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ABSTRACT Jointing multi-modal image fusion and subsequent high-level tasks is attracting more
researches to achieve both mutual promotions. However, owing the feature gap between the two tasks,
complicated network structure and training strategies need to be redesigned for specific different datasets.
To address these issues, this paper proposes an infrared and visible image fusion via general feature
embedding from frozen CLIP and DINOv2 models. The core idea is that the general semantic features from
CLIPmodel are injected into the fusion networkwith the DINOv2-based segmenter as a constraint. Specially,
the feature merging module and injection strategies are design to generate the semantic features that are
compatible with fusion features meanwhile aligned with DINOv2 features. Leveraging the generalization
ability of these foundation models, the proposed network can be optimized mutually to promote the training
process. Comprehensive experiments on the four public datasets demonstrate the effectiveness of ourmethod.

INDEX TERMS CLIP, DINOv2, feature alignment, image fusion, multi-modal fusion, semantic
segmentation.

I. INTRODUCTION
The infrared and visible image fusion technology largely
promotes the real applications, in which the visible images
are used to catch texture details and the infrared images
to supply robust object outlines without being affected by
light. Mainly, there are two categories: perception-oriented
methods and semantic-driven methods [1] or joint learning
methods [7]. The perception-oriented methods focus on
pixel-level fusion for better visual effects, such as sparse
representations [2], saliency analysis [3], adversarial training
strategy [4] and etc. To facilitate the subsequent high-level
tasks, the semantic-driven methods reinforce semantic infor-
mation in fused images by taking the high-level task model as
a supervision, either utilizing high-level models as a constrain
by task-specific loss, e.g., the SeAFusion [5] cascades the
segmentation model behind the fusion network, or designing
the feature-level fusion modules to inject the semantic
features from the high-level tasks, e.g., DetFusion [6] utilizes
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object-level features learned from detection model to guide
the fusion.

Although the semantic-driven methods achieve satisfac-
tory fusion results, these methods typically deploy well-
established feature extraction network to extract semantic
features from source images. Subsequently, specific fusion
modules are devised to integrate complementary features
based on the feature extraction network, and task-specific
prediction networks are applied to accomplish the desired
tasks. Therefore, most methods focus on designing net-
works [6], [8], [9] and introducing constraints [5], [10],
[11], as shown in Fig.2 (a), (b). And many efforts on
specific multi-stage training strategy need to be taken, e.g.,
the MetaFusion [7] proposed a mutual promotion learning
between fusion and detection task, and training process
contained four steps: fusion pre-training, detection fine-
tuning, feature transformation and meta-feature generation,
and mutual promotion.

Additionally, the existing joint learning methods are tai-
lored solely for specific task datasets, e.g.,M3FD [23], which
fail to be generalized to other datasets, e.g., MFNet [24].
These methods utilize specific high-level models to constrain
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FIGURE 1. An overview of the proposed GFFusion that fuses the semantic
features to promote semantic segmentation based on vision foundation
models.

the fusion results, which may limit the generalization of
the fused images to other tasks. And the feature extraction
network is usually unable to adapt effectively to the domain
variation between infrared and visible images, which leads
to performance degradation [1]. Furthermore, with the vision
model evolving rapidly, models with strong generalization
capability, such as CLIP [12] and DINO [13], are verified
on unimodal datasets. But the potential on multi-modality
fusion has not been excavated. Therefore, we leverage the
general features from CLIP to guide the infrared and visible
image fusion. Unfortunately, CLIP features are not well
performed for subsequent tasks [14]. To address this issue,
we propose a feature injection module, and is constrained by
the DINOv2-based high-level task, as shown in Fig.1.

