
Received 10 June 2024, accepted 10 July 2024, date of publication 15 July 2024, date of current version 23 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3428322

Use of Electronic Nose to Identify Levels of
Cooking Cookies
MUHAMMAD RIVAI 1, (Member, IEEE), AND DAVA AULIA 2
1Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo-Surabaya, Surabaya 60111, Indonesia
2Department of Informatics, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo-Surabaya, Surabaya 60111, Indonesia

Corresponding author: Muhammad Rivai (muhammad_rivai@ee.its.ac.id)

This work was supported by Indonesian Ministry of Education, Culture, Research, and Technology, Institut Teknologi Sepuluh Nopember,
under the Penelitian Keilmuan Program.

ABSTRACT Currently, the baking of cakes using an electric oven is based on cooking duration. Usually,
colors can be used to determine the levels of cooking food. However, many cakes have similar colors at each
stage, which cannot be used as indicators of doneness. Through today’s technology, the sense of smell can
be imitated using a gas sensor combined with artificial intelligence for food quality control. In this study,
an electronic nose systemwas developed to distinguish levels of baking cookies. This process involved 20 gas
sensors and 10 classification algorithms based on aroma. The optimization technique based on correlation
analysis and distinguishing rate methods was carried out to obtain a small number of sensors that still
maintained high accuracy values. Several sensors were eliminated, while the remaining 13 sensors were
retained. The selected electronic nose system consisted of 6 gas sensors and convolutional neural networks.
It succeeded in distinguishing cooking levels, including undercooked, cooked, and overcooked food, with
an accuracy of 90.0%, a precision of 89.7%, a recall of 92.6%, and an F1-measure of 90.2%. This system
has the potential to produce a consistent quality of cookies.

INDEX TERMS Aroma, electronic nose, food, levels of cooking cookies.

I. INTRODUCTION
Technological developments in various applications rapidly
increased during the industrial revolution. In the cake indus-
try, various roasting devices, such as electric ovens, are
designed with an electric power source to build cooking
efficiency [1], [2]. Unlike gas ovens, electric ovens havemany
advantages: a quicker cooking process, stable heat distribu-
tion, improved aroma and taste quality [3], [4].

Most electric ovens have a timer system that allows the user
to produce food (e.g., cakes, meat, tea, etc.) at the desired
cooking level [5]. However, temperature settings and timing
systems of electric ovens are still manually adjusted. This will
be a problem in determining the baking duration when the
cakes have different sizes and ingredients [6]. One must first
adjust these to produce cakes with the right cooking level.
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Another way to determine baking stages is to analyze color,
taste, and texture involving a panelist or sensory test [4], [7].
However, this method will result in a subjective decision.
Image processing technology plays a vital role in assessing
the baking process’s quality characteristics [8], [9], [10].
However, this method will be problematic if the cake has
similar coloring throughout multiple cooking levels. Bakery
products’ quality can be analyzed using spectroscopy [11].
This method has disadvantages, including high operational
costs and requiring trained personnel.

In addition to color and taste, baked goods’ quality can be
determined by the gas or vapor content. Gas chromatography
is the standard instrument for quantitatively and qualitatively
analyzing volatile organic compounds (VOCs). This method
separates compounds in a mixture by injecting a gas sample
into the mobile phase, usually called the carrier gas, and
passing the gas through the stationary phase [12], [13], [14].
Volatile compounds identified in aldehydes, alcohols, acids,
alkanes, and ketones are the main components that contribute
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TABLE 1. The ingredients of the cookie.

to the cookie flavor [15]. Chemical compounds grouped as
hydrocarbons are also released while making and storing
cookies [16]. In addition to their high cost, these instruments
require tens of minutes of analysis time, which is unsuit-
able for monitoring purposes. Commercial gas sensors may
be utilized to enhance the oven’s features to overcome this
problem [17]. However, this study is only intended to increase
safety during cooking.

With today’s technology, the human olfactory system can
be imitated by a device known as an electronic nose. This
system consists of an array of gas sensors and a pattern
recognition algorithm. The electronic nose has been widely
applied in health [18], [19], food quality control [20], [21],
and industrial safety [22] applications. Besides, this method
has been applied to tea [23], coffee [24], and bread [25] bak-
ing processes. In the latter, the aroma compound content was
analyzed during the bread-making process; however, it did
not distinguish the cooking levels. The level of gas content
released by the bread will change during baking [15], [26].
The electronic nose is unable to identify and quantify specific
compounds in the sample. Instead, this method is designed to
detect overall patterns rather than individual molecules. This
makes it possible to discriminate the cooking levels based on
the response pattern of the gas sensor array.

