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ABSTRACT In this paper, we propose a jointly-optimized stacked-two-stage speech enhancement. In the
first stage, a convolutional recurrent network (CRN)-based masking is integrated with the signal analysis
(fast Fourier transform (FFT)) and resynthesis (inverse FFT (IFFT)) parts as extra joint layers (FFT-CRN-
IFFT). This joint FFT-CRN-IFFT model is used to separate time domain (TD) speech and noise signals.
Additionally, we propose new constrained phase-sensitive magnitude ratio masks (cPSIRMs) for speech
and noise sources, which are estimated at this stage by the CRN in relation to the ultimate time-domain
signals. In the second stage, a deep neural network integrated with the decoder layers of a deep autoencoder
(DNN-DEC) is used to further enhance the separated signals and reduce distortions. We also introduce a
supervised multi-objective step-wise learning approach to gradually map the input to the main output of
the unified two-stage model (CRN+DNN-DEC), through multiple training steps (e.g., a 4-step mapping
as our final suggestion). In this approach, the learned layers of each step serve as pre-training for the next
step, with the final step fine-tuning the entire integrated end-to-end model. This unified model not only
estimates low-level structural features as direct intermediate targets but also high-level signals as main
targets. Experimental results show that the proposed approaches achieve up to a 0.6 improvement in the
average perceptual evaluation of speech quality (PESQ) compared to the prior methods.

INDEX TERMS Speech enhancement (SE), convolutional recurrent network (CRN)-based masking, phase-
sensitive magnitude ratio mask, joint modeling, hierarchical learning.

I. INTRODUCTION
The goal of speech enhancement (SE) is to reduce the
noise and recover the desired speech from its noisy coun-
terpart [1], [2]. The informative features of speech signals
can be extracted using signal processing techniques [3], [4].
SE algorithms can be categorized into signal processing-
based, model-based, and data-driven methods [5]. Spectral
subtraction [6], [7] is a popular technique within signal
processing-based methods. It works by subtracting the power
spectrum of estimated noise from the noisy speech. Another
method in this category is Wiener filtering (WF) [8], [9],
where the optimal Wiener filter is estimated to minimize the

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongli Dong.

mean square error (MSE) and thus recover the clean speech in
the power spectrum. While these methods generally perform
well at relatively high signal-to-noise ratios (SNRs), their
effectiveness diminishes in low SNRs and non-stationary
noisy environments [10].
Model-based methods rely on creating speech and/or noise

models using learned priors, showing promising performance
in challenging situations. For instance, in nonnegative matrix
factorization (NMF) based enhancement [11], a noisy signal
is approximated as a weighted sum of nonnegative bases
of speech and noise. These methods perform reasonably
when the underlying assumptions are satisfied. However,
they are often more effective with structured signals, and
their generalization capability to unseen noises is usually
limited [12].
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In recent years, with the development of machine learn-
ing and deep learning as data-driven methods, SE has
been approached as a supervised learning problem. In this
approach, noisy features are used to train a supervised learn-
ing algorithm onmassive labeled datasets, such as deep neural
networks (DNNs) [13], [14], more complex networks like
convolutional recurrent networks (CRNs) [15], [16], [17],
[18] and long short-term memory (LSTM) networks [19],
[20], advanced architectures like Transformer networks [21],
[22], [23], [24], [25], and state-of-the-art methods including
TF-GridNet [26] and diffusion-based models [27]. Hence a
non-linear function is learned from mapping noisy speech
to clean speech without relying on statistical assumptions
about the relationship between speech and noise. Data-driven
methods, compared to model-based techniques, have the
advantage of performing well in situations where analytical
models are unknown or too complex. However, they require
massive amounts of data and have a high computation burden
for training. In contrast, model-based methods provide prior
knowledge and additional information without relying heav-
ily on data for learning mapping structures; instead, the data
is often used to estimate parameters. However, simple models
may struggle to represent intricacies within complex data and
fluctuations over time [28]. To leverage the strengths of both
approaches, some recent studies have combined them as a
hybrid system that uses data-driven inference with model-
based prior knowledge (model-based machine learning [28],
[29]) as a model-aided network for specific problems.

Training targets in data-driven SE methods mainly fall into
two groups: spectral mapping-based and masking-based [5],
[30]. In mapping-based techniques, the training target is
directly a spectral representation of the desired source. In con-
trast, in masking-based techniques, the target is a spectral
mask gain that represents the Time-Frequency (T-F) ratio
of the desired source to the mixture [5], [31], [32], [33],
[34], [35]. In masking-based methods, the mask gain is
directly estimated by the network from the mixture, elim-
inating the need for explicit estimation of the unwanted
source or SNR [36]. In conventional deep learning-based SE
approaches, whether using T-F mask targets or main spectral
magnitudes targets, the domain knowledge of frequency-
domain (FD) to time-domain (TD) transformation is not
incorporated into the learning process. This means that spec-
tral mapping is performed by the deep network, and the
TD speech signal is reconstructed outside of the network
separately [33]. Besides masking or mapping-based SEmeth-
ods, end-to-end enhancement (time-domain mapping without
resorting to a T-F mask) has recently gained popularity [37],
[38], [39], [40], [41], [42]. A potential advantage of this
method is considering the phase of noisy signal during signal
reconstruction. Compared to masking-based methods, end-
to-end approaches often achieve higher PESQ but lower
STOI [33]. Inspired by these three types of approaches,
we use amasking-based approach in the first stage and a spec-
tral mapping-based in the second stage. Also, we propose an

end-to-end network with temporal mapping that incorporates
spectral mask estimation within it (as a built-in component)
for better speech quality and intelligibility. Furthermore, the
proposed mask utilizes both magnitude and phase informa-
tion in the enhancement process.

In many studies (e.g. [5], [22], [31], [40], [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61]), various types of masks such as
ideal binary mask (IBM) [5], ideal ratio mask (IRM) [5],
phase-sensitive mask (PSM) [40], and complex ideal ratio
mask (cIRM) [59] have been proposed and used as training
targets for speech enhancement. The PSM mask considers
phase but only enhances the magnitude, while the cIRM
is a complex mask that enhances both the real and imagi-
nary spectrum, thus jointly enhancing magnitude and phase.
Wang et al. [5] showed that ratio masking produces speech
with better objective quality than binary masking due to the
lower sensitivity of predicting ratio values to estimation error
compared to binary values. However, residual noise and dis-
tortion caused by mask estimation errors remain issues [44],
[62]. In response, some works [31], [43], [44], [45], [60],
[61], [63], [64], [65] have proposed two-stage masking-based
approaches. In these approaches, after speech separation by
an ideal mask, another separate processing stage is used to
improve enhancement quality [44], [45], [60], reduce dis-
tortions, and compensate for mask estimation errors [31],
[43], [61]. For instance, [31] combined DNN-masking and
NMF (or vice versa) in two separate stages for separation
and enhancement purposes, respectively, and compared this
with scenarios where either DNN or NMF was used in both
stages. In [44], [45], and [60], DNN-based masking was
combined with sparse/NMF reconstruction in two sequential
separate stages to further improve the quality of the separated
speech. In [44], the separated speech by a binary mask was
represented as a linear combination of NMF basis vectors
from a trained linear speechmodel (basis matrix). In [45], this
approach was applied using a soft mask, and in [60], a ratio
mask was used similarly. Williamson et al. in [43] and [61]
as a further study of [44], [45], and [60], after applying a
DNN-based masking stage, used a DNN in the second stage
to estimate the clean NMF activation coefficients (comple-
mentary DNN-NMF model) from the masked speech. Then,
the clean speech magnitude was separately approximated
outside of the DNN by multiplying the estimated activation
matrix and the clean NMF basis matrix. In DNN-NMF, the
DNN estimates the NMF activations. Notably, [44], [45], [60]
estimated masked speech, while [43], [61] approximated raw
clean speech. It has been shown that combining a masking
approach with a model-based method like NMF as a post-
processing stage [44], [45], [60], or with its DNN-based
approximation (DNN-NMF) [43], [61] performs better than
using a single stage or other two-stage approaches. In all these
methods, the DNN-based magnitude masking was used in the
first stage, followed byNMF reconstruction [44], [45], [60] or
DNN-NMF [43], [61] in the second stage. Additionally, the

98568 VOLUME 12, 2024



M. Pashaian, S. Seyedin: Speech Enhancement Based on a CRN+DNN-DEC Model and a cPSIRM

two stages were performed separately. In this work, we use
a CRN-based phase-aware magnitude masking in the first
stage, and the joint DNN-decoder structure (DNN-DEC, sim-
ilar to our previouswork [66]) in the second stage. DNN-DEC
is a joint and non-linear alternative to the DNN-NMF. Addi-
tionally, the two stages are performed jointly. In sections I-A
and I-B, the differences between our work and these two
stages methods are explained in detail.