Specifically, the infrared and visible image fusion via
General Feature Embedding from CLIP and DINOv2 is
proposed, named GFFusion, and an overview of the proposed
method is shown in Fig.1 and Fig.2 (c). GFFusion consists of
infrared and visible image fusion network (FuNet), semantic
segmentation network (SSNet) based on DINOv2, and multi-
level semantic feature injection network (FINet) from CLIP.
In particular, benefitting of the scalability and generalization
ability of the vision foundation models, the FuNet, FINet
optimization and SSNet fine-tuning can be implemented at
the same time with the segmentation loss and fusion loss,
where the alternate optimization steps are not needed. The
motivation is the analysis results from [14], where the features
of CLIP can exhibit biases towards local patterns, which
contain low-level detailed information, while the DINOv2
can capture fine-grained localization information, which is
beneficial for positioning ability. Specially, the semantic
features of CLIP and DINOv2 are compatible, which can
be aligned with a MLP layer. Further, in the optimization
process, both the CLIP and DINOv2 models are stay frozen.
And the SSNet can be fine-tuned only using a light-weight
segmentation head, such as linear layer. For FINet, different
injection strategies are proposed that integrates the different
layer features of CLIP to inject semantic information into the
fusion network.

The main contributions can be summarized as follows:
(i) we explore the different joint learning framework of
infrared and visible image fusion and high-level tasks,
as presented in Fig.2. And GFFusion is proposed to obtained
superior performance on fusion and semantic segmentation.
(ii) We inject the semantic features from CLIP into the

fusion network with different strategies, to implicitly align
the semantic features from fusion result with the high-level
DINOv2 features. (iii) Sequentially, the jointly training strat-
egy is introduced to mutually promote the proposed FuNet,
FINet and SSNet learning, as shown in Alg.1. And extensive
experiments demonstrate the superiority of our proposed
method on image fusion and semantic segmentation.

The remainder of this paper is organized as follows.
In Section II, we briefly introduce the related works of
image fusion, semantic-driven fusion, and vision foundation
models. In Section III, we elaborate on the proposed
GFFusion, including the overall framework and each module
design. Section IV illustrates the performance of our method
in comparison with others, and the ablation study. Section V
concludes this paper.

II. RELATED WORKS
A. INFRARED AND VISIBLE IMAGE FUSION
The infrared and visible image can provide complementary
information for each other to promote the subsequential
tasks. Before the deep learning era, the fusion methods,
such as sparse representation [2], and low-rank representa-
tion [15], are proposed, but cannot tackle complex scenes
well. Nowadays, deep learning-based methods [5], [6], [16]
are raised, and specially, the feature-based fusion methods
became the main-stream. Tang et al. [8] propose a fusion
method with cross-domain long-range learning based on
Swin Transformer architecture. Xu et al. [17] use feature
extraction and measurement to estimate the degree of
information preservation in image fusion. However, most of
them ignore the gap between fusion result and the high-
level tasks, resulting to the performance degradation on
subsequential tasks.

B. SEMANTIC-DRIVEN FUSION
To facilitate the subsequent high-level tasks, the semantic-
driven methods are proposed to reinforce the semantic
information in fused images. These methods either utilize
high-level models as a constrain by task-specific loss, e.g.,
the SeAFusion [5] cascades the segmentation model behind
the fusion network, or design the feature-level fusionmodules
to inject the semantic features from the high-level tasks,
e.g., DetFusion [6] utilizes object-level features learned
from detection model to guide the fusion. Although the
semantic-driven methods achieve satisfactory fusion results,
these methods typically deploy well-established network and
complex alternate optimization procedure, such as [6] and [7].
In particular, for different datasets, the whole process needs to
be repeated. On the contrary, we leverage the scalability and
generalization ability of different vision foundationmodels to
guide the fusion network without a complicated optimization
design.

C. VISION FOUNDATION MODEL
More recently, some models, that are trained at large scale
data in an unsupervised manner and capable of being
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FIGURE 2. Different semantic injection methods of infrared and visible image fusion (FuNet) and
high-level semantic tasks, such as segmentation (SSNet). (a) Cascading learning method. The FuNet
treats SSNet as a constraint by loss function as showed with solid line, the other proposes the
transformed feature embedding to bridge the semantic gap as showed with dash line. (b) Parallel
learning method. The FuNet fuses the semantic information from the optimized SSNet by the design of
semantic feature inject network (FINet). (c) Hybrid learning method. The FuNet fuses the semantic
information from pre-trained frozen vision foundation model with a proposed FINet, which is optimized
by the cascading high-level task with another frozen vision foundation model.