In this study, an electronic nose was implemented to detect
levels of cooking cookies during the baking process. The
novelty of this research covers determining the appropriate
gas sensor array of the electronic nose using the optimization
technique based on correlation analysis and distinguishing
rate methods. Some artificial intelligence algorithms with
various architectures are configured and tested to provide bet-
ter performance in distinguishing the levels of cooking cook-
ies. The paper is organized as follows. Section I covers this
study’s background. Section II provides the proposed method
and experimental setup. Section III presents the experimental
results and discussion. Section IV summarizes the essential
results and future works.

II. MATERIALS AND METHODS
A. SAMPLE
The test sample for this study was twenty low-moisture cook-
ies filled with a small piece of chocolate weighing 25 grams
each with uniform ingredients. Table 1 shows the cookies’
composition. The cooking procedure began with constantly

baking the samples one at a time using an electric oven at
150◦C for 45 minutes. Ten experienced assessors and staff
of the Nutritional and Food Ingredient section of the Energy
and Environmental Laboratory, Institut Teknologi Sepuluh
Nopember, served as panelists. Cookies were evaluated for
taste, smell, and texture using a five-point hedonic scale,
with 1 being very poor and 5 being very good. This lab also
measures the moisture content of the cookie samples con-
ducted under Indonesian National Standard SNI 2973:2011.
The Mestek WM700A moisture meter is also used for com-
parison. Color parameters of the upper surface of the cookies
were assessed using a WR10QC colorimeter in CIELAB
color space. Measurements were carried out on the cookie’s
surface at least in three different places. The lightness (L∗),
the green–magenta intensity (a∗), and the blue–yellow inten-
sity (b∗) values were recorded. The baked samples were
considered to produce a distinctive aroma that represented
three different cooking levels: undercooked, cooked, and
overcooked. As a result, this aroma could be used as an
indicator of levels of cooking cookies for the electronic nose.
This could be used as a dataset for classification purposes.

B. GAS SENSOR ARRAY
The gas sensor array comprises several semiconductor gas
sensors with different characteristics. The main criteria for
the gas sensors were high sensitivity to certain gases, stable
response, and operation at five volts. The sensing mechanism
of semiconductor gas sensor generally can be explained with
oxygen adsorption on the surface, as depicted in Figure 1.
When the n-type semiconductor material (e.g., SnO2, TiO2)
is exposed to air, oxygen molecules will be adsorbed on the
surface while capturing the free electrons. Specifically, O−

is the most common ion species of adsorbed oxygen at 100-
300◦C [27]. Then, the electron depletion layer (EDL) width
and the potential barrier (1∅) height between the grains will
be increased, leading to higher resistance of n-type material.
The potential barrier is expressed as (1).

1∅ =
q2N 2

S

2εrε0nb
(1)

where q is the electron charge, Ns density of surface states,
εr is the material’s relative permittivity, ε0 is the dielectric
constant of vacuum, and nb is the charge carrier density [28].
When the material is exposed to reducing gas molecules

(e.g., ethanol, carbon monoxide), these molecules react with
the adsorbed oxygen molecules, which liberate free electrons
in the bulk. Then, the EDL width and 1∅ height decrease
again. As a result, this reaction leads to lower resistance of
the sensor material.

Table 2 describes detailed information regarding the type
of gas sensor used in this study. Most selected sensors were of
the metal oxide semiconductor gas sensor type. The gas sen-
sors of the MQ and TGS series are provided by Hanwei Elec-
tronics Co., Ltd. and Figaro Engineering Inc., respectively.
The gas sensors’ responses were represented by conductivity
changes when they received gas or vapor samples. Figure 2
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FIGURE 1. The sensing mechanism of n-type semiconductor gas sensor
for reducing gas of ethanol.

TABLE 2. Gas sensors and its characteristics.

is a circuit schematic of the gas sensor [29]. This circuit
required two voltage sources: heating (VH ) and supply (VC ).
Usually, the heater voltage is coupled to the supply voltage for
simplicity. VH can maintain the oxidation–reduction (redox)
reactions of the sensor material at a certain temperature.
At the same time, VC will generate a sensor voltage (VRS )
whose changes can also be observed in the load resistance
(VRL).