In some other works, the ideal masks and the NMF coeffi-
cients were used in a single DNN, such that the DNNmapped
the noisy activation coefficients to the binary mask [67] or
a new soft mask [68]. In [12], instead of directly predicting
the original mask, the NMF activation coefficients of the
mask were estimated by the DNN. These coefficients were
then separately multiplied by the corresponding learned basis
matrix to approximate the original mask. Studies [12], [69]
demonstrated that estimating the NMF activation coefficients
using DNN performs better than NMF inference in speech
separation. In [12], [67], [68], [69], [70], [71], [72], [73],
and [74], the linear operations of NMF and the non-linear
operations of DNN were complementary within one stage.
In [12] and [69], the non-linear DNN was forced to learn
the information obtained from the linear NMF operations.
In [70], [71], [72], and [74], NMF inference was jointly
combined with DNN, contrary to [12] and [69] where they
were performed separately (treated independently). In [12]
and [69], the linear activation coefficients, which are inter-
mediate targets, were estimated by DNN as the main output,
whereas in [70], [71], and [72], they were not the direct target,
and the DNN directly estimated the main spectral signals
through the integrated NMF bases.

A. RELATED WORKS AND OUR PROPOSED APPROACH
In [43] and [61], as previously described, DNN-based mask-
ing with IRM target was performed in the first stage, and
in the separate second stage, the approximation of NMF
activations byDNN (DNN-NMF)was done. Additionally, the
reconstruction of the speech signal was performed separately
outside of the DNN by linearly combining the estimated
activation coefficients with the NMF bases. In contrast, in this
paper, we propose CRN-based masking in the first stage,
where the proposed constrained phase-sensitive magnitude
ratio masks (cPSIRMs) are estimated by the CRN. Moreover,
a joint DNN-DEC structure [66] is applied in the second
stage. In DNN-DEC, the decoder layers of the pre-trained
deep autoencoders (DAEs) are integrated into the DNN as a
non-linear alternative to the NMF basis. The DAE [75], [76]
as a data-driven scheme is useful for dimension reduction,
compact representation of data, and capturing the structures.
In DNN-DEC, unlike DNN-NMF (the second stage of [43]
and [61]), the decoders are joined with the DNN as extra
layers so that the main signal is optimized as the output
training target instead of the output targeting of activation
coefficients. The DNN-DEC, which is a joint and non-linear
sparse equivalent of DNN-NMF, is used in the second stage of

FIGURE 1. The high-level block diagram of the proposed joint
CRN+DNN-DEC model. The joint CRN+DNN-DEC model includes the
FFT-CRN-IFFT and DNN-DEC blocks.

our proposed system as an enhancement stage. It has the capa-
bilities of more powerful extraction of harmonic structures by
DAE over NMF in a non-linear way and better enhancement
by the DNN incorporating the extracted non-linear structural
characteristics.

On the other hand, spectral SE typically uses the short-time
Fourier transform (STFT) as a separate front-end FD rep-
resentation, and the TD signal is reconstructed separately
outside of the learning network. In contrast, in our proposed
system, the TD signals are directly fed as the input and
the target output of the network to help the SE process.
This is done by integrating the speech analysis (TD-to-FD
transformation, fast Fourier transform (FFT)) and the speech
resynthesis (FD-to-TD transformation, inverse fast Fourier
transform (IFFT)) parts into the network as extra layers.
Furthermore, [77] mentioned the challenge of discerning fun-
damental speech phones from background noise when using
a TD loss function. In other words, an FD loss function has
clear discrimination ability and can restore speech with high
quality. Hence, for this reason, and also due to the differen-
tiability property of the TD-to-FD transformation, we use an
FD loss function to train our first-stage model in which the
time-framed estimated signals are converted to the FD in the
loss function. To take advantage of both FD and TD informa-
tion, in the first stage of our system, a CRN is first learned
with the proposed cPSIRM mask targets. Then, it is used as
a pre-trained model in a new joint model that includes addi-
tional FFT and IFFT layers (FFT-CRN-IFFT). Thus, the CRN
is updated in the joint model (FFT-CRN-IFFT) according to
the new TD objective targets (which are converted to the FD
in the loss function). This cooperation between frequency and
time information, also incorporating the phase information,
leverages domain knowledge of FD to TD conversion (or
vice versa) such as spectral properties, which differentiates
it from the conventional DNN approach. The overall block
diagram of the proposed model (CRN+DNN-DEC) is shown
in Fig. 1. The joint stacked model of FFT-CRN-IFFT as a
model-aided network (the first stage, separation)and DNN-
DEC (the second stage, enhancement) forms the composite
CRN+DNN-DEC model which can attenuate more noise
and boost the overall performance. According to this figure,
the joint FFT-CRN-IFFT model includes the CRN-based
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masking integrated with the FFT and IFFT layers. Therefore,
the FFT and IFFT are involved in the training process, and
the proposed cPSIRM mask values are estimated by the
CRN with respect to the final time-domain signals. The joint
FFT-CRN-IFFT component is newly proposed and within it
the CRN-based masking is critical. Our previously proposed
DNN-DEC structure [66] is used as an enhancement stage in
the second stage, which is integratedwith the first stage. Since
DNN-DEC is more potent than DNN-NMF (the second stage
of [43] and [61]), it can better correct mask estimation errors.
The joint DNN-DEC model comprises a DNN integrated
with the speech and noise decoders. It consists of the joint
effort of the DAEs in capturing the structures, the DNN in
enhancing them, and jointly estimating the main signals using
the integrated decoder layers.

Furthermore, the input-to-output mapping (learning) in
the CRN+DNN-DEC model is proposed to be performed
hierarchically in multiple steps. In our proposed four-step
mapping (our ultimate suggestion), the four training steps
are as follows: Step 1, the noisy speech spectrum is mapped
to the output mask layer; Step 2, the TD noisy speech is
mapped to the TD output layer; Step 3, the TD noisy speech is
mapped to the encoded layer; and finally, Step4, it is mapped
to the main spectral output layer. These mappings, which
will be explained in detail in section III-C (Fig. 3c), are
done via the related layers in CRN+DNN-DEC. In each new
step, the pre-trained layers are updated along with the newly
added layers according to the training target and the loss
function of that step. Thus, the spectral masks are the primary
output targets, the objective TD signals and the encoded
representations are the intermediate output targets, and the
objective spectral signals are the main output targets. The
first three steps act as pre-training for the final training step,
which consists of fine-tuning the whole integrated end-to-end
model. This leads to a gradual structural learning process and
improves performance.

B. OUR CONTRIBUTIONS CONCERNING PREVIOUS
WORKS
Overall, the main differences and advancements of this work
compared to the earlier ones are:

• In existing CRN-based speech enhancement, the mag-
nitude or complex spectrum of the desired speech is
the training target of CRN (spectral mapping-based
method). We propose a CRN-based enhancement with
mask targets (CRN-basedmasking), incorporating phase
information in addition to the magnitude.

• Inspired by conventional IRM and PSM masks,
we propose a new hybrid mask. This mask, named
the constrained phase sensitive-magnitude ratio mask
(cPSIRM), has limited values like IRM and has phase-
difference (PD) information like PSM. Additionally,
a phase constraint is applied to modify the PD values
and restrict the final enhanced magnitudes. The cPSIRM
is provided for both speech and noise signals and is
estimated by the CRN.

• In conventional spectral masking-based speech enhance-
ment, TD-to-FD (FFT) and FD-to-TD (IFFT) transfor-
mations are not part of the learning process and are
performed separately outside the network. In our system,
they are integrated as additional layers into the CRN
pre-trained with the T-F mask targets. This results in
the CRN estimating the mask values with the influence
of the final time-domain signals. This leads to the joint
estimation of the time-domain signal and the T-F mask
(as an intermediate target) within a single network (Joint
FFT-CRN-IFFT). This can help the SE process.