generalized (e.g., fine-tuned) to a wide range of down-stream
tasks, are emerged, denoted as foundation model. For vision,
such large-scale pre-training methods such as CLIP [12],
which learn directly from large-scale image-text pairs, show
very encouraging progress for efficient transfer learning and
zero-shot capability. And these methods focus on contrastive
learning [12], [13], [36] and masked image modeling [18].
Specially, for contrastive learning, DINOv2 [13] pretrains
the image encoder on large image data, which shows a
superior understanding of object parts and scene geometry
across image domains. Image-text contrastive learning as
CLIP [12] employs the natural language as weak supervision
to guide the learning of visual features. For masked image
modeling, MAE [18] proposes a masked autoencoder for
reconstructing image pixels. Inspired by above methods,
we design the semantic feature injection module from CLIP,
which constrained by the DINOv2 based segmentation task,
to fully leverage the capabilities of vision foundation model,
addressing the problems presented in the introduction section
and reducing the design complexity.

III. PROPOSED METHOD
In this section, we first summarize existing semantic-driven
paradigms, then the proposed method is introduced, that inte-
grates CLIP and DINOv2 with multi-level features injection
to enhance the generalization and semantic capabilities.

A. HYBRID SEMANTIC-DRIVEN LEARNING METHOD
Existing semantic-driven learning methods can be divided
into two categories: the cascading learning method and
parallel learning method, as shown in Fig.2 (a), (b), where

Loss1 represents the fusion loss, Loss2 denotes the task-
related loss, and Loss3 is the similarity metric loss. Detailed
as follows:

1) CASCADING LEARNING METHOD
This method cascades the FuNet ψ with SSNet φ, leveraging
the semantic loss to feed high-level semantic information
back to the image fusion network, such as SeAFusion [5],
as shown in Fig.2 (a) with solid lines. However, directly
utilizing the SSNet constraint to guide the FuNet results
in a limited effect [7], owing to the mismatching between
SSNet features and FuNet features. To address this problem,
MetaFusion [7] proposed a meta-feature embedding network
for feature alignment, as shown in Fig.2 (a) with dash lines.
This process can be described as (1):

minθf Lf (ψ) + Ls(φ)

s.t. Ifus = ψ(Irgb, Iir ; θf )

Iseg = φ(Ifus; θs). (1)

In which, Irgb and Iir represents the visible image
and infrared image respectively. Lf is fusion loss, Ls is
segmentation loss. Ifus and Iseg denote the fusion result and
segmentation result respectively. θs and θf are the parameters
of SSNet and FuNet. On optimization, an iterative strategy is
need to first train the SSNet, then fixing SSNet to optimize
the FuNet for several eposes.

2) PARALLEL LEARNING METHOD
In cascading learning method, there is no explicit semantic
information from SSNet injected into FuNet, which are
learned by SSNet to guide the optimization of FuNet.
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While for the parallel learning method, an explicit semantic
information injection module FINet χ is designed with the
FuNet, where the FuNet and FINet need to be optimized
together. Specially, the SSNet, extracting sufficient semantic
features, provides a prior information for FuNet to fulfill the
semantic requirements for high-level vision tasks, such as
DetFusion [6], as shown in Fig.2 (b), which can be formulated
as (2) and (3):

minθsLs(φ)

s.t.Fs = φ(Irgb, Iir ; θs). (2)

minθf Lf (ψ)

s.t.Ifus = ψ(Irgb, Iir ;χ (Fs; θi; θf ). (3)

where Fs represents the multi-level features from SSNet,
and θi is the parameters of FINet. For network training, the
same iterative optimization strategy is needed. Specially, the
FINet usually leverage the cross-attention or concatenation
mechanisms to inject the semantic information to FuNet,
for example, the two branches of visible and infrared
cross-attention are applied in DetFusion.

