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ABSTRACT Since the COVID-19 pandemic, teachers and students have started using online and hybrid
learning in education. There might be several obstacles to adopting hybrid learning in theory classes or
lab practice sessions. Based on student opinions, deciding what is appropriate for theoretical class and lab
practice is challenging. We employed machine learning approaches to forecast the hybrid learning mode for
theory classes and lab practices. We introduce a framework that utilizes machine learning to automate the
identification of hybrid learning for Theory Class and Lab practice (TCLPI). Four machine learning models
form the foundation of this framework: Random Forest (RDT), Support Vector Machine (SVN), Logistic
Regression (LGR), and Extreme Gradient Boosting (XBT). In the context of Theory Class Identification
(TCI), the SVN achieves a maximum test accuracy of 0.93, whereas the LGR achieves a minimum accuracy
of 0.90. On the other hand, the Lab Practice Identification (LPI), XBT, RDT, and SVN achieved a test
accuracy of 0.80. The outcome of trained algorithms is assessed using the Shapley Additive Explanation
(SHAP), an explainable Artificial intelligence (AI) approach. This research found that student-teacher
interaction decreased during lab practice, which is crucial. Internet disconnections, a lack of support during
technological malfunctions, and the likelihood of cheating in exams without monitoring are also issues.
We also found that students were accepting of hybrid learning for theory classes. Each model’s intrinsic
feature relevance and SHAP values helped prove this. Research shows that hybrid learning works more for
theory classes; it is less needed for lab practice for students.

INDEX TERMS ATL, classification, hybrid learning, LPI, student, SHAP, TCLPI, Prediction.

I. INTRODUCTION AND RELATED WORK
Learning involves procuring memories, skills, knowledge,
and even wisdom through experiences and education. Higher
learning via the technologies of the internet has transformed
modern education, and many universities offer online-
based courses, while others have switched to fully online
programs. Incorporating information, communication, and
technology is crucial in promoting student participation
and facilitating online learning, which involves ICT, inde-
pendent, or supplementary learning with other physical
presence classes referred to as hybrids [1]. According to
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previous research [2], online learning threatens conventional
methods by allowing flexibility and fostering social inter-
action. During the pandemic, students and UAE residents
were positive about online education. Online resources
are available to remote learners for self-guided study
and collaborative learning. The self-contained web-based
coaching modules included the flexibility necessary for
self-directed study away from conventional teacher-centered
instruction [3]. Online course strategies seek to enhance
content, empower students, and cultivate collaboration. These
strategies encompass suggesting projects, organizing group
assignments, facilitating discussions, and encouraging virtual
interactions [4]. Hybrid learning integrates face-to-face and
online methods to overcome specific limitations. Fixed

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 98029

https://orcid.org/0000-0002-9925-112X
https://orcid.org/0000-0002-6623-5721
https://orcid.org/0000-0001-5280-843X


C. Verma et al.: TCLPI: Machine Learning-Driven Framework

schedules in traditional classes limit flexibility and can hinder
progress, while online learning risks student disengagement.
Hybrid courses, by combining classroom and online compo-
nents, enhance teacher-student relationships. This approach
provides improved performance, flexible scheduling, diverse
learning options, community building, and increased inter-
action [5]. Evaluating the cost-effectiveness and directing
investments in hybrid learning heavily depends on the sat-
isfaction and experience of learners. Cognitive engagement
is closely connected to both satisfaction and experience [6].
Remote access showed enhanced effectiveness and higher
student satisfaction. Assessment results supported this, indi-
cating a 27.69% average increase in grades, and 81.25% of
students favored Web-lab [7]. However, the abrupt switch
to remote learning presents challenges such as connectivity
issues, socioeconomic disparities, and declining student
motivation.

Student feedback is essential for determining its effec-
tiveness, considering factors such as learning styles and
motivations. Adapting learning environments to individual
variances can lead to better long-term learning results [8].
In Jordan, teachers are happy with new restrictions that
require some courses to be taught online, while others use
a hybrid method [9]. Portugal’s educational system proposes
online and hybrid learning pedagogy instruction [10]. Portu-
gal’s educational system proposes online and hybrid learning
pedagogy instruction [10]. A hybrid learning strategy with
gamification has worked well for programming classes at
a Croatian university [11]. Mobile learning was used in
Abu Dhabi to maintain classroom education during the
pandemic [12]. Online learning and courses affected the
satisfaction of Egyptian university students towards hybrid
learning [13].

Amid the COVID-19 pandemic, scholars delved into the
obstacles experienced by English as a Foreign Language
(EFL) students in online education. These hurdles included
a need for more technological proficiency, challenges with
completing assignments, and problems with internet connec-
tivity. For educators and policymakers looking to improve
online education, these findings offer insightful informa-
tion [14]. A study focused on the pandemic’s impact on edu-
cation, highlighting the rise of virtual learning and increased
online program enrollment and discussing the advantages and
drawbacks [15]. A few issues with the pandemic-related shift
to virtual learning were examined, along with how it affected
soft skills and the necessity for creative teaching strategies.
They also looked at issues like cheating on online tests, the
long-term impacts on instructional activities and teachers’
stress, and the impact of virtual tools on social skills [16].
Considering essential factors such as resource competition
and student retention, it’s wise to assess how technology
impacts learning thoroughly. Supporters of hybrid learning
advocate for its adoption with thoughtful consideration,
offering valuable perspectives from different angles [17].
Researchers highlighted the crucial need to synchronize