C. ELECTRONIC NOSE
The electronic nose system for identifying levels of cooking
cookies by aroma was designed by implementing several
main components, namely a gas sensor array, an Arduino Uno
microcontroller, and a laptop, as depicted in Figure 3. The
air filter consisted of silica gel that provided clean and dry
air. The electric solenoid acted as a path changer to circulate
dry air or bring sample vapor to the 150 mL sensor chamber.
The sensor array generated a unique response signal when

FIGURE 2. Circuit schematic of the gas sensor [29].

FIGURE 3. Block diagram of electronic nose system for identifying the
aroma of cookies.

FIGURE 4. The realization of the electronic nose system for identifying
the aroma of cookies.

interacting with sample vapors representing each cooking
level. The SHT11 module measured humidity and tempera-
ture levels in the sensor chamber. The air pump was driven by
a DC motor that drew air into the electronic nose system with
a flow rate of 100 mL/min. The output voltage from the gas
sensor was changed by an analog-to-digital converter (ADC)
to be processed on a microcontroller or laptop. The sensor
response was sent to the laptop via universal serial bus (USB)
communication as a dataset for further processing. Figure 4
is the realization of the electronic nose system for identifying
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FIGURE 5. The gas sensor response to sample vapor.

cookie aromas. Figure 5 illustrates the gas sensor response
to sample vapor in the time domain, where the sensor has a
particular baseline value. It can be observed that the sensor
response could be used to analyze cooking levels starting
from 10 to 2,700 seconds.

D. DATA ANALYSIS
This study involved several types of signals for comparison,
and the selected one had the best results. The first type calcu-
lates the average value of each sensor data as an unnormalized
dataset, which is expressed as (2).

x̄n =

∑k
T=1 x

T
n

k
(2)

where k is the number of sample data, n is the sensor number,
and xTn is the response value of the n-th sensor at time T . The
second type is the normalized dataset. This technique may
reduce the effects of baseline shifts and intensity variations.
This study involves a dataset that is normalized to peak
intensity, illustrated in (3).

xnorm =
xn
xmax

(3)

where xn is the value of the n-th sensor and xmax is the maxi-
mum value of the x sensor. The unnormalized and normalized
dataset is usually employed to determine the feature that can
provide the best performance [30]. Both types were applied
to the sensor response, with and without a baseline.

E. OPTIMIZATION OF THE NUMBER OF SENSORS
The selection of the right number of sensors can provide
optimal system performance. Determining the selected sen-
sors can involve the role of the coefficient of correlation and
cluster analysis. In this study, the sensor array optimization
procedure included the following:

1) Correlation analysis

FIGURE 6. The concept of compactness and separability in a feature
space [32].

2) Distinguishing rate (DR)
3) Cluster analysis

Correlation analysis was performed by measuring the cor-
relation coefficient between the two sensors to determine
the degree of similarity [31]. A high value meant that the
two sensors had a strong correlation, indicating that the two
responses were similar and thus would be interchangeable.
Equation (4) is a calculation of the correlation coefficient.

|Rxy| =

∣∣∣∣∣
∑n

i=1 (xi − x̄)(yi − ȳ)∑n
i=1 (xi − x̄)2(yi − ȳ)2

∣∣∣∣∣ (4)

where x and y represent two different sensors, x̄ and ȳ are
the average values, n is the number of samples, xi is the i-th
data value of the x sensor, yi is the i-th data value of the
y sensor, and |Rxy| is the correlation coefficient’s absolute
value between sensors. For this reason, the sensor’s ability to
distinguish between classes was tested again by calculating
the inter- and intra-class dispersion through the DR method,
which was defined as (5).

DR =
d(p, q)
S2

(5)

where d(p, q) is the Euclidean distance between classes p and
q, and S2 is the variance of sensor data from each category.
Sensors with smaller DR were removed. Figure 6 is a concept
diagram of inter- and intra-class dispersion [32]. Euclidean
distance is a calculation to measure the distance between two
points, expressed as (6).

d(p, q) =

√∑n

i=1
(qi − pi)2 (6)

where n is the number of samples, p and q are the vector
values for each class, pi and qi are the i-th vector values. The
variance was used to determine how far the spread was in the
sensor data distribution, formulated as (7).