3) HYBRID LEARNING METHOD
As mentioned in the introduction section, the above methods
are specific for certain datasets and need complicated
training strategies. Take advantage of the generalization
abilities of the vision foundation models, we proposed the
hybrid learning method, which integrates the cascading
learning method and parallel learning method and consists of
explicit semantic information and high-level task constraint.
Specifically, the hybrid learning method constrains the FuNet
to guide the fusion process with SSNet, meanwhile injects
semantic information to FuNet using FINet, as shown in
Fig.2(c). This method can be formulated as (4):

minθf Lf (ψ) + Ls(φ)

s.t.Ifus = ψ(Irgb, Iir , χ(Fm; θi); θf )

Iseg = φ(Ifus; θs). (4)

In which, Fm denotes the multi-level features from frozen
foundation model. Specially, motivated by [14], DINOv2
shows superior understanding of object parts across image
domain and can capture fine-grained localization informa-
tion. CLIP vision model contains more information regarding
local objects, such as shape or texture, as shown in Fig.3.
In which, the first row is the visible image and second row
is the infrared image. Meanwhile, it can be observed that the
pre-trainedmodels show strong generalization ability for both
modalities. Therefore, in our method, the CLIP vision model
is utilized for the input of FINet, and the DINOv2 model is
taken as the backbone of SSNet.

B. ARCHITECTURE
The overall architecture is illustrated in Fig.4. GFFusion
integrates CLIP (based on ViT-Base) with multi-level feature
merging to enhance the fusion performance, and optimizes

FIGURE 3. The general features extracted from the CLIP and DINOv2
models. The backbone of the two models is the same ViT-B/16 [19], and
the PCA algorithm is used for visualization.

the parameters with DINOv2-based segmenter (based on
ViT-Base) as a constraint to simplify the training process
and speed up convergence. Specifically, we adopt the
convolutional neural network for FuNet to balance the
performance and efficiency, and the gradient residual dense
block (GRDB) from [5] is applied to enhance the fine-grained
spatial details.

1) FEATURE EXTRACTION OF FUNET
For inputs Irgb and Iir , the Conv operations are used to extract
the fine-grained spatial features:

Fcls = GRDB(Conv(Icls)), cls ∈ {rgb, ir}. (5)

where the Fcls ∈ RH ′
×W ′

×48 denotes the features of input
images, the Conv represents the 3×3 convolution with Leaky
ReLU [20] as activation function to output the features with
embedding dimension 16, the and theH ′ andW ′ is the feature
resolution. The GRDB is consist of two branches: one dense
connection branch with two concatenated convolutions, the
other gradient branch with gradient operator. The two branch
features are integrated with element-wise addition, where
the 1 × 1 convolutions are used to align the channel
dimension. After the concatenation of visible and infrared
features, we can obtain the preliminary fusion features zf with
dimension 96.

2) MULTI-LEVEL SEMANTIC FEATURES
Specifically, following [14], denote the visual encoder of
CLIP as π . Given the inputs Irgb and Iir , the patch token
features are extracted by all layers of CLIP as π (Irgb) =

[f 1rgb, · · · , f
l
rgb, · · · , f

11
rgb], where f

l
rgb ∈ R196×768. Similarly,

the features of Iir are π (Iir ) = [f 1ir , · · · , f
l
ir , · · · , f

11
ir ]. Then

we integrate these features by element-wise maximization
operation by (6):

fl = max⊙(f lrgb, f
l
ir ), l ∈ {1, 2, · · · ,L}. (6)

where L is the total number of layers, here, L = 11.
The intuition is that the features from different modality
can provide complementary information for each other by
maximization operation, meanwhile maintain the efficiency.

3) FEATURE MERGING
To effectively integrate the shallow and deep features,
several feature merging strategies for combing the multi-level
features are explored, as shown in Fig.4. Detailed as:
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FIGURE 4. An illustration of our proposed architecture. The visible and infrared images are input to CLIP, and
the features from two modalities are incorporated by max operator. Further the multi-level features are
fused by feature merging, and the fused features are injected into FuNet with feature injection module. The
DINOv2 is used in SSNet for semantic segmentation.

• Mean. averaging all the output features as zc = (f1 +

f2 + · · · + fL)/L.
• Group-Conv. using a group convolution [21] and
batch normalization to integrate the features and
then summed by learnable weights as zc =

ω1GroupConv(f1, · · · , fL/N ) + · · · + ωNGroupConv
(f(N−1)L/N , · · · , fL). In which g denotes the g-th group,
N is the number of groups, in our setting, N=2. And ω
refers to the weights and are summed up to 1.