learning objectives between traditional and ICT-based pro-
grams, emphasizing collaborative and social learning. They
emphasized the vital role of social affordances in crafting
productive learning settings and endorsed hybrid learning,
stressing the importance of collaboration among students,
educators, and researchers [18]. The authors suggested
using hybrid learning spaces for curriculum enhancement,
highlighting the value of technology in enhancing student
skills, especially for mobile learners. Hybrid learning gained
traction during the COVID-19 pandemic, which led the
University of Sciences and Humanities to introduce strategies
for continuous education. Following the transition from an
entirely virtual setup to a hybrid model, which experienced
a significant 35% dropout rate and inadequate teacher prepa-
ration, connectivity issues became apparent [19]. The swift
switch to online instruction during the COVID-19 pandemic
disrupted the educational landscape, posing challenges for
students and educators. This prompted a comprehensive
assessment, highlighting the academic importance of hybrid
methodologies [20]. Namyssova et al. underscored the neces-
sity of thorough teacher training before introducing blended
learning, noting the obstacles stemming from inadequate
infrastructure and restricted technology access. Identified
challenges include policy gaps, insufficient faculty support,
and a shortage of technological resources [21]. Students
have widely acclaimed hybrid learning for its accessibility,
integrating online platforms like Blackboard with face-to-
face elements. The innovative teaching methods, fostering
connectivity and student engagement, received high praise,
as did the flexibility provided by the online component’s
scheduling. Challenges, including varying levels of student
engagement and the necessity for instructors to adeptly
manage the hybrid format, highlighted the importance of
gradually integrating technology and prioritizing pedagogy
in hybrid course design [22]. Engaged students demonstrated
a well-distributed allocation of time between in-person
and virtual tasks, preferred outdoor activities, and priori-
tized measures to prevent musculoskeletal problems [23].
The previously developed and validated blended learning
experiment was successful for Bangladeshi students. These
findings revealed positive associations with attitudes toward
online learning and openness to technology and negative
correlations with technology skills, learning flexibility, and
study management [24].

To investigate critical features for precise predictions, this
research presented a hybrid machine-learning architecture
called SHAP, which uses various algorithms and an explain-
able AI method. Eight significant sections organize the rest
of the paper. Section II outlines the study’s methodology and
materials. The document outlines the TCPLI framework and
includes sections on dataset descriptions, statistical features
of factor analysis, prepossess, testing of datasets, testing,
training, and tuning of machine learning algorithms. The
experiments conducted using machine learning techniques
present their results in Section IV. Section V delves into the
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FIGURE 1. Framework for hybrid Learning mode Identification for Theory Classes and Lab Practices using Machine Learning (TCLPI).

significance of trained algorithms with SHAP features and
discusses the most significant features with SHAP values.
In Section VI, we offer the study’s discussions, and in
Section VII, we explain its findings as conclusions. Major
future initiatives take up the final section VIII.

II. PROBLEM STATEMENT
A previous study did not provide a fully automated AI-based
framework that predicts hybrid learning for theory classes
and lab practices. Because of this, we showed the first
hybrid framework with Theory Class Identification (TCI)
and Lab Practice Identification (LPI), along with supervised
machine learning algorithms that correctly predicted the
features of hybrid learning. Further, the current research did
not use the explainable artificial intelligence approach SHAP
to investigate the characteristics of hybrid learning. As a
result, we also investigated the benefits of using the SHAP
methodology to apply machine learning algorithms. The
primary performance metrics of each algorithm determine
its effectiveness. After investigating novel key features and
confirming their presence, we identified a hybrid learning
style for theory classes and practical labs.

III. METHODS AND MATERIALS
A. CONCEPTUAL FRAMEWORK
The suggested work’s visual representation embodies an
archetype of morality. For both theory and lab sessions,
Figure 1 foresees a hybrid learning approach that is
visually identifiable. At the outset, we gather and compile

the primary dataset based on student responses regarding
demographic features, challenges, benefits, and assistance
throughout hybrid learning. In the subsequent preparation
steps, we handled missing values and standardized and
balanced the data. Next, we created essential factors using
a factor analysis approach. Next, we test and train four
supervised machine learning algorithms on the preprocessed
and cleaned samples. Crucial parameters of each algorithm
were identified by grid search cross-validation with a
stratified method, allowing for maximum accuracy. We also
graph, graphically compute, and display learning curves,
confusion matrices, classification reports, recall, precision,
gain, ROC, and learning scores to illustrate the comparison
of algorithms. Coefficient computation and significance
estimation show how each method uses intrinsic features.
Finally, we implemented the SHAP model using trained
algorithms to provide a detailed description of the features.

B. DATASET DESCRIPTION, PREPROCESS AND FACTOR
ANALYSIS
We used primary data samples and conducted all tests in
Python 3.9 using the necessary libraries [29]. After removing
outliers, the current study used 99 out of 103 students’
primary data samples. ELTE University enrolled the students
in its informatics program. Every year, ELTE University
enrolls roughly 30,000 students, of whom 2,500 study
informatics with faculty members on average. Consequently,
the samples obtained were adequate for analysis for both
populations and factor analysis was used to confirm this [28].
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FIGURE 2. Record balance with SMOTE.

We used a random sampling strategy with Google Forms’
assistance to gather samples [29]. The dataset has 58 students
older than 21 and 41 younger than 20. There were 76 boys and
23 girls who participated. The master’s program had thirty-
one students, while the bachelor’s course had sixty-eight.
We selected the Google Forms questions after consulting
with students and academic experts. We used the Likert scale
(1-10) as the measurement tool, with 10 representing the
highest level of agreement and 1 representing the lowest level
of response to the questions. The dataset had no missing
values. Added demographics are age, gender, and course.
We divide the age group into those under 20 and those
over 21. There are master’s and bachelor’s courses under the
course feature. Eight binary features and one ternary feature
were present. We split a ternary feature into three dummy
features using one hot encoder.

We conducted an exploratory factor analysis to iden-
tify important factors warrant further investigation. The
factor analysis utilizes the following parameters: Principal
Component Analysis (PCA), Varimax Method, Anti-Image,
convergence iterations set to 25, KMO (Kaiser-Meyer-
Olkin), and Bartlett’s test of sphericity. Table 1 displays the
comprehensive sufficiency of the obtained samples for each
variable, estimated at a value of 0.942. Therefore, the partial
correlations among variables are minimal. The absence of
an identifiable correlation matrix demonstrated a significant
(p < 0.05) value of Bartlett’s sphericity. The entire cumulative
variation accounted for 72% of the participant’s scores.