• In previous two-stage masking-based speech enhance-
ment approaches [31], [43], [44], [45], [60], [61],
DNN-based masking is separately combined with linear
NMF or its DNN-based approximation (DNN-NMF) as
consecutive enhancement methods. These approaches
have the following disadvantages:

1) The two stages are performed separately.
2) A T-F mask is the training target of a simple
DNN in the first stage, and the final time-domain
speech signal is resynthesized separately out-
side the DNN network. Also, a spectral magni-
tude mask is used without incorporating phase
knowledge.
3) When using the DNN-based approximation of
NMF activations (DNN-NMF) in the second stage,
the NMF and DNN work separately. The DNN
estimates the activation weights of a linear NMF
model as the main output, which are intermediate
targets.

• In [31] and [60], a separate combination of DNN-based
masking with NMF reconstruction as post-processing is
suggested. In [61], the DNN-basedmasking is combined
with DNN-NMF (DNN-IRM+DNN-NMF-Sep) in two
consecutive separate stages. In the second stage (DNN-
NMF), the DNN andNMF inference are used separately,
so that the NMF basis matrix is applied outside the
DNN as a linear multiplication operation to reconstruct
the main speech signal. In contrast, in the first stage of
our proposed model, we use CRN for mask estimation,
integrated with FFT and IFFT layers (FFT-CRN-IFFT)
to simultaneously estimate the final time-domain sig-
nal. In the second stage, we use our joint DNN-DEC
structure [66] which is a joint and non-linear sparse
equivalent of DNN-NMF (the second stage of [61]).
Then, we propose a joint framework of CRN-based
masking and DNN-DEC (Joint CRN+DNN-DEC).

• This work extends our previous research [66] by adding
the FFT-CRN-IFFT model as the first stage of the sys-
tem. The joint DNN-DEC model from [66] is used as
the second stage in the proposed system, creating a more
robust and comprehensive approach.

• In [61], in the second stage, NMF inference and DNN
estimates of activations operate independently, and the
DNN only predicts the linear activation coefficients as
the main output, while they are intermediate targets.
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Thus, the main spectral speech signal is approximated
manually (separately) outside the DNN by multiplying
the estimated activations and the learned NMF speech
basis. However, in the second stage of our system (joint
DNN-DEC, Fig. 1), properly designed decoders are used
as non-linear alternatives to NMF bases to reconstruct
the spectral speech and noise signals in a non-linear
manner. These decoders are also integrated with the
DNN (joint DNN-DEC). Thus, by the cooperation of
integrated speech and noise decoders as extra layers of
DNN (instead of linear NMF bases), the actual spec-
tral signals are directly estimated by the DNN-DEC.
Also, by using hierarchical training, non-linear encoded
features are explicitly exploited as direct intermediate
targets for the encoded output layer, in addition to using
the original signals as the final target for the main output
layer.

• This paper proposes a hierarchical three and four-step
training approach. In the proposed 4-step mapping (our
final suggestion), in step 1, the mapping of the spec-
tral noisy input to the mask output layer is learned
through the CRN layers. Then in step 2, the TD noisy
input is mapped to the TD speech and noise signals,
and in step 3, it is mapped to the sparse encoded fea-
tures through the pre-trained CRN layers and the extra
added layers. Finally, in step 4, the TD noisy input is
mapped to the main output layer through all integrated
parts (CRN+DNN-DEC model). This approach helps
to directly incorporate and maintain the harmonic struc-
tures of the spectral masks and the encoded features in
learning, and it improves the local minima issue, which
could lead to better results.

• The speech and noise NMF activations in [69]
and [72] or the DAE’s encoded features in [66]
are directly estimated from the noisy speech. How-
ever, in our model, they are estimated from the
separated speech and noise signals using the ini-
tial CRN-based masking as a separation stage.
Hence, in CRN+DNN-DEC, the DNN performs
the regression between the CRN-separated masked
signals and their related DAEs-extracted encoded
features.

• In this paper, to consider the complementarity between
speech and noise, multi-target simultaneous estimation
at each step and joint modeling of them is proposed.
This means estimating the joint targets of both speech
and noise masks, their encoded features, and their actual
signals. This is done hierarchically within a single net-
work at the corresponding target output layer based on
the related loss function (corresponding training step).
This approach shares parameters and exploits the speech
and noise correlations in each output layer for better
separation.

• In [67] and [68], the NMF activation features and the
mask target are used in a single DNN. We use two
joint consecutive stages in which the non-linear encoded

features are estimated in the second stage from the first
masked signals.

• We provide a simple approach with minimal data,
facilitating learning through the proposed model-aided
network, hierarchical learning, extracting the appropri-
ate compressed features of speech and noise signals, and
injecting the encoded features and mask estimation as
prior knowledge.

To sum up, the core contributions of this work are:
-We propose a constrained phase-sensitivemagnitude ratio

mask (cPSIRM) that incorporates both magnitude and phase
information.

- Domain knowledge of frequency-domain to time-domain
conversion (or vice versa) is integrated into the network.

-We introduce a new pretrain/finetune (step-wise) learning
approach (gradual structural learning).

- A joint, fully nonlinear, two-stage separation and
enhancement approach is developed.

- The joint FFT-CRN-IFFT component is newly proposed,
and within it the CRN-based masking is critical. The devel-
opment of the cPSIRM mask is a significant contribution to
the field.

The rest of this paper is organized as follows: Section II
briefly describes the speech enhancement problem. The pro-
posed system is introduced in Section III. Section IV provides
evaluations and comparisons between different approaches.
Finally, the conclusion is presented in Section V.

II. OVERVIEW OF SPEECH ENHANCEMENT
Given a noisy speech as y(k) = s(k) + n(k), where k is the
sample index, the goal of a single-channel speech enhance-
ment problem is to extract an estimate ŝ(k) of the desired
speech s(k) from a noisy speech y(k). In the short-time
Fourier transform (STFT) domain, the corresponding mag-
nitude spectrograms, ignoring the speech-noise cross-term,
can be expressed as Y (f , t) ≈ S(f , t) + N (f , t), where Y , S,
and N ∈ RF×T

≥0 are the magnitude spectrograms of the noisy
speech, the clean speech, and the noise, respectively. f and t
are the frequency and time indices, and F and T are the total
frequency bins and time frames, respectively [78].

In DNN-based speech enhancement, the DNN is often
employed in two phases: training and testing. In the training
phase, the DNN is learned using the training data to map the
noisy speech to the desired speech. In the testing phase, the
learned DNN estimates the speech from the observed noisy
speech [33], [79]. Due to the unbounded values of the raw
signals, directly estimating them by DNN (mapping-based
separation) is challenging and needs learning a wide dynamic
range of values [13], [80]. In contrast, in the masking-based
separation, a T-F speech mask that contains the gain values at
each T-F unit is usually predicted by the DNN and applied to
the observed noisy signal to separate the clean speech from
it [5], [33], [61].

In the NMF method, a nonnegative matrix of the signal
such as the magnitude spectrumY∈RF×T

≥0 is decomposed into
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a product of a nonnegative basis matrix W∈RF×K
≥0 (K≤F)

and a nonnegative activation matrix H∈RK×T
≥0 (Y ≈ WH)

[81].K indicates the basis number (columns ofW). The basis
matrix represents the signal structures, and the activation
matrix contains the coefficients that linearly combine the
basis vectors to estimate the signal. The matrices W and H
are found by minimizing a cost function such as Kullback-
Leibler (KL) divergence and using a multiplicative update
rule. The matrices are typically randomly initialized and
then updated using the iterative updating rules [81]. Similar
to DNN, NMF-based speech enhancement often includes
two phases: training and testing. In the training phase, the
basis matrices are trained individually from the magnitude
spectrograms of the training speech and noise data and kept
fixed for the testing phase. In contrast, the related activation
matrices are discarded. The trained basis matrices of speech
and noise are concatenated as the noisy basis matrix. Then,
this larger matrix is used in the testing phase to estimate
the noisy activation matrix from the test noisy spectrum

(Y ≃ [Ws−trWn−tr ]
[
Ĥs

Ĥn

]
). Then, the magnitude spectra

of speech (̂S) and noise (N̂) are estimated by Ws−trĤs and
Wn−trĤn. Finally, a Wiener filter is calculated from the
estimated sources and usually applied to the noisy magnitude
to obtain the smoothly separated magnitudes of speech and
noise. The underlying assumption of this approach is the
orthogonality between the bases of speech and noise. How-
ever, there are overlaps between them. Thus, the estimation
of the test activation using the concatenated bases, which
have been separately trained, is accompanied by error. In the
DNN-based approximation of NMF [12], [61], [69], instead
of using the concatenated bases, a DNN learns the mapping
of the noisy speech to the activations. Therefore, the DNN
estimates them in a non-linear manner.