• Weighted-Sum. weighted summing the features with a
learnable parameter as zc = ω1f1 + ω2f2 + · · · + ωL fL .

4) FEATURE INJECTION
A gated linear unit (GLU) [21] is leverage to implement a
gating mechanism over the features of zf and zc as (7):

zg = zf ⊗ σ (upsampling(Conv(zc))). (7)

where 1×1 convolution is applied on zc to stay same channel
dimension with zf , then upsampling operation is used to align
the spatial dimension. ⊗ is the point-wise multiplication, and
σ denotes the sigmoid function. In this way, the semantic
information is only utilized as a guidance, to further facilitate
the subsequent task, we add the linear mappings to project
between zc and zg, then implement the element-wise addition
with (8):

z = zg ⊕ Linear(zc). (8)

where the linear projection can also leverage the alignment
between the CLIP features and DINOv2 features, as analyzed
in [14]. To further stabilize the training process, the residual
connections from the zf to the FINet are added. And the
fusion image Ifus can be obtain with another convolution lay-
ers performing batch normalization on feature embedding z.

5) SEMANTIC SEGMENTATION
Benefit from the zero-shot abilities of the DINOv2, a simple
linear layer is trained to predict class logits from the patch
tokens, as shown in Fig.4. Then the logits map is upsampled
to the output resolution to obtain the final segmentation
map. Specifically, following [13], let Ifus be the input fused
image, the patch tokens of DINOv2 fd ∈ R196×768. And the
segmentation map can be obtained by (9):

Iseg = upsampling(σ (Linear(fd ))). (9)

Alternatively, the pre-trained DINOv2-based segmenter
[13] on ADE20K can be used as initialization.

6) LOSS FUNCTION
To boost the fusion quality and subsequent task performance
at the same time by injecting semantic information into fusion
image, our loss function consists of two aspects: one is
structure and texture loss Lst to maintain the visual fidelity,
the other is the semantic segmentation loss Lss to make
sure the contribution of the fusion image to high-level task.
Specifically, the Lst contains the structural similarity index
(SSIM) [22] and the texture loss [5], defines as (10):

Lst = (
1 − SSIMIfus,Irgb

2
+

1 − SSIMIfus,Iir

2
)

+ β/(HW )
∣∣∣∣∇Ifus∣∣ − max(

∣∣∇Iimprove∣∣ , ∣∣∇Irgb∣∣)∣∣ .
(10)

where H and W denotes the image resolution, β denotes
the balancing coefficient between these two losses. And
∇ represents the Sobel gradient operator, |·| is L1 norm.
The segmentation loss is the cross-entropy loss between the
predicted segmentation results Iseg and ground truth labels Igt .
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Particularly,

Lss = −

∑
c

Igt log(Iseg), c ∈ {1, 2, · · · ,C}. (11)

In which, C denotes the number of classes. The final loss
can be defined as (12):

Ltotal = Lst + λLss. (12)

where, λ is used to adjust the semantic segmentation loss.

Algorithm 1 GFFusion Training
Input: Visible images Irgb and infrared images Iir
Output: Fusion images Ifus
Load pre-trained CLIP visual encoder weights and
DINOv2-based segmenter.
while not converged do
Sample image pairs (Iprgb, I

p
ir ) from Input

Update the parameters θf and θi of the network by Adam
optimizer according to Eq.(12): ∇θ (Ltotal)
if epochs > q then
Increase λ with a cosine scheduler.
Decrease the learning rate by specific decaying ratio.

Update the sematic parameter θs by Adam optimizer
according Eq.(12): ∇θs (Ltotal)

end if
end while

C. TRAINING
Leveraging the generalization ability of the pre-trained vision
foundation model, we can train the whole networks jointly
according to Eq.(12), which is analyzed in the ablation study,
under the situation of ground truth missing of fusion images.
Particularly, after a few iterations, we increase the weight λ to
make the SSNet guide the FuNet and FINet more precisely.
The training process of our method is shown in Alg.1, where
the CLIP model and DINOv2 model stay frozen. And the
Adam optimizer is applied to update the parameters.

