', 0"
7. Di— Diy.k=1,...,¢}
8: forj=0,1,...,E-1do '
9: @07 — (@], 07) — nVFi(@' 7. 0)
10: @1, 0 — (0" 0" Ef)
11: near-RT RIC do
12: AR %wﬁ“

ieS!
13: forn=1,2,...,Ndo
14: L0 < i diin 0t+1

S din

15: fort =L, ..., Eldo
16: near-RT RIC do step 3
17: near-RT RIC send the head network to member
users
18: for each user in S? do
19: (@i,0"°) < (0, 0"
20: Di— {Diyx,k=1,...,¢}
21: forj=0,1,...,E;-1do
22 0! — 0 — yVF(@,0") for j =
1,2,...,E
23: 9it! — oEi

24: near-RT RIC do step 13-14
25: near-RT RIC output the final global model (o, 87)

A. EXPERIMENTAL SETUP

In this paper, we investigated the impact of the ratio of head
model weights to the overall model weights on the exper-
imental results, which we refer to as Head weights Ratio
(HWR). In this paper, multiple head networks in the same
model have the same structure. We use N, (weights + bias)
to represent the number of parameters in one head network 6,
and N, (weights + bias) to represent number of parameters
in one complete model (w, ,0) (one head network plus the
backbone network). So the HWR in this paper can be written
as:

N,
HWR = (14)
N,

m

We explore the model performance and communication
overhead under two different values of HWR = 49.9%
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FIGURE 5. The experimental model structure of FedAVG.

(referred to as “high HWR”) and HWR = 5.96% (referred
to as “low HWR”). To clearly demonstrate the algorithm’s
performance, we performed simple feature engineering by
adding the distances between the measurement point and the
four base stations, thus the input features consist of 6 dimen-
sions. For the case HWR = 49.9%, the overall model (one
head network plus the backbone network) comprises four
fully connected (FC) layers (6 x 256 x 1024 x 256 x4), with
the last two layers being the head models. In this scenario,
N = 1024*256 + 256 + 256*4 + 4 = 263428 and N,, =
6256 4 256 + 256%1024 4 1024 + 1024*256 + 256 +
256*4 + 4 = 528388. Meanwhile, the experimental model
used for FedAVG consists of only four fully connected layers,
with the same size as the backbone plus one head model,
as shown in Figure 5. For the case HWR = 5.96%, the overall
model (one head network plus the backbone network) com-
prises five FC layers (6 x 256 x 1024 x 256 x 128 x 4), with
the last two layers being the head model (see Figure 6). In this
scenario, N = 256*128 + 128 + 128%4 + 4 = 33412 and
Ny = 6%256 + 256 + 2561024 + 1024 + 1024*256 +
256 + 256*128 + 128 + 256*4 + 4 = 560772.

Besides, we investigated the model performance and com-
munication overhead under three different values of N,
namely N = 25, N = 5, N = 6. For the case N = 25,
each of the 25 sub-area in Figure 2(b) corresponds to one
head network, which means there are 25 head networks in
this case. For example, the moving area of user 1 is 0, 1, 2,
5,6,7, 10, 11, 12, so the near-RT RIC needs to send 9 head
networks to user 1 in step 4 of algorithm 2. For the case of
N =5, we evenly divided the entire area into 5 small areas,
with each small area corresponding to one head network,
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FIGURE 6. The experimental model structure of Multi-head FL and the corresponding sub-areas of the head for (a) N = 5. (b) N = 6.

see Figure 6(a). In the case N = 6, we selected two of the
most complex sub-area in the environment (sub-area ID is
12 and 22), each corresponding to one head network, while
the remaining sub-areas are evenly corresponded, as shown
in Figure 6(b).

After assigning the head models to their corresponding
sub-areas, each user was assigned the corresponding head
model. A user’s head model includes the head models corre-
sponding to the sub-areas within their moving sub-areas. For
example, for User 89, based on Table 1, the moving sub-areas
are [12], [13], [14], [17], [18], [19], [22], [23], [24]. In the sce-
nario shown in Figure 6(a), User 89 corresponds to head#3, 4,
5, and in scenario shown in Figure 6(b), User 89 corresponds
to head#3, 5, 6. This means that when selecting User 89 to be
a member in the scenario shown in Figure 6(a), head#3, 4 and
5 need to be sent.

We randomly divide each user’s dataset into training and
testing datasets in a 99:1 ratio. The test loss of FedAVG and
Multi-head FL are calculated on the testing datasets using
formulas (4) and (9) respectively. In our training datasets
and testing datasets, the input features is the location of the
user, and the labels is a four-dimensional vector indicating
the RSRP value between the user and 4 base stations at the
location (shown in Fig 3), and the global model is applicable
to all users in the entire region. The locations of users in
the input vector are randomly distributed within their moving
areas, and no sampling points at the same location. In the
context of our datasets and federated learning, the primary
evaluation criterion for model performance is the loss on the
whole test dataset, while for communication costs, we assess
it based on the total amount of parameters transmitted in
federated learning.

In all following experiments, we set the global epoch E =
5000. For each epoch, we randomly select 5 members, and we
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TABLE 2. The experimental parameters of interest and corresponding
values.

Parameters Description Values
M Number of users 90
B Number of base 4
stations
m Number of member 5
users
HWR Head weights ratio [49.9%, 5.96%]
N The number of head [25,6, 5]
networks
E Global epochs 5000
E; Local training epochs 20
Ef Freezing backbone [1000, 2000,
epoch 3000]
n Learning rate 3e-4

calculated the global test loss and communication overhead
for different values of N and Ey. All the parameters of interest
and their values for the experiment are listed in Table 2.