Similar to the NMF mechanism in signal decomposition,
a DAE can approximate a signal by a fundamental model
and extract an encoded representation in a non-linear man-
ner. The DAE consists of two deep neural networks: an
encoder (fENC ) that maps the input data into the encoded
representation and a decoder (fDEC ) that reconstructs the data
from the encoded representation [75]. The DAE maps the
signal to itself through fDEC (fENC ()). By restricting the latent
space to be lower-dimensional than the input or imposing a
regularizing constraint, the model is prevented from learn-
ing identity mapping [82]. By this mechanism, the encoder
extracts a compact and structural representation of input
data while preserving enough information so that the recon-
structed data by the decoder is as close as possible to the
original data [83], [84]. In a denoising DAE, the noisy speech
as input is directly mapped to the clean speech as output [75].
In this paper, to perform enhancement using DAEs, compared
to the linear separation in the NMF method, the estimation
of the non-linear encoded features of speech and noise from
the noisy speech is performed by a DNN in a non-linear
manner.

FIGURE 2. The components of the proposed joint CRN+DNN-DEC model.
The DAEs and mask calculation blocks are only used in the training
phase. The extracted encoded features are directly put as the encoded
output target of the enhancer DNN (the dotted lines of E) only in the
proposed four-step mapping approaches.

III. THE PROPOSED JOINT CRN+DNN-DEC MODEL
The detailed block diagram of the proposed CRN+DNN-
DEC model is shown in Fig. 2. This model consists of the
Jnt FFT-CRN-IFFT model (separation stage) and its extra
integrated DNN and decoder/Wiener filtering (WF) layers
named Jnt DNN-DEC (enhancement stage). The motivation
of multiple components is as follows: The FFT-CRN-IFFT
part (first stage), which is a masking-based model, is uti-
lized as a separation stage to coarsely distinguish speech and
noise signals through a masking approach. To address the
limitations of existing time-frequency (T-F) masks, we intro-
duce a new phase-aware mask that effectively incorporates
both magnitude and phase information. Additionally, FFT
and IFFT transformations are integrated with the masker
network (CRN) to embed domain knowledge, such as fre-
quency domain representation of signals, into the learning
process. The second stage (based on our previous work)
functions as a compensation stage to reduce distortions and
improve the quality of the separated speech. These stages
are described in Section III-A and Section III-B, respectively.
Section III-C presents the proposed different step-wise input-
to-output mapping approaches in CRN+DNN-DEC and the
training phases of the four-stepmapping as our final proposed
mapping approach. Multiple training phases are employed
to facilitate the learning of the complex (composite) model
in a step-wise manner, using a new pre-train and fine-tune
approach. This strategy helps overcome the vanishing gra-
dient issue and aids the learning process. Initially, parts
of the large CRN+DNN-DEC model undergo pre-training
with relevant targets. Subsequently, with the addition of
new components (layers), the entire integrated network
(CRN+DNN-DEC) is retrained in a fine-tuning phase based
on new training targets. This step-wise approach contrasts
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with the conventional method of pre-training and fine-tuning,
where the entire network is first trained on large datasets
and then fine-tuned for more specific datasets. By gradu-
ally evolving the network structure and training targets, this
method enables continuous optimization and enhances adapt-
ability. In some proposed mapping approaches, the aim is to
inject the encoded structural features andmask values directly
into the network as training targets, acting as prior knowledge
and aiding the learning process.

A. JOINT FFT-CRN-IFFT (SEPARATION STAGE)
The separation stage includes the unified FFT-CRN-IFFT
model in which the input and output are the TD-framed
signals. The FFT layer is located after the input layer, and
the IFFT layer is before the output layer of FFT-CRN-IFFT.
As shown in Fig. 2, this model comprises the masker CRN
and its integrated masking layer (CRN-based masking), FFT
layer, and IFFT layer. Thus, the speech synthesis (FFT),
the mask estimation, and the speech resynthesis (IFFT)
are integrated. The FFT-CRN-IFFT incorporates the domain
knowledge of FD to TD conversion and estimates the mask
values concerning the main objectives of separation and the
final time-domain signals. The mask values are calculated in
themask calculation blocks (Fig. 2) and put as training targets
for the masker CRN.

1) THE PROPOSED CONSTRAINED PHASE-SENSITIVE
MAGNITUDE RATIO MASKS (cPSIRMs)
Despite that the cIRM [59] and PSM [40] contain phase infor-
mation, they have unbounded values which can be destructive
for gradient descent-based supervised learning [85], so they
are compressed. In [40], the PSM is directly truncated to
between 0 and 1, which changes the mask [85], and in [59],
the cIRM is compressed by using the hyperbolic tangent.
However, compression causes the mask values not to have
direct interaction with the signal spectrum and not to repre-
sent it clearly. Also, according to findings in [86], [87], [88],
and [89], the imaginary part of the cIRM has random patterns
and no learnable structure. Reference [89] showed that there
is no information in the imaginary part of the cIRM estimated
by the DNN, and surprisingly, the network can not estimate
it. Thus, to effectively incorporate both magnitude and phase
information we propose a constrained phase-sensitive IRM
(cPSIRM), which is a hybrid mask of magnitude ratio and
PD information. It is estimated by a CRN for both speech
and noise signals (CRN-estimated cPSIRMs and cPSIRMn).
The speech PD is the phase difference between noisy speech
and clean speech (α1 = αy(t, f ) − αs(t, f )), and the noise
PD is the phase difference between noisy speech and noise
(α2 = αy(t, f ) − αn(t, f )). According to [51], in high SNRs,
αy spectrum is almost similar to αs, so cos (α1) ≈ 1.
Conversely, in low SNRs, α1 spectrum values are uncertain
and may be random. About α2, in low SNRs, the difference
between αy and αn is insignificant, so cos (α2) ≈ 1, and
in high SNRs, it tends to be random. These distinctions and

characteristics and the available structures in the |α1| and |α2|

spectra are valuable enough to consider them as a training
target of a deep learning-based network. Inspired by the PSM
idea, we use cos (α1) and cos (α2) as training targets which
are PD gains for speech signal (PDGs) and noise signal
(PDGn), respectively. However, as these PDGs are applied
on the noisy magnitude along with the related magnitude
ratio mask, by investigating the PDGs and PDGn values in
different PDs, they need to be restricted to estimate the speech
and noise signals correctly. According to the triangle rule
(Eq. (1)), forPDGs in the case of cos (α1) < 0 (π/2 < |α1| <

π ), the noise is dominant, and its magnitude squared is greater
than the sum of the noisy and clean magnitude squared. Thus,
the PDGs is better to be zero.

|N |
2

= |Y |
2
+ |S|

2
− 2 |Y | |S| cos (α1) (1)

A similar condition is established in cos (α2) < 0 for
PDGn so that the noisy magnitude is smaller than the clean
magnitude [90], [91]. Therefore, it is necessary to impose
limitations on PDGs and PDGn. According to Eq. (2),
under the nonnegativity condition, these values are bounded
to zero, similar to the rectified linear unit (ReLU) func-
tion [92] (f (x) = max(x, 0)). Thus, we define the speech
and noise-constrained PD gains (cPDGs, cPDGn) and their
related magnitude ratio masks (IRMs, IRMn) as follows:

cPDGs(t, f ) = ReLU (cos (α1))

cPDGn(t, f ) = ReLU (cos (α2))

IRM s(t, f ) =
S(t, f )

S(t, f ) + N (t, f )

IRMn(t, f ) =
N (t, f )

S(t, f ) + N (t, f )
(2)

S(t, f ) andN (t, f ) are the speech and noise magnitude spectra
at each T-F unit, respectively. Then, the speech and noise
cPSIRMs (cPSIRM s, cPSIRMn) are obtained as the product
of the related IRM and cPDG as follows (mask calculation
blocks in Fig. 2):

cPSIRM s(t, f ) = IRM s(t, f ) × cPDGs(t, f )

=
S(t, f )

S(t, f ) + N (t, f )
ReLU (cos (α1))

cPSIRMn(t, f ) = IRMn(t, f ) × cPDGn(t, f )

=
N (t, f )

S(t, f ) + N (t, f )
ReLU (cos (α2)) (3)

Instead of the hard labeling of T-F units in IBMs [5], the pro-
posed cPSIRM is the bounded soft mask that assigns a value
between zero and one on each T-F unit. The CRN-estimated
cPSIRMs are applied to the noisy magnitude spectrum Y in
the integrated masking layer, and the speech and noise are
primarily separated as follows:

S̃1 = ̂cPSIRM s × Y, Ñ1 = ̂cPSIRMn × Y (4)

where× indicates the element-wisemultiplication. S̃1 and Ñ1
are the masked speech and noise estimates, respectively.
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This stage (separation) can be considered part of the feature
extraction for the second stage (enhancement).