The dataset has 45 features. Out of 45, 19 were exempted
from the factor analysis (see in Table 2), 23 were used to
create 8 prominent factors (see in Table 3), and 3 were
binary variables (age, gender, course). A total of 30 final
features acted as predictors, and two target features were
considered ‘‘ATL’’ and ‘‘ALP.’’ Below, Figure 2 shows the
records balanced based on target features with SMOTE [27].
In the initial imbalanced dataset, ‘‘No’’ is 0 and ‘‘Yes’’ is 1 for
ATL and ALP features. To construct new synthetic training
records, one or more k-nearest neighbors are randomly
selected for each x record in minority class ‘‘No.’’ We use the
Euclidean distance to find neighbors. Synthetic records xsynth

TABLE 1. KMO and bartlett’s test.

are generated randomly between the minority class’s ‘‘no’’
record x and its ith neighbor. See Equation 1 for the formula
to construct xsynth, where xi is the ith neighbor of x.

xsynth = x + r · (xi − x) (1)

z− score =
x − µ

σ
(2)

Equation 2 illustrates the StandardScaler() function’s
formula, where µ stands for the mean and σ for the standard
deviation of the training samples. For this, a preprocessing
package from the sklearn library has been used. This function
has standardized the 19 features that factor analysis did not
use.

Table 2 displays the statistical properties of those 19 fea-
tures excluded from factor analysis [26]. We estimated the
mean µ to summarize the features and the standard deviation
σ to find dispersion in the features. Eight features are scaled
on a 10-point Likert, so CAISOBHI has the highest mean
(µ = 8.60), and RQIWT has the lowest mean (µ = 6.51).
Online attendance was helpful for unwell students. The rest of
the 11 features were binary, and students found them highly
satisfied with hybrid learning (µ = 0.87) and happy (µ =
0.68), and they recommended them for future study (µ =
0.86) and theory class (µ = 0.88). Furthermore, we found
that almost all features had less variation.

Table 3 displays the eight crucial variables based on
significant metrics like Extraction (E) and Communalities
(C) [26]. Factor analysis provides the communalities of
chosen features. The communality is equal to the sum of the
features’ squared weights. We found that ‘‘OBST4’’ has the
lowest communality of 0.594 and ‘‘LSEC1’’ has the highest
communality of 0.779. The features with a communality
greater than 0.58 have been selected. Thus, strong com-
munality values described why the generated components
accurately reflected these qualities. We employed varimax
rotation with Kaiser normalization to reduce cross-loading
and update extraction results. We no longer associate a single
feature with two or three distinct factors. Consequently,
we choose the extraction values using minimum cutoffs
higher than 0.62.

Figure 3 displays the values generated from the rotated
component matrix resulting from a PCA with a Varimax
rotation and Kaiser normalization. PCA transforms variables
into new factors, linear combinations of the original variables.
By maximizing the variance of the squared loadings for
each factor, the Varimax rotation method simplifies the
interpretation of these components. The loadings indicate the
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TABLE 2. Mean (µ), standard deviation (σ ) of 19 features excluded from factor analysis.

TABLE 3. Extraction (E) and communities (C) of 23 features under 8 factors.

correlation between the original variables and the extracted
factors. Higher absolute values indicate a stronger relation-
ship. The loadings of OBST1-OBST5 on Factor 1 are 0.806,
0.74, 0.73, 0.69, and 0.66, suggesting a strong correlation
between these variables and OBST, the first extracted factor.
Similarly, ASST1-ASST5 has a loading of 0.73, 0.69, 0.66,
0.64, and 0.63 on Factor ASST, indicating a strong correlation
among these variables and the second extracted factor. Also,
the rest of the six factors have significant correlated variables.

We also observe that the correlation values fall within the
range of 0.63 to 0.85.

The eigenvalues shown in Figure 4 shed light on the
degree of variation each factor can capture. The eigenvalues
give information about how much variation each factor
can capture. Higher eigenvalues imply greater importance
in explaining the underlying data variability, while lower
eigenvalues suggest less significance. OBST has the highest
eigenvalue of 7.1, indicating that it captures the most
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FIGURE 3. Significant factors.

FIGURE 4. Eigen scores of factors.

variance or information among the variables. ASST has
an eigenvalue of 4.8, suggesting it captures a significant
amount of variance but less than OBST. UNIS, TCUM,
LSEC, OLOWS, LUWAF, and CGT have progressively
decreasing eigenvalues, indicating they capture successively
less variance or information.

C. DATASET TRAINING AND TESTING
A well-liked method for dataset testing is Stratified Cross-
Validation (SKV). To ensure that each fold has (almost) the
same proportion of samples from both classes, it divides the
dataset into k folds [30].

Algorithm 1 combined the SKV with TCLPI models to
train and test the hybrid learning dataset (hld). A function
named StratifiedKFold() holds three parameters: hld , k , and
TCLPI . We divide the dataset hld into k = 10 folds, and set
the variable Acc to store the accuracy. Using the for cycle,
hldtest holds the test folds, and hldtrain stores the difference
between hld and hldtest. We trained our TCLPI four models
with hldtrain and tested them with hldtest. Finally, we estimate
and average the accuracy of the TCLPI models using the
mean() function.

These are the proposed TCI models that were tested with
SKF data. Figures 5 (a) and (b) show how accurate they
were during the testing and training phases. Figure 5 (a)
visualizes testing accuracies obtained with four TCI models.
The distribution of accuracies remains between 0.82 and 1

Algorithm 1 TCLPI With SKV
Require: Dataset hld , Number of folds k , TCLPI
Ensure: Average accuracy Acc
1: Function StratifiedKFold(hld , k , TCLPI )
2: Divide hld into k folds while preserving class

distribution
3: Acc← 0
4: for i← 1 to k do
5: hldtest← Fold i
6: hldtrain← hld − hldtest
7: Train TCLPI using hldtrain
8: Test TCLPI using hldtest
9: Acc← Acc+ Number of correct predictions