IV. EXPERIMENTS
A. SETUP
1) DATASET
We conduct the experiments on four widely-used datasets:
M3FD [23], MFNet [24], RoadScene [17] and TNO [26].
Where, the image pairs of RoadScene and TNO datasets are
only used for testing. Besides, MFNet is adopted to evaluate
semantic segmentation performance, and the image pairs for
object detection task in M3FD and MFNet are transformed
to segmentation masks based on the DINOv2 features with
PCA, as shown in Fig.5.

2) IMPLEMENTATION
Our framework is implemented with PyTorch on a NVIDIA
GeForce RTX 4090 GPU 24G. The FuNet and FINet are

FIGURE 5. An overview of the object masks obtaining based on the
bounding boxes. Firstly, the PCA is used to get the first component, then
the foreground mask is obtained by thresholding. Based on the
foreground feature, again the PCA is adopt to get foreground object mask.

TABLE 1. Comparison of different semantic-driven fusion methods on
M3FD.

trained using Adam with learning rate 1×10−3, respectively.
And the segmentation head of SSNet is trained using learning
rate 1 × 10−4 with 0.1 decaying rate every 10 epochs.
We firstly train the network for 100 epochs. Then, we fine-
tune the SSNet for 50 epochs, meaning the q is set to 50. The
hyperparameter λ is set to 0.2, and N is set to 1.

3) METRIC
Following [7], Three metrics are used for fusion quality
evaluation: entropy (EN) [27], sum of the correlations of
differences (SCD) [28] and visual information fidelity (VIF)
[29]. EN evaluates the information richness in an image,
and the higher EN means more information. SCD evaluates
the correlation between the input images and fused image.
The higher MI illustrates more information of the input
images is fused. VIF measures the ability to extract visible
information from the input image, and a larger VIF represents
less visible distortion in the fused result. Moreover, we use
mIOU to comprehensively evaluate semantic segmentation
performance. A higher mIOU means better segmentation
effect.

B. ABLATION STUDIES
Effect of hybrid learning. In Section III-A, we summarized
several different learning paradigms for semantic-driven
image fusion, as shown in Fig.2. Then the hybrid learning
method is introduced that help the fusion network fuse
the semantic information from vision foundation models.
The comparison results among these methods are shown in
Table.1. Our GFFusion achieves comparable results on image
fusion. The reason is that vision found model itself has strong
generalization for high-level tasks, such as classification,
segmentation and depth estimation, and the injected semantic
features can be easily aligned to eliminate themismatch of the
other learning methods.

Study of the semantic feature merging strategy. We imple-
ment multi-level feature merging to inject the general
semantic feature into FuNet, as describe in Section III-B.
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TABLE 2. Study of the semantic feature merging by comparison different
strategies on M3FD.

FIGURE 6. Feature visualization by applying PCA on the features of fusion
images extracted by CLIP and DINOv2. Where the visualization of CLIP is
upsampled with bilinear interpolation to maintain the same resolution
with DINOv2, and the images are sampled from MFNet.

Here, we study the different strategies to show the results
in Table.2. It can be observed that the Mean strategy simply
averaging all the features of CLIP is hard to achieve a
satisfactory result, and the Weighted-Sum strategy further
improves the performance. With the subsequent linear
embedding feature injection, a higher image fusion quality
can be obtained. Since the combination ofWeighted-Sum and
linear embedding injection provide more semantic features
to fusion network, which implicitly aligned with the DINO
features, which is consistent with analysis of [14].

Effect of CLIP and DINOv2 features. Owing that the CLIP
model is trained with weakly-supervised image-text pairs,
it primarily learns image-level features, and inadequately
explore the grounding details of local object parts, as depicted
in Fig.3. And the visual features obtained from the DINOv2
contain more detailed information regarding local objects,
and can capture the fine-grained localization information.
To verify this effect, we further visualize the features
extracted from the fusion images, as shown in Fig.6. So,
the fusion network can achieve more fusion performance by
injection the semantic information from CLIP, meanwhile
achieve comparable segmentation performance benefiting the
fine-grained localization information captured by DINOv2.