B. JOINT DNN-DEC (ENHANCEMENT STAGE)
According to Fig. 2, the structures in the magnitude spectro-
grams and the compact representations of speech and noise
signals are captured using the related DAEs. The sparse
encoded features are extracted from the output activations of
the DAEs bottleneck layers and the structural base models
from the pre-trained decoder portions. According to Fig. 2,
the pre-trained decoders are integrated with DNN layers
(DNN-DEC). In capturing the encoded features, in addition
to limiting the number of bottleneck layer nodes, a sparsity
constraint is also imposed on the latent representation tomake
it more compressed. The mapping function of the speech and
noise DAEs layers (fi) is as follows:

hi = fi (hi−1) = σ (Wihi−1 + bi) 1 ≤ i ≤ I ,

hI ′ = fI ′ (. . . f2 (f1 (h0))) = fENC (h0) ,

hI = fI
(
. . . fI ′+2

(
fI ′+1 (hI ′)

))
= fDEC (hI ′) ,

h0 = SorN, hI ′ = EI ′s or EI ′n, hI = ŜorN̂,

ŜorN̂ = fDEC(fENC(SorN)) = fDEC (EI ′s or EI ′n) (5)

where fENC and fDEC are the encoder and decoder mapping
functions, respectively. Wi and bi are the DAE weight and
bias parameters, respectively. The spectral magnitudes S/Ŝ
and N/N̂ are the input/output of speech DAE and noise DAE,
respectively. EI ′s indicate the speech-encoded representation
and EI ′n shows the noise-encoded representation. σ (·) is the
non-linear activation function. i is the DAEs layers index with
the total number of I , so that i=0 is the input layer, i=I ′ is the
bottleneck layer and i=I is the output layer. hi indicates the
output activation of the hidden layer i = 1 to I − 1.
In our four-step mapping, which will be explained in

Section III-C, the extracted encoded features (EI ′s,EI ′n),
which are the outputs of the pre-trained encoders, are used
as a direct intermediate training target for the encoded output
layer of the shared enhancer DNN (the dotted lines of E
in Fig. 2). This work, similar to prior knowledge, leads to
the incorporation of more structural features and improves
enhancement results. The encoded features and the main
spectral signals are jointly estimated through the enhancer
DNN and its extra integrated grouped decoders andWF layers
as reconstruction layers (Jnt DNN-DEC). The enhancer DNN
maps the masked signals (the separated speech S̃1 and noise
Ñ1) to the corresponding encoded features. The masking
process allows the estimation of the speech and noise encoded
features to be captured from the separated speech and noise
signals. This is in contrast to our previous work [66], where
they were directly estimated from the input noisy speech.
This results in acquiring more accurate estimates and reduces
the noise residue. Then, the speech and noise decoders are
applied to the estimated encoded features. Finally, by using
the WF layers, the final speech and noise estimates are

FIGURE 3. Different input-to-output training mappings in CRN+DNN-DEC:
(a) Separate reconstruction (CRN+DNN-DEC-Sep); (b) Joint-Three-step
(CRN+DNN-DEC-Jnt3); (c) Joint Four-step1 (CRN+DNN-DEC-Jnt4_1),
Joint-Four-step2 (CRN+DNN-DEC-Jnt4_2). Steps 1 and 2 are included in
all (a), (b), and (c) methods. The learned parts of prior steps serve as
initials for the next training step. In ‘‘Sep’’, the decoders are applied
separately outside the network.

approximated as follows:

S̃ =
(DECs(Ês))

2

(DECs(Ês))
2
+ (DECn(Ên))

2 × Y

Ñ =
(DECn(Ên))

2

(DECs(Ês))
2
+ (DECn(Ên))

2 × Y (6)

The division operation is element-wise. S̃ and Ñ are the
enhanced versions of the speech and noise magnitudes,
respectively. Thus, the masked signals are mapped to the
corresponding encoded features, and then jointly to the main
speech and noise signals through the Jnt DNN-DEC layers.

C. DIFFERENT INPUT-TO-OUTPUT TRAINING MAPPINGS
IN CRN+DNN-DEC
The proposed different input-to-output mappings in the
CRN+DNN-DEC model as shown in Fig. 3 include ‘‘Sep-
arate reconstruction (Sep)’’, ‘‘Joint-Three-step (Jnt3)’’, and
‘‘Joint Four-step1 (Jnt4_1)/Joint-Four-step2 (Jnt4_2)’’. In
‘‘Sep’’, we have an integrated FFT-CRN-IFFT+DNNmodel,
and the decoders are applied separately outside of the model.
While in ‘‘Jnt3’’ and ‘‘ Jnt4_1/ Jnt4_2’’, the decoders are
integrated with the FFT-CRN-IFFT+DNN model and we
have the joint CRN+DNN-DEC model. First, we define
the first and second mappings (training process), which are
done in FFT-CRN-IFFT (the left part in Fig. 3). In the first
mapping (circle1), the noisy spectral magnitude is mapped
to the mask values through the masker CRN layers (Y →

[cPSIRM scPSIRMn]) and via Loss1(Eq. (7)).

Loss1 =

∥∥∥cPSIRMs − ̂cPSIRMs

∥∥∥2
2

+

∥∥∥cPSIRMn − ̂cPSIRMn

∥∥∥2
2

(7)

In the second mapping (circle2),the noisy time frames are
mapped to the clean and noise frames through FFT-CRN-
IFFT and via Loss2TDsig (Eq. (8)).

Loss2TDsig =
1
K

∑K

k=1

∣∣[∣∣FFT(ŝ (k))∣∣ ∣∣FFT(n̂ (k))
∣∣]

− [|FFT(s (k))| |FFT(n (k))|]| (8)
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FIGURE 4. The detailed training phases of our joint four-step CRN+DNN-DEC model (Joint-Four-step2 (Jnt4_2)). Phases I, II, and III are done
sequentially so that the extracted encoded features of phase I are put as a direct target for the enhancer DNN of phase II. Also, the learned
models of phases I and II are used as pre-trained layers for phase III, which is our fine-tuned joint end-to-end model. The dashed and dotted
arrows between phases indicate use as pre-training models and placement as output training targets, respectively.

where |·| denotes the absolute value operation (magnitude).
s (k) and n (k) are the framed speech and noise signals with
size K (frame samples). Reference [77] expressed that an
FD loss function has a clear discrimination ability, and can
restore speech with higher quality than a TD loss function.
In addition to this reason, the TD-to-FD transformation is
differentiable. Hence, we suggest using an FD loss function
to train our FFT-CRN-IFFT model, whose input/output are
time-framed signals (Loss2TDsig in Eq. (8)). Thus, we perform
an extra operation of converting the estimated time-framed
signals to the FD (FFT) in the loss function at the training
phase. Then, according to Eq. (8), the MAE is computed
between the estimated and the actual clean and noise spectral
magnitudes. In the ‘‘Separate (Sep)’’case (Fig. 3a), after
applying the first and second mappings (FFT-CRN-IFFT),
the noisy frames are mapped to the encoded features of
speech and noise through the integrated FFT-CRN-IFFT and
enhancer DNN (Fig. 3a, circle3, y→ [EsEn]), and via Loss3
(Eq. (9)). Then, by separately applying the learned speech
and noise decoders and the WFs outside of the network
(FFT-CRN-IFFT+DNN) on the estimated encoded features,
the speech, and noise spectral magnitudes (S, N ) are recon-
structed manually.