S2 =

∑
(xn − x̄)2

n− 1
(7)
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Cluster analysis plays an important role in the construction
of sensor arrays. In determining the array of sensors, the
independence between sensors was considered by measuring
the distance between different sensors through cluster anal-
ysis. Sensors involved in the same cluster were selected by
the sensor with the highest DR. Determination of selected
sensors can also be obtained from the principal component
analysis (PCA) method extracted from the PCA scores and
loadings [33].

F. CLASSIFICATION ALGORITHMS
In this study, several models were applied as pattern
recognition algorithms, including support vector machine
(SVM), random forest (RF), and linear discriminant analysis
(LDA), which were obtained from the scikit-learn library,
extreme gradient boosting (XGBoost) were acquired from the
XGBoost library, and artificial neural network (ANN), one-
dimensional convolutional neural network (1D-CNN), long
short-term memory (LSTM), bidirectional long short-term
memory (BiLSTM), 1DCNN-LSTM, and 1DCNN-BiLSTM
were obtained from the Keras library.

1) SUPPORT VECTOR MACHINE (SVM)
SVM includes supervised learning techniques to solve clas-
sification and regression problems in linear and non-linear
tasks based on statistical learning theory [34], [35]. This
model can separate data into classes by constructing several
lines (hyperplanes), which are called SVM decision bound-
aries. Margins, the distance between hyperplanes, are deter-
mined by SVM kernel calculations. The radial basis function
(RBF) is a popular kernel based on the Gaussian distribution
function [36], which is expressed in (8).

K
(
xi, xj

)
= exp

(
−

∥∥xi − xj
∥∥2

2σ 2

)
(8)

where
∥∥xi − xj

∥∥ is the Euclidean distance between two points
xi and xj, and σ 2 is the variance. This study involves several
SVM parameters: the RBF kernel, C is 1, and others follow
the default. The C function regulates the classification error
by adjusting the inclusion of accurate training data in accor-
dance with the margin size of the decision function.When the
C value is increased, the decision function aims to create a
narrow margin on the decision line in order to distinguish the
data classes. This can result in the model overfitting. Never-
theless, when the C value is reduced, it forms a wider margin,
making certain data points within specific classes indistin-
guishable. This phenomenon leads to the model exhibiting
underfitting.

2) RANDOM FOREST (RF)
RF is composed of several tree structures, known as ensemble
learning, to improve its performance in classification and
regression problems [37]. This algorithm is done in parallel,
known as the baggingmodel, where all decision trees give one
output, which is then evaluated by amajority voting technique

to produce one final result [38], [39]. The final result of each
decision tree is obtained by the split method, which recur-
sively separates the entire population into sub-populations
based on their attributes or features [40]. The Gini is the
function used to measure a split’s quality, which is illustrated
in (9).

Gini = 1 −

∑N

i=1
(pi)2 (9)

where N is the number of class labels, and pi is the pro-
portion of i-th class labels. The RF parameters used were
the number of trees or n_estimators of 100, the function
to measure the quality of a split or criterion was Gini, and
the max_depth was set at none. Trees with greater depth
can yield a larger volume of data. Similarly, an increased
number of trees may yield more favorable outcomes. The
remaining parameters were established close to their default
values.

3) EXTREME GRADIENT BOOSTING (XGBOOST)
XGBoost has a similar architecture to RF, in which the learn-
ing phase of RF is parallel, while XGBoost is sequential [41].
This sequential procedure is called gradient boosting [42],
[43], which aims to strengthen weak classifiers’ performance.
The predicted score of each tree is added up to get the final
score. Equation (10) describes the objective function of each
round.

L(t) =

∑n

i=1
l
(
yi, y

(t−1)
i + ft (xi)

)
+ �(ft ) (10)

where l is the loss function, y(t)i is the predicted result of i-
th in t-th iteration, and � is a regularization term. In this
case, the parameters of XGBoost with RF were the same as
their respective values. However, XGBoost has an additional
parameter, namely the learning rate, which was set at 0.3.
Increasing the learning rate might expedite the model’s com-
putational speed; nevertheless, this may result in inadequate
prediction accuracy as a significant portion of the training
data may not be effectively utilized.