Total number of predictions
10: end for
11: Acc← Acc

k
12: return Acc
13: End Function

for XBT, SVN, and LGR. Only RDT has an accuracy of
between 0.65 and 1. Figure 5 (b) depicts XBT training the
dataset with an accuracy between 0.99 and 1. The SVN
ranges from 0.98 to 0.99, the LGR is between 0.97 and 0.98,
and the RDT is between 0.94 and 0.97. The average train
accuracies of XBT, RDT, SVN, and LGR are 0.99, 0.96,
0.94, and 0.98, respectively, and the average test accuracies
are 0.91, 0.90, 0.93, and 0.89. Figures 5 (c) and (d) show
the accuracy distributions for both the training and testing
stages of the suggested LPI models. As shown in Figure 5 (c),
the testing accuracies for RDT and XBT consistently fall
within the range of 0.60 to 0.90. Only LGRs and SVN
test accuracies fall within the 0.60 to 0.99 range. As a
result, SVN, RDT, and XBT all have average test accuracies
of 0.80, while LGR comes in at 0.77. Both RDT and
XBT trained the dataset with an accuracy ranging from
0.94 to 0.98, as shown in Figure 5 (d). While LGR trained
samples in the 0.78-0.82 range, SVN trained samples in the
0.80-0.84 range. In descending order, the average trained
accuracies of LGR, XBT, RDT, and SVN are 0.80, 0.83, 0.95,
and 0.95, respectively. Therefore, both TCI and LPI models
are trained and tested sufficiently.

Figure 6 visualizes the accuracy distribution of TCI and
LPI models at each fold during testing and training sessions.
Figure 6 (a) visualizes that in the LGR model, nine folds
scored testing accuracy in the range of 0.82 to 0.94, and the
last one fold scored a higher test accuracy of 1. SVN’s eight
folds scored around 0.94 test accuracy. RDT’s four folds have
0.94, two have 1, and the rest have 0.82. The majority of folds
in XBT’s model also attained more than 0.8. As shown in
Figure 6 (b), all of the folds in LGR achieved a score of 0.97 or
higher, while the SVN achieved a score of 0.98 or higher.
When it comes to XBT and RDT, the majority of folds are
trained with an accuracy of 0.99. Figure 6 (c) shows the LGR
model’s test accuracy: three folds scored around 0.7, two
folds had 0.6, and two folds had 0.9 accuracy. SVN’s three
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FIGURE 5. Accuracy Distribution of TCI models (a) Training (b) Testing.

FIGURE 6. Accuracy distribution of TCI models on folds (a) Training (b) Testing.

folds have 0.8, the two folds have 0.9, and the four folds have
0.7 test accuracy. RDT’s four folds have 0.9, three folds have
0.8, and two folds have 0.7 test accuracy. The four folds in
XBT have a test accuracy of 0.9, whereas the three folds
have a test accuracy of 0.8. Figure 6 (d) demonstrates that
LGR trains maximum folds above 0.8 accuracy, while SVN
maintains folds around 0.82. The folds of the XBT and RDT
models exhibit significant accuracy around 0.94.

D. MACHINE LEARNING TECHNIQUES
1) LOGISTIC REGRESSION
The LGR finds the best feature weights to make a hyperplane
that sorts samples into groups and reduces loss as much as
possible [32]. LR uses explanatory variables to predict the
logit transformation of a dependent variable. The equation
restricts probabilities to a range of 0 to 1. Given the

probability of outcome 1 as πi, the probability of outcome
0 is 1 − πi. Odds are calculated as πi

1−πi
, and the logit is the

logarithm of these odds [33] as illustrated in Equations 3,4.

ln
(

πi

1− πi

)
= α +

k∑
j=1

θjzj + ϵ (3)

• πi is event probability. (y = 1).
• 1− πi is the not event probability (y = 0).

ln
(

π ′

1− π ′

)
= α + θ (z+ 1) = α + θz+ θ (4)

TCLPI = α + θ1 · Age+ θ2 · Gender

+ θ3 · course+ θ4 · FTFHL

+ θ5 · TOMVCD+ θ6 · IWRSE

+ θ7 · CTMWIEN+ θ8 · ELFW
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+ θ9 · TMCATCS+ θ10 · RA

+ θ11 · CAISOBHI+ θ12 · RQIWT

+ . . .+ ϵ (5)

Our framework, TCLPI, used Equation 5, where ATL and
ALP are the target variables and others are predictors with
coefficients (θ) and ϵ is the error term in Equation 5.

2) SUPPORT VECTOR MACHINE
Support Vector Machine (SVN) maps data to a feature
space and uses an optimal hyperplane to separate two
classes with maximum margin.SVN solves an optimization
problem known as the primal problem to create the optimal
hyperplane [34].

min
w,b,ξ,m

(
1
2
wTw+ C

N∑
i=1

ξi + m

)
(6)

Subject to

{
yi(wTφ(xi)+ b) ≥ 1− ξi, i = 1, . . . ,N
ξi ≥ 0, i = 1, . . . ,N

(7)

The SVN objective function in Equation 6 tries to find the
lowest value of a function that balances model complexity,
which is shown by 1

2w
Tw, with a penalty term that is based

on the sum of slack variables (C
∑N

i=1 ξi) and an extra term
m. The limits in Equation 7 ensure that for each data point
i, the decision function meets a margin condition of at least
1− ξi. The slack variables ξi ≥ 0 let us deal with data points
in our dataset that are within the margin.

3) RANDOM FOREST
Breiman’s random forest model constructs decision trees in
three stages: using random subsets of training data, growing
trees without pruning, and operating each tree independently
with identical random inputs. Predictions involve passing an
instance through each tree, with the forest selecting the class
with the most votes. A probabilistic understanding of the
forest prediction process is needed for feature contribution.
Here, C denotes the classes and K the associated set [35].

�K =

(q1, . . . , qK ) :
K∑
j=1

qj = 1 and qj ≥ 0

 (8)

Equation 8 defines the set �K as a collection of K -tuples
(q1, . . . , qK ) where the sum of all elements qj equals 1, and
each element qj is non-negative. This represents a probability
distribution overK classes. When tree t assumes that instance
i is a member of class Ck, then the prediction is expressed
as Ẑj,t = ek , linking tree forecasts to C’s K probability
measurements.

Ẑj =
1
M

M∑
m=1

Ẑj,m (9)

Equation 9 calculates the average prediction for instance j,
denoted as Ẑj, based on the predictions from a set of M

models. It is computed as the mean of the predictions from
each model Ẑj,m, where m ranges from 1 to M . This method
aggregates multiple model predictions to improve overall
prediction accuracy.