Effect of the DINOv2-based segmentation. Here, we study
the generalization ability of the DINOv2-based semantic
segmentation to support the training strategy for GFFusion,
as shown in Fig.7. It can be seen that the DINOv2-based
segmenter can achieve satisfactory results without fine-
tuning, thus, it can be used as a constraint for fusion network
at the beginning. And with the optimization process, it can
reach a better segmentation performance on fusion images.

FIGURE 7. The segmentation results on visible images, infrared images
and fusion images based on DINOv2 without fine-tuning on MFNet.

C. COMPARISON WITH SOTAS
1) THE FUSION RESULTS
In Table.3, compared with other state-of-the art fusion meth-
ods, our proposed method, GFFusion, achieves comparable
results, which shows that the GFFusion can preserve the
features from pixel-level (EN and SCD) and semantic-level at
the same time. Specifically, it can be observed that compared
with other semantic-driven methods, such as SeAFusion and
PSFusion, the semantic-driven methods is superior to other
methods.

Further, the qualitative results of the proposed GFFusion
with several fusionmethods: IFCNN [30], UMF-CMGR [31],
SwinFusion [8] and SeAFusion [5], are shown in Fig.8.
It can be observed that IFCNN andUMF-CMGRproduce low
contrast objects, and SwinFusion and SeAFusion generate
smooth-effect edges. While the fusion images produced
by GFFusion contain more edge details and high contrast
objects.

More comparisons are implemented onM3FD, RoadScene
and TNO datasets, as shown in Fig.9. Our method can fuse
both features of the visible and infrared images. Specially,
for the strong light situation, as shown in the second row, the
proposedmethod can fuse the person and car object with clear
edges and details.

2) THE SEGMENTATION RESULTS
We provide quantitative results of different segmentation
methods in Table.4, where the segmentation head of
DINOv2-Seg is optimized on the dataset. Our GFFusion gen-
erally achieves the comparable performances. In detail, the
semantic-driven methods, such as SeAFuson and PSFusion,
which fused more semantic features, can achieve high seg-
mentation performance with our SSNet. Meanwhile, because
that our method injected more general semantic feature, these
methods can perform also well. And owing to the generality
of the extracted features based on foundation model, the
performances sometimes are lower than the specific-designed
convolutional networks, such as the SegNeXt model on
UMF-CMGR fusion results.

The fusion images with semantic information can help
improve semantic segmentation. Here, some qualitative
results are provide performed on the fusion images, as shown
in Fig.10. The segmentation results of the first two rows
illustrate that the jointly optimization proposed in Alg.1
is feasible. While affected by the labelling quality, the
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TABLE 3. The comparision of state-of-art methods and the proposed method on RoadScene and TNO.

TABLE 4. Quantitative results of different segmentation methods on MFNet dataset.

FIGURE 8. Qualitative results of different fusion methods on MFNet, and each row represents a
different image pair.

segmentation result of the human in first row is inferior to
the one in Fig.7, but with better boundaries. Compared with
SeAFusion, which also can perform semantic segmentation,

our method achieves better results, e.g., the people in remote
distance can be accurately segmented as shown in the third
row.
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FIGURE 9. Qualitative results on M3FD (the first row), RoadScene (the second row) and TNO (the third
row).

FIGURE 10. Qualitative segmentation results of the fusion images on MFNet, and each row denotes a
different image pair.

V. CONCLUSION AND DISCUSSION
This paper resents a hybrid joint fusion and segmentation
learning framework by introducing the general features from
vision foundation models. Based on the hybrid learning idea,
the fusion network can absorb the semantic features from
CLIP with the DINOv2-based segmenter as a constraint.
Meanwhile, with the feature injection network, the features
between different-level tasks can be align to improve their
performances. And further, benefit from the generalization
ability of vision foundation models, the proposed network
can be optimized mutually to promote the training process.
Both quantitative and qualitative results on four datasets
demonstrate the comparable performance with state-of-art
methods. While limited by the object detection performance
of DINOv2-based model, our method cannot carry out the
object detection and segmentation simultaneously. In the
further work, multi-task learning idea can be used, such
as MaskDINO [35], to unify these tasks in one framework
and lighten the model to speed up the inference stage. And
further, more complicate strategies in image enhancement

and super-resolution [25] can be used in feature fusion
module to promote the performance.
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