4) LINEAR DISCRIMINANT ANALYSIS (LDA)
LDA is a supervised learning algorithm used for classification
tasks [44]. It can also be used as a dimensionality reduction
technique, which maximizes the separation between classes
by finding a set of linear discriminants that maximizes the
ratio of between-class to within-class variance [45]. The LDA
classifier’s performance depends on the sample covariance
matrix and class mean vectors, where a larger number of sam-
ples can provide sufficient accuracy compared to the number
of data dimensions. LDA parameters include the solver type
using singular value decomposition, number of components
to ‘none’, and others being defaulted. The solver type does
not calculate the covariance matrix. As a result, this solver
is suggested for datasets that possess a substantial number of
features.
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5) ARTIFICIAL NEURAL NETWORK (ANN)
ANN is a computing network system inspired by biological
neural networks. This model comprises three layers, includ-
ing input, hidden, and output, each with its function [46].
ANN has two different methods, namely feed-forward and
back-propagation [20]. The former is a one-way computation
that is applied in the testing phase. In contrast, the latter
can fix the weight by recursively returning its value to the
previous layer, which is used in the training phase [22]. In this
study, the classification of three cooking levels involved three
hidden layers, each consisting of 128 neurons with the rec-
tified linear unit (ReLU) activation function. ReLU has a
gradient of 1 for positive and 0 for negative values. This
characteristic renders ReLU a more favorable approach for
mitigating the issue of vanishing gradients. In contrast, the
neurons in the output layer utilize the Sigmoid activation
function for binary-class classification and the Softmax acti-
vation function for multi-class classification. Utilizing multi-
ple layers in a neural network is advantageous for generaliza-
tion because it can learn the intermediate features between the
input data and the high-level categorization. Selecting fewer
neurons can result in underfitting and a substantial statistical
bias. On the other hand, choosing an excessive number of
neurons can result in overfitting, increased variance, and
prolonged network training time. During the training phase,
the batch size was configured to 25, and the number of epochs
was set at 5000.

6) ONE-DIMENSIONAL CONVOLUTIONAL NEURAL
NETWORK (1D-CNN)
CNN has a convolution layer consisting of filters or kernels
that extract specific features from the input data. CNN can be
applied as a classification in the field of signal processing,
which is termed 1D-CNN [18], [19]. The proposed CNN
architecture consists of three convolutional layers with 16, 64,
and 32 filters, respectively, with kernel sizes set to 2, 1, and 1,
respectively, and a ReLU activation function combined with
two neural hidden layer networks of 128 neurons, each fully
connected. Expanding the filter size of a CNN has the poten-
tial to enhance its accuracy through several means. The size of
the kernel is a critical factor in influencing the performance of
CNN. A reduced kernel size will enable the capturing of more
intricate elements within the data. Conversely, employing a
bigger kernel size will enable the detection and extraction of
larger, more intricate features.

7) LONG SHORT-TERM MEMORY (LSTM)
LSTM is an algorithm that has a good ability to predict
information in the time domain. This algorithm is a devel-
opment of a recurrent neural network (RNN) that can recall a
collection of information stored for a long time while deleting
no longer relevant data [47]. This experiment employed an
LSTM architecture consisting of two LSTM layers, called
stacked LSTM, of 128 memory cells integrated with the
ReLU activation function. The stacked LSTM model is a

variant incorporating multiple LSTM layers, each consisting
of multiple memory cells. The utilization of stacked LSTM
hidden layers enhances the depth of the model, hence jus-
tifying its classification as a deep learning technique with
improved accuracy.

8) BIDIRECTIONAL LONG SHORT-TERM MEMORY (BILSTM)
BiLSTM, a variant of LSTM, can capture information from
two directions to produce more meaningful output that can
increase the classification level [48]. The BiLSTM architec-
ture was implemented with one bidirectional LSTM layer of
128 memory cells.

9) 1D CNN-LSTM AND 1D CNN-BILSTM
The combination of CNN and LSTM or BiLSTM can
improve performance in making predictions and processing
high-dimensional data [49]. This is supported by a convolu-
tion layer as feature extraction and a hidden layer that can
remember information data and optimize valuable data [44].
These two models combine the architecture of CNN with
LSTM and CNN with BiLSTM.