4) EXTREME GRADEINT BOOSTING
The boosting algorithm combines feeble classifiers to
construct a robust classifier. Extreme Gradient Boosting
(XBT) was derived from gradient boosting to enhance speed,
scalability, and generalization. XBT starts with organizing
data by converting categorical data to numeric form using
One Hot Encoding. Data cleaning and feature engineering
come next [36]. The following equation 10 describes the
derivation of the estimated model from a general function.

ẑ(n)j =
n∑

m=1

gm(wj) (10)

The estimated value ẑ(n)j for an instance j at iteration n is
calculated as the sum of function gm(wj) across iterations
from 1 to n as illustrated in Equation 10. The loss function
is given a second-order increase. It considers the sum of
gradients sk and hessians tk with respect to the input variables
zk , as well as the predicted output vp(zk ). Additionally, the
equation includes regularization terms βR and 1

2µ
∑
vl to

control model complexity and overfitting, as illustrated in
Equation 11.
m∑
k=1

L(r) ≈
∑(

skvp(zk )+
1
2
tkvp(zk )2

)
+ βR+

1
2
µ
∑

vl

(11)

5) TUNE HYPERPAMETERS
Hyperparameter tweaking is an essential step in improving
the performance of machine learning algorithms. We used
a grid search approach with KCV, which specifies a grid
of multiple hyperparameter values. Initially, we call TCLPI
models by passing a random state parameter of 0. We then
input a grid of vital parameters into each algorithm to assess
the model’s performance.

Eq. 12 depicts the elucidation of hyperparameter optimiza-
tion.

y∗ = arg max
y∈D

f (y) (12)

In this equation, f (y) shows the objective score that should
be used to cut down on errors in the validation set, y∗ shows
the hyperparameters that give the lowest score, and x can
change within the domain D. [37].

Table 4 shows the essential parameters that played a vital
role in improving the accuracy of each model. The LGR’s C
parameter adjusts regularization strength to minimize over-
fitting. Max_iter determines the maximum iteration count
required for solver convergence. The penalty determines
the type of regularization. Ridge regularization penalizes
coefficient squared magnitude (‘‘L2’’). The solver parameter
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TABLE 4. Model hyperparameter tuning.

specifies the optimization algorithm. Newton-Conjugate
Gradient algorithm for optmization. The random_state
parameter seeds random number creation, assuring repeata-
bility. In RDT, the criteria parameter specifies the split quality
function. Entropy splits based on information acquisition.
The max_depth parameter sets the maximum decision
tree depth in the forest. Smaller values constrain tree
depth, preventing overfitting. The min_samples_leaf
argument determines the minimum leaf node sample count.
Setting a minimum leaf node size helps control overfit-
ting. The min_samples_split determines the minimum
internal node splitting sample count. Setting a minimum
sample size for splits helps prevent overfitting. The forest’s
tree count is n_estimators. XBT’s learning_rate
regulates step size for each iteration to minimize the loss
function. Lower learning rates hinder model convergence,
but they improve generalization. Max_depth sets the tree’s
maximum depth. Increasing it allows the model to capture
more complex data connections, but it also increases the
risk of overfitting. The number of boosting rounds (trees)
is n_estimators. The subsample establishes the fraction
of samples used to fit the base learners. All samples are
given a 1.0 value. A child’s instance weight minimum
is min_child_weight. It controls overfitting. Higher
values prevent models from overlearning noisy and small

data. The colsample_bytree parameter sets each tree’s
random feature sampling percent. At 0.8, each tree randomly
selects 80% of features during construction. The C parameter
affects SVN’s regularization, which balances margin and
classification error. Gamma measures the impact of a single
training example. It sets the decision limit by determining
the training sample reach. The kernel is Poly for
non-linear connections and rbf for linear relationships.
The coef0 governs higher-degree polynomials’ decision
boundary effects. Degree determines choice boundaries in
polynomial degree.

IV. RESULTS
This section showed experimental results frommodel training
using best hyperparameters. We predicted students’ hybrid
learning opinions for theoretical class and lab practice using
LR, XBT, RDT, and SVN algorithms.

Figure 7 visualizes vital performance metrics such as
learning, roc and gain curves of TCPLI models of the test data
set with SKV. Figure 7(a) shows how the amount of training
data added through cross-validation affects the accuracy
of TCI models’ predictions. It achieves this by utilizing a
learning curve. At 20 samples, the training score was initially
more significant than the cross-validation scores. When the
sample size approaches 100, all TCI models achieve training
scores of 0.90 and cross-validation scores greater than 0.82.
It increases further to 0.89 at a sample size of 160. The
reduced difference between the test and train results suggests
that sufficient samples have undergone testing and training
for classification tasks. We discovered that the samples had
enough training to suit the four TCI models and predict
the target feature, ATL. At several thresholds, Figure 7 (b)
assesses the weights of the actual positive rate versus the false
positive rate. Besides the LGR, every other has an area under
the curve that separates both classes by greater than 0.91.
Because the results were closer to 1 and greater than 05, all
TCI models completed the classification tasks appropriately.
No significant difference is observed in the area under the
curves of XBT, and RDTmodels. The true positive rates of all
models are high at 0.5 cutoffs, except LGRmodel. At a cutoff
of 0.2, the true positive rate of SVN is 1; for RDT and XBT,
it is 0.98, proving a significant classification. Figure 7 (c)
displays the TCI model’s efficiency using the gain curve. The
cumulative true positive observation probability is calculated
based on the percentage of tested samples. XBT and SVN
performed better than the others in explaining 80% of tested
samples, with a cumulative true positive rate of 87%. The
LGR model provides the least explanation for the tested
samples. As a result, if the TCI models are applied to 90% of
the population, the likelihood of observation is approximately
87%. Figure 7(d) is drawn for LPI models for test and
train scores on a separate sample count. We observed that
the average train accuracy for LGR, SVN, RDT, and XBT
is 0.80, 0.83, 0.95, and 0.95, respectively, with 10 KCV.
LGR’s average test accuracy is 0.77, while others are 0.80.
The ROC curve for LPI model comparisons in ALP feature