Loss3 =

∥∥∥Es − Ês
∥∥∥2
2
+

∥∥∥En − Ên
∥∥∥2
2

(9)

In the ‘‘Joint-Three-step (Jnt3)’’ case (Fig. 3b), the grouped
decoders and WFs (reconstruction layers) are integrated into
the enhancer DNN so that the objective speech and noise
spectral magnitudes (S, N)play the role of the main output
targets. While the encoded features are not directly targeted
by the enhancer DNN as an intermediate output target. Thus,
in this method, after the first two steps (the left part in
Fig. 3),the framed noisy speech is directly mapped to the
main output layer through the joint model of FFT-CRN-
IFFT, enhancer DNN, and reconstruction layers (Fig. 3b,
circle3, y→SN), and via Loss4 (Eq. (10)).

Loss4 =

∥∥∥S − S̃
∥∥∥2
2
+

∥∥∥N − Ñ
∥∥∥2
2

(10)

In the case of the joint four-step mapping (Fig. 3c), as our
ultimate suggestion, the input-to-output mapping of the joint
CRN+DNN-DEC model is performed in two different ways.
In the first way (Joint-Four-step1, Fig. 3c left part), the
hierarchical four-step mapping is as follows: In step 1, the
CRN is trained with the noisy spectrum as input and the pro-
posed speech and noise masks as output targets. In step 2,
the FFT-CRN-IFFT is trained with the TD noisy speech as
input and the TD speech and noise signals as output. In
step 3, the integrated FFT-CRN-IFFT and DNN layers are
trained with the TD noisy speech as input and the encoded
features of speech and noise as output. Finally, in step 4,
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the integrated FFT-CRN-IFFT, DNN, and decoders (unified
CRN+DNN-DEC model) are trained with the TD noisy
speech as input and themain spectral speech and noise signals
as output. In Joint-Four-step1, the integrated FFT-CRN-IFFT
and enhancer DNN (step 3) is the pre-trained part. In the
second way (Fig. 3c right part, Joint-Four-step2), instead
of mapping the input noisy speech to the encoded layer in
Joint-Four-step1(Fig. 3c left part, circle3, y→ [EsEn]), the
separated masked signals are mapped to the encoded layer
by the enhancer DNN (Fig. 3c right part, circle3, [S̃1Ñ1] →

[EsEn]). In Joint-Four-step2, FFT-CRN-IFFT (steps 1 and
2) and enhancer DNN (step 3) are separately pre-trained
components. Then, the framed noisy speech is mapped to
the main output layer through the unified CRN+DNN-DEC
model (step 4), while the learned components of the prior
steps operate as pre-trained parts. In other words, the initial
mappings act as pre-trainings for the final mapping.

1) THE TRAINING PHASES OF THE FOUR-STEP MAPPING IN
CRN+DNN-DEC
As shown in Fig. 4, the training phases of our second four-step
mapping approach (Joint-Four-step2) in the CRN+DNN-
DEC model as one of the proposed mappings (Fig. 3c, right
part) are as follows:

In phase I, the speech DAE is trained with the clean
speech spectral magnitude as the input and output feature,
and the noise DAE is similarly trained with the noise spectral
magnitude. Simultaneously, a Convolutional Recurrent Net-
work (CRN) is trained and the complex Ideal Ratio Masks
(cPSIRMs) of speech and noise (computed in the Mask Com-
putation Block (Section III-A)) Also, the masker CRN is
trained with the noisy speech spectral magnitude as the input
and the speech and noise cPSIRMs calculated in the mask
calculation block (section III-A) as the output targets. Then,
we use the learned CRN and decoders as pre-trained models
for phase II and phase III, respectively. We retrain them in the
new phases along with the other integrated layers by the train-
ing targets of that phase. In Fig. 4, the dashed arrows between
the phases indicate the use of the learned models of the
previous phases as the pre-trained models for the next ones.
They are updated in the new phases by the newobjectives.
Also, the dotted arrows depict that the extracted features are
used as an explicit training target, i.e., the extracted encoded
features are used as direct targets for the enhancer DNN, and
the calculated masks are put as training targets for the masker
CRN.

In phase II, the enhancer DNN is trained with the
DAEs-extracted encoded features as output targets. Also, the
Jnt FFT-CRN-IFFT model (section III-A) is trained with
the framed noisy speech as input and the framed speech and
noise signals as output targets through the frequency-domain
loss function (Loss2TDsig (Eq. 8)). Therefore, the CRN layers
learned with the T-F mask targets (phase I) are now updated
according to the ultimate time-domain signals, so that the
mask values are estimated regarding the final time-domain
output. The FFT and IFFT layers are deterministic and are

not changed during training. Finally, the learned enhancer
DNN and Jnt FFT-CRN-IFFT are used as the pre-trained
constituent components for the composite CRN+DNN-DEC
model (phase III).

In phase III, the unified CRN+DNN-DEC model, which
consists of the pre-trained FFT-CRN-IFFT, enhancer DNN,
grouped decoders, and some additional deterministic layers,
is trained end-to-end with the output target of speech and
noise spectral magnitudes with the spectral magnitudes of
speech and noise as the output targets and through Loss4
(Eq. (10)). The deterministic layers (WFs, FFT/IFFT, and
masking layers) do not have connection weights and do not
require learning. The pre-trained weights are used as the
initial values for the new joint model and continue to be
learned during the joint training.

Therefore, the training process of the CRN and DNN com-
ponents of CRN+DNN-DEC is as follows:

According to Fig. 3 (circle1) and Fig. 4, in the first training
process, the CRN is trained with the noisy magnitude spec-
trum as input, and the cPSIRM values (Eq. (3)) as output
targets through Loss1 (Eq. (7)). The CRN weights are then
updated in the joint models along with the other integrated
layers in other training mappings (circles 2, 3, 4 in Fig. 3)
and via the related loss functions (section III-C).
In Separate reconstruction (Fig. 3a), the DNN layers,

along with the FFT-CRN-IFFT layers, are trained with the
noisy speech as input and the concatenated speech and
noise encoded features as the output targets of the integrated
FFT-CRN-IFFT+DNN model (circle 3 in Fig. 3a). In Joint-
Three-step (Fig. 3b), the DNN, which is a component within
the joint CRN+DNN-DEC model, is trained along with the
other integrated layers based on the final spectral speech and
noise signals (which are the output training targets of the joint
CRN+DNN-DECmodel). Therefore, the resulting outputs of
the decoder layers are used to compute the error metric for
optimizing the DNNweights. By calculating and propagating
the output error through the decoder layers to the DNN layers,
the DNN parameters are tuned. In Joint Four-step1 (left part
of Fig. 3c), at first, similar to the Fig. 3a approach, the DNN,
along with the FFT-CRN-IFFT, is trained (pre-trained) with
the encoded features as output target(circle 3 in the left part
of Fig. 3c), then similar to the Fig. 3b approach, the DNN
layers are updated based on the final spectral speech and noise
signals (circle 4 in the left part of Fig. 3c). In Joint-Four-step2
(right part of Fig. 3c and Fig. 4), the DNN is first trained (pre-
trained) with the speech and noise magnitudes as input, and
the encoded features as output target (circle 3 in right part of
Fig. 3c and Phase II in Fig. 4). Then its layers are updated
based on the final speech and noise signals similar to Joint-
Three-step (Fig. 3b) and Joint Four-step1 (circle 4 in left part
of Fig. 3c).