G. PERFORMANCE EVALUATION
The electronic nose system’s performance needed to be mea-
sured to find out how well it could classify aroma data.
The confusion matrix, one of the statistical measurement
methods, was applied in this study. This method evaluates
the system by providing performance variables, including
accuracy, precision, recall, and F1-measure, based on several
indicators, such as true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) [50]. The performance
variables were as follows:

1) Accuracy (11) measured the ratio of correct recognition
results to the entire dataset.

Accuracy =
TP+ TN

TP+ FN + TN + FP
(11)

2) Precision (12) estimated how many of the positive pre-
dictions were correct.

Precision =
TP

TP+ FP
(12)

3) Recall can also be called Sensitivity (13) calculated
how many positive cases the classifier correctly pre-
dicted over all the positive instances in the data.

Recall =
TP

TP+ FN
(13)

4) F1-measure (14) assessed the predictive skill of a
model by elaborating on its class-wise performance.

F1 − measure =
2 × Precision× Recall
Precision+ Recall

(14)

97240 VOLUME 12, 2024



M. Rivai, D. Aulia: Use of Electronic Nose to Identify Levels of Cooking Cookies

FIGURE 7. The appearance of cookies with different roasting time.

TABLE 3. Characteristics for each roasting time of cookies.

TABLE 4. The levels of cooking cookies.

III. RESULTS
A. LEVELS OF COOKING COOKIES
This study established a procedure for determining proper
cooking levels, in which as many as ten samples were baked
simultaneously and taken out of the oven one at a time in
270-second increments. Cookies produced in this experiment
were then tested using a colorimeter, moisture meter, and
panelists. Figure 7 shows the appearance of cookies with
different roasting time, while the properties of each cooking
level are shown in Table 3. Color is the quality attribute most
consumers consider in product acceptance. Initially, roasting
cookies had an L∗ value of 58.9, which tends to be brighter.
This intensity decreases over the roasting time with a darker
appearance. The positive value of the average of a∗ 16.7 and
b∗ 46.2 characterizes cookies as red and yellow, respectively.
Cookie moisture content after cooking for more than 1,080
seconds is below 7%. The low water content value is an
attribute considered to play a major role in the crispness [51].
The panelists have a high organoleptic assessment of taste,
smell, and texture when the roasting time ranges from 1,350
to 2,160 seconds. Overall, this shows undercooked cookies
were baked for less than 540 seconds. Meanwhile, the cooked

FIGURE 8. The response of the sensor array to the sample vapor.

TABLE 5. Comparison of system performance to each type of sensor
response.

cookies were baked for 1,620 to 1,890 seconds, and the
overcooked cookies for more than 2,430 seconds, as shown
in Table 4.

B. CLASSIFICATION OF LEVELS OF COOKING COOKIES
Every measurement was performed by placing a cookie in
the oven. Each cookie produced a specific aroma at varying
points in the baking process. The electronic nose drew sample
vapor from the oven through a small hose. The vapor was
delivered into the chamber and measured by an array of gas
sensors to obtain an aroma pattern. Figure 8 shows the sensor
array’s response, consisting of 20 gas sensors to the sample
vapor. Each sensor had a response that increased with the
cooking levels. This indicated that the higher the temperature,
the higher the vapor concentration emitted by the sample.
In the experiment, twenty cookies were baked to produce a
dataset for classification purposes.

The next step was to test several types of responses:
unnormalized, normalized, as well as with and without a
baseline. Table 5 compares the system performance results
for each type of sensor response using the LDA identifica-
tion algorithm. As a result, unnormalized responses with-
out a baseline had the highest F1-measure value of 97.6%,
which was used as a dataset for further processing. Figure 9
shows the sensor array’s response pattern for unnormalized
responses without a baseline for each cooking level. Of the
three-sensor array response patterns, several sensors had sim-
ilar values for each cooking level. Figure 10 illustrates the
classification results using LDA. Each cooking level could be
appropriately separated, indicating that the gas sensor array
can provide a unique sensor response pattern for each level.
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FIGURE 9. The response pattern of the sensor array for unnormalized
without a baseline for each cooking level: (a) undercooked, (b) cooked,
and (c) overcooked.