VOLUME 12, 2024 98037



C. Verma et al.: TCLPI: Machine Learning-Driven Framework

FIGURE 7. Performance of TCPLI: (a) TCI-Learning Curve (b) TCI-ROC Curve (c) TCI-Gain Curve (d) LPI-Learning Curve (e) LPI-ROC Curve (f) LPI-Gain
Curve.

categorization is shown in Figure 7 (e). Each model has an
AUC value above 80, indicating a balanced categorization
for the binary class. The RDT model has a huge AUC curve
of 0.84 among the models. The XBT and RDT models’
areas under the curves show no discernible differences.
At 0.5 cutoffs, all models have significant true-positive rates.
The genuine positive rate is greater than 0.7 at cutoff 0.2. Due
to their highest AUC and true positive rate, we discovered
that the two models—XBT and RDT—are competitive.
Therefore, the model’s significance demonstrated its helpful
categorization. Figure 7 (f) illustrates the performance of the
LPI model utilising the gain curve. We calculate the cumula-
tive probability of correctly identifying positive observations
based on the examined samples’ proportions. XBT and RDT
outperformed the other methods by accurately explaining
100% of the studied samples, achieving a cumulative true
positive rate of 50%. The LGR model offers the minimum
level of explanation for the studied samples.

Figure 8 (a) shows the heatmap of the classification report
of four TCI models. On average, SVN has the identical
highest accuracy, f1-and recall of 0.94. The precision score
for the ‘‘No’’ class is 1, and the precision score for the
‘‘Yes’’ class is 0.89. The average accuracy for LGR is 90%,
RDT is 90%, and XBT is 0.92%. Compared to SVN and
RDT, LGR has less recall, f1-score, and precision. Recall
is defined as the ratio of true positive predictions to real
positive cases. We found higher values for all the models.
As a result, the TCI model feels suitable for forecasting
real positives. The f1-score measures harmonic precision
and recall. It provides a reasonable assessment of false
positives and false negatives. More than 90% of the f1-score
is found for the ‘‘Yes’’ and ‘‘No’’ categories. Figure 8(b)

the heatmap of the classification report of four LPI models.
The maximum test accuracy, f1-score, and recall discovered
were 0.80, which SVN, LGR, and XBT all offer. These
models have identical f1-scores; precision and recall scores
were estimated for both classes, ‘‘Yes’’ and ‘‘No’’. Therefore,
classification reports exhibited significant results for the
overall performance of TCLPI models.

As illustrated in the Figure 9, the confusion matrix of
TCPLI models was utilised to assess the efficacy of each
classification algorithm in discerning the ALP and ATL fea-
tures. The model estimated both the accurate and inaccurate
classification of dataset records. Figure 9 (a)(b)(c)(d) shows
that the LGR, RD, XBT, and SVN algorithms accurately
identified the total number of records 156, 157, 160, and
163. On the other hand, these algorithms get records 18,
17, 14, and 11 wrong. The algorithms LGR, RD, XBT,
and SVN precisely determined the total number of records
77, 80, 80, and 80, as seen in Figure 9 (e) (f) (g) (h).
Conversely, these algorithms incorrectly identify records 23,
20, 20, and 20. Figure 9 (a) reflects that 85 records in the
LGR model are accurately categorized as ‘‘No’’ whereas
71 records in the ATL fall into the ‘‘Yes’’ category. There
are just 02 records that are wrongly categorized in the ‘‘No’’
class and 16 in the ‘‘Yes’’ class. According to Figure 9 (a),
81 samples in the RDT model can be correctly classified as
‘‘Yes’’ while 76 observations belong to the ‘‘No’’ group. Just
06 observations are incorrectly classified as belonging to the
‘‘No’’ class, whereas 11 are in the ‘‘Yes’’ class. Out of the
87 observations in Figure 9 (c) that are correctly classified as
‘‘Yes’’ 76 are classified as ‘‘No’’ in the SVNmodel. There are
11 observations in the ‘‘Yes’’ class, and none are incorrectly
classified in the ‘‘No’’ class. Figure 9 (d) has 82 instances
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FIGURE 8. Classification Reports (a) TCI for ATL (b) LPI for ALP.

FIGURE 9. Confusion matrix of TCPLI models: (a)ATL-LGR (b) ATL-RDT (c) ATL-SVN (d) ATL-XBT (e) ALP-LGR (f) ALP-RDT (g) ALP-SVN (h) ALP-XBT.

in the XBT model accurately classified as ‘‘Yes’’ whereas 78
instances fall into the ‘‘No’’ category. There are 9 instances
found misclassified as the ‘‘No’’ class and 5 misclassified as
the ‘‘Yes’’ class. In Figure 9, it is evident that 40 records in the
LGR model are correctly classified as ‘‘No,’’ but 37 records
in the ALP model are classified as ‘‘Yes.’’ There are only
10 records that have been incorrectly classified as belonging
to the ‘‘No’’ class, whereas 13 records belong to the ‘‘Yes’’
class. Looking at the information in Figure 9 (f) (g) (h),
we can see that 39 of the samples in the RDT, SVN, and
XBT models were correctly labeled as ‘‘Yes,’’ while 41 were
labeled as ‘‘No’’ Only 11 observations are wrongly labelled
as belonging to the ‘‘No’’ class, while 09 observations are
classified as belonging to the ‘‘Yes’’ class.

Figure 10 shows the top ten crucial features of the TCLPI
model according to the intrinsic feature estimation approach.
Furthermore, the models advise against these. The LGR

provided the most prominent and positive coefficient for
FHLM, WMPP, UNIS, TCUM, ASST, LUWAF, and CGT,
as shown in Figure 10 (a). Only three features have negative
coefficient values: LRS, gender, and course. The graphs
in Figure 10 (b) and (c) show the importance values of
features found by RDT and XBT, respectively. Both models
found 5 essential features: FHLM, WMPP, FH, Age, and
IWRSE. The rest of the features found were different and
unique, and the TCI classes were identified. Figure 10
(d) shows the coefficient of LGR model for LPI, where
six features have positive values, and four have negative
values. We observed differences in features in the top ten
rankings calculated with LGR in the LPI and TCI models.
Figure 10 (e) shows that RQIWT and OBST played the most
crucial roles in predicting hybrid learning for lab practice
using RDT, with 0.1174 and 0.1169 importance scores,
respectively. The following essential features are found in
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FIGURE 10. Significant intrinsic Feature: (a) TCI-LGR coefficient (b) TCI-RDT Importance, (c) TCI RDT-importance (d) LPI-LGR coefficient (e) LPI-RDT
Importance (f) LPI-XDT Importance.