IV. PERFORMANCE EVALUATION
The performance of the proposed CRN+DNN-DEC meth-
ods (‘‘CRN+DNN-DEC-Sep’’, ‘‘CRN+DNN-DEC-Jnt3’’,
and ‘‘CRN+DNN-DEC-Jnt4_1, CRN+DNN-DEC-Jnt4_2’’)
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is compared with DNN-DEC [66] and other baseline meth-
ods. In the ‘‘ CRN+DNN-DEC-Sep’’ approach, the decoders
and Wieners are applied separately outside the network com-
pared to others )labeled by ‘‘Jnt3’’ and ‘‘Jnt4’’) in which they
are integrated into the DNN and jointly optimized (Fig. 3).
The DNN-DEC [66] is the main comparison method,

as this work is an extension of [66], mainly by introduc-
ing an extra CRN masking network (Jnt FFT-CRN-IFFT).
The DNN-IRM+DNN-NMF-Sep [61] method has also been
used as another comparison method since it is the most
relevant previous work. As a side note, we note that DNN-
IRM+DNN-NMF-Sep [61] without the first stage (i.e.,
DNN-NMF-Sep) was already presented in [66] as a com-
pared method. The DNN with the IRM target (DNN-IRM)
[5], the LSTM with IRM target (LSTM-IRM) [19], [20],
and the CRN with the magnitude target (CRN-Mag) [15],
[16], [17], [18] are also implemented as additional com-
parison methods. The CRN is trained with the cPSIRM
target (CRN-cPSIRM) as a proposed approach. The CRN
is also performed with the IRM target (CRN-IRM) to com-
pare with CRN-cPSIRM and investigate the performance of
the proposed cPSIRM mask. The cPSIRMs are as defined
in Eq. (3). The estimation of the IRMs and PDGs is also
performed by two separate CRNs; however, the results
do not differ much from the combined-mask estimation
by one CRN (CRN -cPSIRM). In DNN/CRN/LSTM-IRM
methods, the speech and noise IRM masks, which are the
training targets, are estimated from the mixture by the
DNN/CRN/LSTM networks and are applied on the mix-
ture separately outside the network to approximate the main
signals. On the other hand, a comparison with a transformer-
based approach [25] and a current state-of-the-art method,
the diffusion-based model [27], is performed to further
assess the performance of the proposed approach. The work
in [25] is a multi-head self-attention network (MHANet)
that we implemented on our dataset. It should be noted
that performing this model with a mask target gave bet-
ter results, and thus, for a fair comparison, we performed
it with the IRM target (named MHANet [25]-IRM). Also,
as our work is not causal speech enhancement, instead of
the masked multi-head self-attention block in [25], we used
the traditional MHA block. MHANet, which is similar to
a Transformer’s encoder, includes 6 stacked encoder layers
with 1024 nodes (dmodel = 1024), 2 heads, and a dropout
rate of 0.1. The research in [27] explored the application
of diffusion-based generative models for speech enhance-
ment and dereverberation. This research, named Score-based
Generative Model for Speech Enhancement (SGMSE+),
builds on earlier works by utilizing a stochastic differen-
tial equation framework to improve speech quality. Unlike
traditional conditional generation tasks, this method initi-
ates the reverse diffusion process from a mixture of noisy
speech and Gaussian noise, rather than from pure Gaussian
noise. We use its two pre-trained models with VoiceBank-
DEMAND andWSJ0-CHiME3 for speech enhancement. For
a fair comparison, they were performed on our unseen noisy

signals, so their average results are reported in the unseen
part.

A. DATASET AND MEASURES SETUP
1) DATASET DESCRIPTION
The TIMIT database [93], which includes the utterances of
630 male and female speakers, is used as the speech dataset.
Similar to [66] as the main comparison method and for a
fair comparison, for training, 200 clean speech utterances
were randomly selected from the TIMIT training dataset and
mixed with babble, factory, and machinegun noises from the
NOISEX-92 DB [94] at SNRs from −5 to 20 dB with 5 dB
steps. The validation split was set to 10% to achieve validation
data. For testing, 60 clean speech utterances were randomly
selected from the TIMIT testing dataset and mixed with the
above noises as seen noises. Additionally, they were mixed
with the real recorded factorymachine and windshieldrain
noises from the freesound website (freesound.org) at SNRs
of −5, 5, 0, and 10 dB as unseen noises. The same training
and testing set was used for all the proposed and comparison
methods.

The magnitude spectrograms were obtained using a
512-point (32ms) Hamming window, a 128-point (8ms) shift
size, a 512-point (32ms) frame length, and a 512-point STFT.
Thus, the frame size K in Eq. (8) is 512. By cutting the
symmetric parts of the STFT coefficients, the dimensions of
the spectrograms are 257 × time-frame numbers.

2) NMF SETTINGS
The number of speech and noise bases is empirically set to
100 each. Therefore, the dimensions of the basis and activa-
tionmatrices are 257× 100 (frequency bins× basis numbers)
and 100 × time-frame numbers, respectively. The NMF is
applied to the concatenated magnitude spectrograms of all
training noises to obtain the overallWn. The NMFmaximum
iteration number is set to 50.

3) NETWORKS SETTINGS
For a fair comparison, the used DNN in all baseline and
proposed models has four hidden layers of 1024 nodes. The
architecture of speech and noise DAEs is empirically set
to 257-1024-512-100-512-1024-257 and 257-512-512-100-
512-512-257, respectively. In the CRN+DNN-DEC model,
the encoded output layer, which is related to the encoded
features of speech and noise signals, includes 100 × 2=200
nodes. The main output layer, which is associated with the
main spectral speech and noise signals, has 257 × 2=514
nodes. The mask layer contains 257 × 2=514 nodes due
to the spectral mask dimensions. The TD output layer has
512 × 2=1024 nodes due to the frame size. The DAEs and
enhancer DNN use Leaky rectified linear units (LReLU) [96]
with α = 0.1 (f (x) = max(αx, x)) as the activation function
for the hidden layers to address the ‘‘dying ReLU’’ issue.
These networks use the linear activation function for the
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FIGURE 5. Comparison of PESQ (a), STOI (b), and SNRfw (c) scores for
each averaged over the seen noise types and input SNRs.

output layer. The activation function of the encoded output
layer is set to ReLU when used as a direct output target.

FIGURE 6. The average PESQI results at each input SNR for the proposed
four-step CRN+DNN-DEC method over DNN-DEC [66],
DNN-IRM+DNN-NMF-Sep [61], and CRN-Mag [15] methods as examples.

The CRN consists of the convolutional neural network
(CNN) encoder-decoder and LSTM. The CRN configuration
in all CRN-used methods is based on [15] and [18]. Unlike
the kernel size of 2 × 3 (time × frequency) in [15], sim-
ilar to [18], we use 1 × 3 kernels, without changing the
performance. The LSTM-IRM model has two LSTM layers
of 3072 LReLU units and one fully connected (FC) layer,
including 1024 nodes with LReLU activations. It also has
an FC output layer with 257 nodes for mask estimation.
This setting is based on the LSTM in [20] and the LSTM-
IRM method [19], which was used as a comparison method
in [20]. However in [20], LSTM layers have 425 nodes,
we experimentally use more nodes for better results.

The networks are trained by the Adam optimizer [97] with
an initial learning rate of 0.001 and a maximum epoch of
100. Batch normalization is also used to accelerate learning
and avoid local minima issues. The weights and bias parame-
ters of networks are computed by using the backpropagation
algorithm.

4) LOSS FUNCTIONS
The mean-square error (MSE) and mean absolute error
(MAE)-based loss functions as defined in Eq. (7)-(10) are
optimized to minimize the distance between the predicted
output and the corresponding target in each related training
mapping in CRN+DNN-DEC model. The masker CRN is
trained by Loss1 (Eq. (7)). Loss2TDsig (Eq. (8)) is used for
training the joint FFT-CRN-IFFT model. Loss3 (Eq. (9)) and
Loss4 (Eq. (10)) are related to the encoded and the main out-
put layer of CRN+DNN-DEC, respectively. LDAE (Eq. (11))
is used for DAE training (e.g., speech DAE in Eq. (11)).
It includes an MSE term and a sparsity regularization term in
the form of l1-norm (||. ||1) as an approximation of l0-norm
which is NP-hard. The sparsity constraint is applied to the
hidden representations activities so fewer nodes would ‘‘fire’’

98578 VOLUME 12, 2024



M. Pashaian, S. Seyedin: Speech Enhancement Based on a CRN+DNN-DEC Model and a cPSIRM

FIGURE 7. Comparison of PESQ (a), STOI (b), and SNRfw (c) scores
averaged over the unseen noise types and input SNRs.

at a given time. ||. ||2 denotes the l2-norm.

LDAE = ∥S − fDEC fENC (S)∥22 + ∥Es∥1 (11)

FIGURE 8. The magnitude spectrograms of different signals: (a) Noisy
speech with factory noise at −5 dB SNR; (b) Clean speech; (c) Speech
enhanced by CRN-Mag [15]; (d) Speech enhanced by the proposed
CRN+DNN-DEC-Jnt4_2 approach.