C. SENSOR ARRAY OPTIMIZATION BASED ON
CORRELATION COEFFICIENT AND DR
The electronic nose, consisting of twenty gas sensors, was
able to distinguish each cooking level properly. However,
it was necessary to optimize the sensor array to obtain a more
optimal number of sensors, as well as make it a compact size
and at a low cost. The first step was to perform calculations
using the correlation analysis method for each sensor over
the others. Table 6 shows the results of the sensor pair cor-
relation coefficients for each cooking level. The correlation
coefficients above 0.85 were considered candidate sensors
selected for elimination. Most highly correlated sensor pairs
were undercooked due to the low vapor concentration. The
DR for each sensor is shown in Table 7 and ranked for the
evaluation stage. The TGS2610 sensor had the first rank with
a DR of 175,034.14, indicating the sensor had a good ability

FIGURE 10. Visualization of classification results using LDA.

TABLE 6. The sensor pair correlation coefficients for each cooking level.

to distinguish between the cooking levels. Besides being able
to respond to the volatile compounds produced by cookies
during roasting, this sensor has the smallest data distribution
value for each cooking level, showing its highest precision
level. Meanwhile, the MQ-9 sensor had the lowest rank with
a DR of 456.29, exhibiting poor capabilities.

The next step was to evaluate the sensor pairs based
on the DR and correlation coefficient. For example, the
MQ-2 and MQ-6 sensors for the overcooked level, shown
in Table 6, had DRs of 5,646.21 and 1,837.88, respectively,
as shown in Table 7. For this reason, the MQ-6 sensor
had to be removed because it had a smaller DR, while the
MQ-2 sensor was retained to be re-evaluated with other sen-
sors. The final sensor selection process results are shown in
Table 8. Several sensors were eliminated, while the remaining
13 sensors were retained, including MQ-2, MQ-5, MQ-131,
MQ-135, MQ-136, MQ-137, TGS813, TGS822, TGS2602,
TGS2610, TGS2611, TGS2620, and TGS4161. Apart from
having a significant contribution in differentiating cook-
ing levels, these selected sensors have responses to chem-
ical compounds released by cookie samples with different
sensitivities and limits of detection according to their data
sheets.
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TABLE 7. The rank of the DR of each sensor for the cooking levels.

TABLE 8. Gas sensor optimization based on correlation coefficient
and DR.

FIGURE 11. Icicle plot of the averaged sensor response groupings.

D. SENSOR ARRAY OPTIMIZATION BASED ON CLUSTER
ANALYSIS AND DR
The remaining sensors were grouped as the selected sensors
by involving cluster analysis and DR. For this purpose,
an icicle plot diagram was needed, performed in SPSS
25.0 software, shown in Figure 11. Interconnected sen-
sor histograms were aggregated into one group, while the

TABLE 9. Gas sensor optimization based on cluster analysis and DR.

disconnection ones were collected into another. For instance,
to produce six sensors, a straight line was made through six
clusters on the histogram to obtain the sensor candidates,
which included TGS2602, (TGS813/TGS2620/MQ-136),
(TGS4161/TGS822/TGS2611/ TGS2610/MQ-131), (MQ-
137/MQ-135), MQ-5, and MQ-2. The highest DR sensor
was chosen to represent the sensors in its cluster. In this
case, the DR values for each sensor were: (TGS2602,
2,717.13), ((TGS813, 2,503.41)/(TGS2620, 1,069.84)/(MQ-
136, 509.56)), ((TGS4161, 1,743.15)/(TGS822, 33,364.11)/
(TGS2611, 834.50)/(TGS2610, 175,034.14)/(MQ-131,
22,444.71)), ((MQ-137, 2,680.88)/(MQ-135, 1,751.79)),
(MQ-5, 1,521.37), and (MQ-2, 5,646.21). As a result, the
TGS813, TGS2610, and MQ-137 sensors were selected
and combined with the remaining single sensors, namely
TGS2602, TGS813, TGS2610, MQ-137, MQ-5, and MQ-2.
Table 9 shows the complete results of the sensor array opti-
mization based on the cluster analysis and DR. All sensor
clusters will be tested to obtain the least number of sensors
that still have high performance.

E. DETERMINATION OF THE BEST CLASSIFICATION
ALGORITHM
All sensor array clusters in Table 9 were tested with ten
classification algorithms. Table 10 describes the performance
of 10 classifiers for each sensor cluster for three cooking
levels. Assuming the best classifier is F1-measure with a
baseline above 90%, LDA, XGBoost, ANN, and CNN are
the best candidates. Therefore, CNN was chosen as the best
algorithm because it provides the fewest number of sensors,
namely six. This was necessary for system simplicity while
still maintaining high performance.