IWRSE, LSEC, and LUWAF, with significant importance
scores of 0.0951, 0.0811, and 0.0772, respectively. The
rest of the four features, UNIS, CGT, OLOWS ASST, and
TCUM, also played a vital role in the classification task.
As shown in Figure 10 (f), RQIWT and OBST predicted the
most hybrid learning for lab practice, with XBT significance
scores of 0.1508 and 0.1038, respectively. IWRSE, LRS, and
LSEC have the following critical properties with significance
values of 0.0935, 0.0758, and 0.0683. Four other features—
UNIS, FH, ASST, ELFW, and TCUM-were also crucial in
classification.

V. SHAPLEY ADDITIVE EXPLANATIONS
A SHAP that can assign a relevance value to each feature
for a specific forecast [38] offers a single framework
for interpreting predictions. We explain the results of the
SHAP model from a game-theoretic perspective. The shape
approach explores individual prediction and exhibits an
increase or decrease in prediction. Local explanations and
optimal credit allocation are linked by applying classic
Shapley game theory values [39].

φi(TCPLI ; x) =
∑
z0⊆x0

|z0|!(M − |z0| − 1)!
M !

[modelx(z0)− modelx(z0 \ i)] (13)

Equation 13 figures out the average amount that each
feature contributes to the variation in the TCPLI’s predictions
for all possible feature value combinations and orderings.
Here, φ_i(TCPLI ; x) denotes the SHAP values for feature
i in the TCPLI. Here, x is the input value of that feature i.∑

z0⊆x0 represents that z0 is a portion of the set x0. |z0|! is the
factorial of the portion size z0. (M − |z0| − 1)! is the factorial
of the complement size of the portion z0, andM ! the factorial

of the total number of features. TCPLIx(z0) represents the
model prediction when only the features in the portion
z0. TCPLIx(z0 \ i) denotes the TCPLI’s prediction when
the feature i removed from portion z0. Importing the shap
package allows the TreeExplainer class to explain the TCPLI
model and calculate the SHAP values. Afterward, the SHAP
values for each feature’s cross-validated data sample were
estimated using the shap_values() method.

Figure 11 displays the summary plot of vital features to
identify the theory class with shap values. The x-axis shows
the shape values, and the y-axis shows the names of features.
The shap values are displayed as feature contributions for
both classes ‘‘Yes’’ and ‘‘No’’. The features that have
made the biggest contributions to the prediction of TCI are
FHLM, CTMWIEN, ASST, UNIS, LRS, TCUM, WMPP,
and LUWAF. Figure 11 (a) displays the LGR model’s
shape values. In contrast, CTMWIEN, LRS, ELFW, gender,
and IWRSE maximum voted for the NO class, while the
FHLM, ASST, UNIS, and TCUM favored the ‘‘Yes’’ class.
Figure 11 (b) shows that the RDT model predicted that
FHLM, WMPP, OS, OTOLAW, and RA all contributed
equally to the prediction task and did a great job of
finding the ‘‘Yes’’ class. Figure 11 (c) demonstrates that
the characteristics that SVN recommended: TMCATCS,
RQIWT, RA, and TOMVCD—are strongly contributed.
It also confirms that the features that contributed less were
FHLM, course, and FH. RA, TMCATCS, and IWARSE
favored the ‘‘Yes’’ class, while TOMVCD, ELFW, and ASTT
supported the ‘‘No’’ class. The features with low shape
values contributed equally to both classes. Figure 11 (d)
shows that the XBT model found that FHLM, WMPP, FH,
TOMVCD, and OTOLAWwere very important in predicting
the ‘‘Yes’’ class, even though other factors also played a part.
Figures 11 (e), (f), (g), and (h) show shap summary charts
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FIGURE 11. SHAP Summary of TCPLI: (a) TCI-LGR (b) TCI-RDT (c) TCI-SVN (d) TCI-XBT (e) LPI-LGR (f) LPI-RDT (g) LPI-SVN (h) LPI-XBT.

of four LPI models each. Figure (e) (g) shows that the LGR
and SVN investigated the same and most influential aspects:
IWRSE, RQIWT, ELFW, TMCATCS, UNIS, and RA. Blue
dots indicate that these qualities contributed significantly
to the ‘‘Yes’’ class, whereas red dots supported the ‘‘No’’
class. The RDT demonstrated several vital properties for
classifying the two classes. Figures 11 (f) (g) show that both
RDT and XBT supported RQIWT, OBST, IWRSE, LSEC,
and UNIS as important features.

Figure 12 shows decision plots to show the real effect
of the features on the model’s prediction of theory class
for each instance. The bottom x-axis plots the log odds
against probabilities or model output. The y-axis presents the
TCI’s features in descending order of estimated significance
over the plotted records. The top x-axis reflects the SHAP
values that show the real impact of features on the model’s
performance. A colored line represents the prediction for
each record. Every line in the plot’s upper region crosses the
x-axis at the matching record’s predicted value. We increase
the model’s base value by adding the SHAP values for each
feature, working from the bottom to the top of the plot.
It illustrates the individual impact of each attribute on the
accuracte prediction. Figure 12 (a) shows that LGR’s SHAP
values lie between -10 and 10, favoring features FHLM,
CTMWIEN, ASST, UNIS, LRS, and others. Predictions are
higher for higher feature values, but those pointing to the