5) METRICS
The evaluations were done using the perceptual evaluation
of speech quality (PESQ) [98], short-time objective intel-
ligibility (STOI) [99], and frequency-weighted segmental
SNR (SNRfw) [100], [101]. Higher values indicate better
performance. The PESQ score ranges from −0.5 to 4.5 and
measures speech quality [100]. The STOI range is [0, 1]
and reflects speech intelligibility. The SNRfw measures a
generalized short-time performance. Furthermore, we also
calculate the improvement of the PESQ metric (PESQI) as
the difference between the PESQ scores of the enhanced and
noisy speech versus the clean speech (PESQI = PESQ(s̃, s)−
PESQ(y, s)).

B. RESULTS AND DISCUSSION
The performance of the proposed CRN+DNN-DEC models,
CRN-IRM, and CRN-cPSIRM is evaluated on the testing set
in the seen and unseen noise conditions. The DNN-DEC [66],
DNN-IRM+DNN-NMF-Sep [61], DNN-IRM [5], LSTM-
IRM [19], [20], and CRN-Mag [15] methods are evaluated
on our dataset as comparison methods.

1) RESULTS
The average metrics results of all methods over different seen
noises and input SNRs are presented in Fig. 5. The average
PESQI results are also given in Fig. 6 at each input SNR
for the proposed four-step CRN+DNN-DEC approach and
the DNN-DEC [66], DNN-IRM+DNN-NMF-Sep [61], and
CRN-Mag [15] methods as comparisons.

We present the average metrics results of all methods over
the different unseen noises and input SNRs in Fig. 7.
In the end, we illustrate spectrograms of the enhanced

speech by CRN+DNN-DEC-Jnt4_2 and CRN-Mag in
Fig. 8 as examples. As can be observed, the proposed
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CRN+DNN-DEC-Jnt4_2 method (Fig. 8d) improves speech
with high quality and restores more harmonic structures. The
reconstructed speech by CRN-Mag [15] (Fig. 8c) contains
more noise components.

In addition, to assess the practical feasibility of the
proposed model, the execution time was evaluated. The exe-
cution time of our final model on an NVIDIA GeForce
GTX 1080 8GB graphics processing unit (GPU) for a test
noisy speech with a duration of 3 minutes and 22 seconds is
3.6 seconds, averaged over 5 trials. When using an Intel Core
i5-7600 @ 3.50GHz central processing unit (CPU), the exe-
cution time is about 68.4 seconds. These results indicate that
the proposed model is fast enough and suitable for practical
applications.

2) DISCUSSION
As shown in Fig. 5 (a, b, c), the proposed CRN+DNN-DEC
models (indicated by the red dashed box) outperform the
average results of DNN-DEC [66] for seen noise types in
terms of three metrics. This indicates that applying Jnt FFT-
CRN-IFFT as a preliminary separation stage can significantly
lead to better distinguishing speech and noise components
in the subsequence enhancement stage (DNN-DEC), which
is joined with the first stage. Jnt FFT-CRN-IFFT includes
CRN-based cPSIRM masking, which is the fundamental
reason for the superiority. Also, our methods outperform
DNN-IRM+DNN-NMF-Sep [61] because of our use of Jnt
FFT-CRN-IFFT in the first stage versus DNN-IRM in [61]
and our use of non-linear Jnt DNN-DEC layers in the second
stage versus DNN-NMF-Sep in [61]. The superiority of Jnt
DNN-DEC over DNN-NMF-Sep represents the better ability
of the decoders in capturing structures and learning patterns
in comparison to the NMF basis matrix due to their non-linear
and deep layers and jointing them with the DNN. Further-
more, this represents the better learning of DNN on more
structural patterns and features extracted by DAE compared
to NMF. We explained more detailed points in section I-A.
The proposed CRN+DNN-DEC models also offer a

considerable improvement over DNN-IRM [5], LSTM-
IRM [19], [20], CRN-Mag [15], CRN-IRM, CRN-cPSIRM,
andMHANet [25]-IRM. This ismainly due to the joint hierar-
chical efforts of the CRN-based cPSIRMmasking for separa-
tion, the DAEs for spectral structure extraction, and the DNN
for enhancement. The improved results of our CRN+DNN-
DEC methods over the CRN-cPSIRM show the effect of
the second enhancement stage (DNN-DEC layers) following
the masking stage to compensate for the mask estimation
errors. The better performance of CRN-cPSIRM over CRN-
IRM indicates the superiority of the proposed phase-sensitive
mask over the IRM due to the appropriate incorporation
of both magnitude and phase information. In summary, for
each seen noise, different CRN+DNN-DEC approaches, and
among them, the four-step mappings produce the best results.
Indeed, according to Fig. 5a, in CRN+DNN-DEC models,
going from the method labeled by ‘‘Sep’’ to ‘‘Jnt3’’ and then
to ‘‘Jnt4’’, the PESQ score increases for each noise. This

performance shows that the injection of the base structures as
basic knowledge into the DNN in the form of the joint extra
integrated layers (Jnt3 versus Sep) and the direct targeting
of the encoded features by DNN (Jnt4 versus Jnt3) leads
to improved performance. In terms of STOI (Fig. 5b) and
SNRfw(Fig. 5c), the results improve from ‘‘Sep’’ to ‘‘Jnt3’’,
although ‘‘Jnt3’’ and ‘‘ Jnt4’’ have almost the same results.
According to these figures, the two ways of four-step map-
ping (Jnt4_1 and Jnt4_2 explained in Fig. 3c) get nearly
the same results. This result indicates that the direct mapping
of the FFT-CRN-IFFT output to the encoded features does
not differ much from mapping the noisy speech. We can also
see in Fig. 6 that the average PESQI result of the proposed
four-step CRN+DNN-DEC model is considerably higher
than DNN-DEC [66], DNN-IRM+DNN-NMF-Sep [61], and
CRN-Mag [15] at each input SNR. In the unseen noise con-
ditions (Fig. 7a, b, c), the improvement of scores is naturally
less than the seen noises. In most cases, the performance of
the proposed CRN+DNN-DEC methods is improved over
DNN-DEC and other baseline methods, especially the state-
of-the-art SGMSE+ method. Similar to seen noises, within
the CRN+DNN-DECmodels, ‘‘Jnt4_1’’/‘‘Jnt4_2’’ have bet-
ter results than ‘‘Jnt3’’, and likewise, ‘‘Jnt3’’ performs better
than ‘‘Sep’’ in three metrics.

V. CONCLUSION
In this work, we proposed the joint cascaded two-stage
CRN+DNN-DEC model to jointly exploit the CRN-based
masking, DAEs-based structure extraction, and DNN-based
enhancement in noise elimination. In the CRN-based mask-
ing part, we proposed the estimation of a constrained
phase-sensitive magnitude ratio mask (cPSIRM) to consider
both magnitude and phase information for better enhance-
ment results. The CRN-based masking integrated with the
FFT and IFFT layers (FFT-CRN-IFFT) was applied for
speech/noise separation. The DAEs extract the non-linear
sparse encoded representations (features) and the structural
patterns (non-linear dictionaries) of speech and noise signals.
The DNN further distinguishes between the separated signals
and suppresses the residual interferences in collaboration
with the DAEs-extracted structures (decoder layers as non-
linear bases) (DNN-DEC). The input-to-output mapping in
the CRN+DNN-DEC model was proposed to perform in
three forms: ‘‘Separate’’, ‘‘Joint-three-step’’ and ‘‘Joint-four-
step’’. The four-step mappings presented the best results due
to the explicit effect of the knowledge injected into the system
by placing them as a direct target and through step-wise
(gradual) learning. In other words, mappings to the mask and
encoded output layers (as intermediate output layers) act as
pre-training steps for the final mapping to the main output
layer, which is fine-tuning the whole unified model. Thus,
the unified model not only estimates the low-level struc-
tural features as direct intermediate targets but also estimates
the high-level signals as main targets. It should be noted
that the proposed step-wise learning approach is a suitable
method for use in large networks to facilitate learning. The
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experimental results showed that our proposed CRN+DNN-
DEC approaches can further improve noise suppression
performance and perform better than the prior methods. One
of the constraints of the proposed model is its robustness
and applicability in diverse speech-processing environments
mainly due to the hardware limitations in applying several
noise types, which could be considered for future work.
Also, future work could involve conducting experiments to
demonstrate the effectiveness of the CRN+DNN-DECmodel
and the constrained phase-sensitive magnitude ratio mask in
real-world speech enhancement scenarios.
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