B. EXPERIMENTAL RESULTS
In this section, we introduce the experimental results of the
case of high HWR and the case of low HWR.

1) THE RESULTS OF HIGH HWR SCENARIO

In this section, we present and discuss the experimental
results for the case of high HWR where HWR = 49.9%.
Figure 7 shows the global test loss versus global epochs for
FedAVG and Multi-head FL. when HWR = 49.9% under dif-
ferent £y and N. Figure 8 shows the communication overhead
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FIGURE 9. The global test loss versus global epochs for FedAVG and Multi-head FL when HWR = 5.96% and freezing backbone epoch E; = 1000,
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versus global epochs for FedAVG and Multi-head FL. when
HWR = 49.9% under different £y and N.

From Figure 7, it can be observed that when freezing the
backbone, there is a sharp drop in the global test loss. For the
cases of N = 25 and N = 6, Multi-head FL can significantly
improve global performance compared to FedAVG, and it can

reduce the global test loss by up to approximately 26.7% for
the case of N = 6 and £y = 3000. This is because in FedAVG,
data from different users or areas tends to be non-IID, result-
ing in a decrease in global model performance. Besides, after
rounds of training, the global model may have overfitting on
some users or areas. In our Multi-head FL, we use different
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head networks to represent different sub-areas. The smaller
the granularity of a sub-area, the closer the dataset with the
sub-area tends to be IID, and the head network can better
present the characteristics within the sub-area. At the same
time, it also to some extent avoids overfitting of the global
model in some areas. Therefore, the Multi-head FL proposed
in this paper can significantly improve the model perfor-
mance compared to FedAVG. When Ey = 1000, the final
global test loss values for two algorithms are quite similar.
As Ey increases, the final global test loss decreases. This is
because when Ey is relatively small, the backbone may not
have converged to the global optimum before being frozen.
Furthermore, it is evident that as N increases, the overall
convergence speed becomes slower because with a larger
N, there are more weights that need to be trained. From
Figure 8, it can be observed that for high HWR scenario,
Multi-head FL does not reduce communication overhead but
rather increases it. Additionally, as N increases, the overall
communication overhead increases. This is because in high
HWR scenario, even though the back-bone network doesn’t
need to be transmitted, uploading and downloading multiple
head models still require several times more communication
overhead compared to FedAVG.

2) THE RESULTS OF LOW HWR SCENARIO

In this section, we present and discuss the experimental
results for the case of low HWR where HWR = 5.96%.
Figure 9 shows the global test loss versus global epochs for
FedAVG and Multi-head FL. when HWR = 5.96% under
different Ef and N. Figure 10 shows the communication
overhead versus global epochs for FedAVG and Multi-head
FL when HWR = 5.96% under different £ and N.

From Figure 9, it can be observed that in the low HWR
scenario, when Ey = 1000, the global test loss for Multi-head
FL is not significantly different from FedAVG. But when
Ey = 2000 and 3000, Multi-head FL can effectively reduce
the global test loss. In the case of N = 6 and Ef =
3000, Multi-head FL can reduce the global test loss by
approximately 38.6%. Before freezing the backbone, the
convergence speed of Multi-head FL is slower than FedAVG.
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However, after freezing the backbone, the global test loss
of Multi-head FL sharply decreases below that of FedAVG.
From Figure 10, it can be observed that in the low HWR
scenario, the Multi-head FL can significantly reduce the
overall communication overhead of federated learning. When
N =5 and Ey = 1000, Multi-head FL can reduce the overall
communication overhead by approximately 62.7% compared
to FedAVG while, as shown in Figure 9(c), the global test
loss did not decrease. For the best-case scenario in terms of
model performance, i.e., N = 6, Ey = 3000, Multi-head
FL can still reduce the overall communication overhead by
approximately 19.8%.

VI. CONCLUSION AND FUTURE WORKS
This paper presents an innovative Multi-head FL algorithm
for 6G network, and deploys it within the proposed fed-
erated learning framework with the near-RT RIC as the
server. Using the RSRP prediction scenario as the backdrop,
we compared the Multi-head FL algorithm with FedAVG
and analyzed the model performance and overall communi-
cation costs of federated learning under different values of
various parameters, including the number of head models
and the freezing backbone epoch. We designed two differ-
ent scenarios, which we refer to as high HWR and low
HWR, where the ratio of the weights of head network to
the overall model weights differs. The experimental results
demonstrate that for the high HWR scenario, Multi-head FL
can improve the model performance compared to FedAVG,
but increase the overall communication overhead. In contrast,
for the low HWR scenario, Multi-head FL can not only
significantly improve the model performance compared to
FedAVG but also substantially reduce the overall communi-
cation overhead. Considering the constraints of bandwidth
and computational capability of UE in real-life, the HWR
can be adjusted reasonably in the practical deployment to
achieve the best compromise between model performance
and communication overhead.

In the future work, we will further improve the research
work in this paper from the following aspects. Firstly, more
diverse datasets and application scenarios will be considered
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for the experiments and the performance evaluation. Sec-
ondly, our proposed Multi-head FL algorithm will be further
studied with more complex models more than the DNN
model. The road to 6G is still long. In the future, we will
focus our research on the points mentioned above to enhance
our algorithm from various perspectives.
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