left imply the contrary. Figure 12 (b) graphs the plot for
the RDT model to identify the ATL with influence features
FHLM, WMPP, FH, OS, OTOLAW, and others; the range
of these features lies in between 0 to 0.8. Figure 12 (c)
visualizes SVN’s SHAP values lying between 0 and 1 that
explored TMCATCS, RA, TOMVCD, CTMWIEN, RQIWT,
and others. The SVN’s ability to classify the ATL feature
was excellent. When these feature values raise the model’s
average prediction value, the line turns red. Conversely, if the
average prediction value decreases, the line changes to blue.
Essentially, every line in the plot represents a distinct record
of ATL. Figure 12 (d) displays the shape values of XBT
within a range of -3 to 2 to pretend FHLM, WMPP, FH,
TOMVCD, and others to identify the ATL. To detect lab
practices, plots of Figures 12 (e), (f), (g), and (h) for LPI
models were used. Figure 12 (e) shows that the LGR’s SHAP
values are -2 to 2. These values favor traits like RQIWT,
IWRSE, ELFW, TMCATCS, TOMVCD, and others. These
are extremely distributed to estimate larger shap values. The
elements of the RDT model with higher shape values include
OBST, IWRSE, RQIWT, LSEC, UNIS, and others, as shown
in Figure 12 (f). These characteristics have a range of 0.2 to
0.8. The SHAP values for SVN, which range from 0 to 1, are
shown in Figure 12 (g). These values cover RQIWT, IWRSE,
ELFW, TMCATCS, LSEC, and other features. The shape
values of XBT are shown in Figure 12 (h) in a range of -3
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FIGURE 12. SHAP Decision TCPLI: (a) TCI-LGR (b) TCI-RDT (c) TCI-SVN (d) TCI-XBT (e) LPI-LGR (f) LPI-RDT (g) LPI-SVN (h) LPI-XBT.

to 3, which is used to mimic OBST, LSEC, RQIWT, IWRSE
for the identification of lab.

VI. DISCUSSION
This study uses machine learning and explainable AI to
predict informatics students’ hybrid learning for theoretical
class and lab practice. All the algorithms achieved training
scores of 0.90 and cross-validation scores higher than 0.82,
while the sample size was approaching 100—the process of
identifying the theory class accomplished this. For the lab
identification task, 90 samples are sufficient to train 0.95 to
0.80 accuracy scores. Hence, more samples can reduce this
gap between test and train scores. All models estimated more
than 0.90 AUC values to identify the theoretical class while
retaining 0.81-0.84 AUC ratings to identify lab practice.
In theory class identification, XBT and SVN did better than
others, explaining 80% of samples and having a cumulative
actual positive rate of 87%. In lab practice identification,
XBT and RDT were 100% accurate, with a cumulative true
positive rate of 50%. For theory class prediction, SVN,
XBT, and RDT had the same most excellent mean accuracy,
f1-score, and recall of 0.94; for lab practice prediction,
it was 0.80. In theory class prediction, LGR, RD, XBT,
and SVN algorithms correctly identified 156, 157, 160, and
163, respectively. However, these algorithms misinterpret

records 18, 17, 14, and 11, respectively. The algorithms
LGR, RD, XBT, and SVN accurately determined the total
number of records as 77, 80, 80, and 80, respectively, for lab
identification. However, these algorithms wrongly identified
records as 23, 20, 20, and 20, respectively.

When making predictions in theory class, factors such as
gender, course, future hybrid learning mode, and long-term
solutions are essential. Additionally, my parents’ valuable
perspective also plays a significant role. It is crucial to
consider factors such as reduced quality of interaction with
teachers, hurdles encountered, isolation from a natural study
environment, lower stress levels, ease of communication, and
university assistance when predicting laboratory outcomes.
Significant features emerge from these factors. The SVN
model’s SHAP scores in theoretical class prediction, teacher
interaction quality, and absence reduction were substantial.
Other noteworthy aspects included time management, the
convenience of attending two classes at once, the ability
to turn on mic video camera interrupts, the encouragement
of website learning, and the isolation of a natural study
environment. The XBT, RDT, and SVN model SHAP values
forecast lab practice, which isolates university initiatives
and support within a genuine study environment. Lower
teacher interaction quality, less stress, and more accessible
communication were all essential features.
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VII. CONCLUSION
In this study, we employed machine learning techniques to
identify the possibilities of incorporating hybrid learning into
the education of informatics students, whether in lab practice
or theory classes. Furthermore, we evaluate the explanatory
power of the proposed models using an explainable AI
approach (SHAP). We also presented a combined framework
that identifies the applicability of hybrid learning with
significant accuracy. The factor analysis technique created
novel and essential factors for the experiments. The SVN
algorithms achieved a test accuracy of 0.93% in predicting
hybrid learning for theoretical classes, while XBT achieved
the second-greatest accuracy of 92%. RDT and LGR achieved
an identical accuracy rate of 90%. We demonstrated that
students and parents eagerly accept hybrid learning for theory
classes. Each model’s intrinsic feature importance and SHAP
values proved this. While a viable solution for theory classes,
hybrid learning lacks significance for lab practice. Using
hybrid learning makes students less stressed and makes it
easy to join two different classes simultaneously. They also
believed the hybrid learning mode separated them from the
natural study environments. To predict the hybrid learning
for lab practice, RDT, XBT, and SVN scored a homogeneous
accuracy of 80%, and LGR scored the lowest accuracy of
0.77%. During the lab practice, there was a decrease in the
quality of interaction between the students and the teachers,
which is an important aspect. Furthermore, students face
challenges, including intermittent Internet access, inadequate
assistance in the event of technical difficulties, and the risk
of exam cheating as a result of insufficient monitoring. They
experience a decrease in their ability to concentrate and
engage with people.

VIII. FUTURE STUDY
The present research has identified the features of hybrid
learning that played a vital role in predicting its appli-
cability in informatics students’ lab practice and theory
classes. Future experiments could involve students from
other domains like medicine, economics, social science,
or physiology. We can also implement other algorithms
like artificial neural networks and discriminant analysis.
Future hybrid learning mode features allow for the extraction
of additional features. Furthermore, we can apply more
feature selection algorithms, like gain ratio and info-
gain, to the samples. Local Interpretable Model-Agnostic
Explanations (LIME) is a new machine-learning expla-
nation method that can provide more dataset insights.
After increasing accuracy, we must deploy the models as
Python-based applications to put this research into actual
use.
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