For the undercooked and cooked levels, all classifiers met
the performance criteria shown in Table 11. All classifiers
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TABLE 10. F1-measure value of classifiers for each number of sensors for three cooking levels.

TABLE 11. F1-measure value of classifiers for each number of sensors for two cooking levels.

TABLE 12. Characteristics for cookies produced by an electric oven equipped with the electronic nose.

had a high performance for each number of sensors, with
an average F1-measure above 91%. Regarding the smallest
number of sensors (i.e., two sensors), ANN, CNN, LSTM,
and CNN-LSTM had the same highest value. The simplicity
of the ANN architecture was preferable for implementation
into a low-level microprocessor system.

F. EVALUATION OF SELECTED ELECTRONIC NOSE
SYSTEMS
In this study, the selected electronic nose system involved
six gas sensors, consisting of TGS2602, TGS813, TGS2610,
MQ-137, MQ-5, MQ-2, and CNN classifiers. This optimum
sensor array can provide a specific response pattern to the
volatile compounds released by cookies, especially alcohols
and hydrocarbons, for each baking level. The CNN algorithm
can still provide a discrimination level of 94.3%, according to
Table 10. In the next experiment, this electronic nose was then
tested for twenty new samples with random and unknown

cooking levels at an oven temperature of 150◦C. In this case,
the cooking levels were confirmed by the majority decision
of the panelists after these measurements and predictions.
Figure 12 shows that this system can predict the cooking
levels with an accuracy of 90.0%, a precision of 89.7%,
a recall of 92.6%, and an F1-measure of 90.2%.

The other test was needed to determine the system’s perfor-
mance in predicting levels of cooking cookies at varying tem-
peratures in an electric oven to show its robustness. Fifteen
samples with the material composition shown in Table 1 are
25 grams with a uniform size. Every five samples were tested
at different temperature setpoints, namely 150◦C, 175◦C, and
200◦C. The electronic nose system gave off an alarm when
the cookies reached the cooked level. The cookies’ attributes
produced by the electric oven equipped with the electronic
nose are shown in Table 12. It can be observed that the three
samples had similar color characteristics when cooked; they
had the average values of L∗, a∗, and b∗, which are 51.0±1.5,
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FIGURE 12. The electronic nose prediction against levels of cooking
cookies.

FIGURE 13. Box plots associated with the cookie quality assessment
under different oven temperature setpoints: (a) color value,
(b) organoleptic score, and (c) roasting time.

19.4±1.9, and 49.6±2.1, respectively. All moisture contents
are below 7 %, indicating the appropriate cookies’ crispness.
Organoleptic evaluations, including taste, smell, and texture,
have an average hedonic score of more than 3.3, which
expresses a fairly good acceptance. The samples baked at
a temperature setpoint of 150◦C took an average of about
1,777 seconds to cook. The samples baked at 175◦C required

a shorter average cooking time, around 1,569 seconds. Mean-
while, the sample baked at a temperature setpoint of 200◦C
required the shortest average cooking time at about 1,482
seconds. The higher the oven temperature, the faster the
electronic nose gave an alarm indicating that the sample had
reached the cooked level.

Figure 13 shows box and whisker plots indicating the
robustness of cookie quality assessment under different oven
temperature setpoints. Both color values and sensory tests
have a minimum number of outliers. Each box in the roasting
time has a different mean value and almost does not overlap.
This proved that the electronic nose system could identify
aroma and predict the levels of cooking cookies, even at
different temperatures.

IV. CONCLUSION
In this study, an electronic nose system was developed to
classify the cooking level of cookies in an electric oven. Opti-
mizing the number of gas sensors involved correlation anal-
ysis and distinguishing rate methods. Several artificial intel-
ligence algorithms were used to obtain reliable classification
performance. The experimental results for the three cooking
levels (i.e., undercooked, cooked, and overcooked) showed
that six gas sensors conjugated with the CNN algorithm were
selected with an F1-measure value above 90%. Meanwhile,
two gas sensors coupled with ANN were selected for two
cooking levels (i.e., undercooked and cooked), which made
it possible to produce a simple electronic nose system. The
higher the oven temperature, the faster the electronic nose
gave an alarm indicating that the sample had reached the
cooked level. In future work, compact and portable equip-
ment is preferred for practical use.
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