
Received 20 June 2024, accepted 7 July 2024, date of publication 15 July 2024, date of current version 26 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3428388

On-Board Computer for CubeSats:
State-of-the-Art and
Future Trends
ANGELA CRATERE 1, LEANDRO GAGLIARDI 2, GABRIEL A. SANCA 2, FEDERICO GOLMAR2,
AND FRANCESCO DELL’OLIO 1, (Senior Member, IEEE)
1Micro Nano Sensor Group, Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126 Bari, Italy
2Instituto de Ciencias Físicas, Universidad de San Martín-CONICET, Buenos Aires 1650, Argentina

Corresponding author: Francesco Dell’Olio (francesco.dellolio@poliba.it)

ABSTRACT Over the past three decades, the acceptance of higher risk thresholds within the space industry
has facilitated the widespread integration of commercial off-the-shelf (COTS) components into avionics and
payloads, leading to a remarkable transformation in the design of space missions. This transformation has
led to the emergence of the New Space Economy and the widespread adoption of lean or small satellites
in general, particularly CubeSats. CubeSats are now widely used in commercial, scientific, and research
applications due to their versatility, affordability, simplicity of development, and accelerated development
timelines. On-board computing plays a crucial role in the design of CubeSat missions, as increasingly
high-performance computational requirements are needed to meet the challenges of future missions. This
paper systematically reviews the state-of-the-art of CubeSat Command and Data Handling (C&DH) sub-
system, covering both hardware components and flight software (FSW) development frameworks. It presents
an analysis of the key features and recent developments of on-board computers (OBCs) in commercial
and academic institutional projects funded by governments, agencies and public institutions. It further
examines the effects of space radiation on avionics components and discusses the main fault-tolerance
techniques used in CubeSat platforms. Finally, this paper highlights trends and hazards for future CubeSat
avionics and identify potential directions for future developments in high-performance on-board computing.
By synthesizing contemporary research and industry insights, this paper aims to shed light on CubeSat OBC
design, providing an overview of the existing technology landscape and the challenges to be addressed for
next-generation mission needs.

INDEX TERMS Command and data handling (C&DH), CubeSats, on-board computer (OBC), small satellite
avionics.

I. INTRODUCTION
ALL space missions aim to generate and collect data.
Data acquisition is a key consideration in the design of
space systems, as it plays a fundamental role in defining
their objectives. Generally, space missions are based on a
main payload that produces data specifically for different
purposes, such as Earth observation (EO) and remote
sensing, astrophysics, space environment characterization,
heliophysics and space weather, and the demonstration of

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenbao Liu .

new technologies. Such payload data constitute the largest
data set of a mission. However, space missions additionally
produce a wide range of other data, including telemetry
(TM), which records the health of the spacecraft and
its subsystems (power supply voltages, current draw and
temperatures), attitude data, log files and configuration
settings [1]. The command and data handling (C&DH)
subsystem is responsible for managing the data produced
onboard the satellite. This system’s functions include the
collection, preparation, and storage of both housekeeping
and mission data, which can be used onboard or transmitted
to ground stations. In addition, the C&DH subsystem often

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

99537

https://orcid.org/0009-0008-0605-1411
https://orcid.org/0000-0002-1057-6156
https://orcid.org/0000-0002-5571-5631
https://orcid.org/0000-0001-9874-5008
https://orcid.org/0000-0002-0030-275X

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

FIGURE 1. Yearly launches by nanosatellite types. From [4].

executes additional tasks, including receiving, validating,
decoding, and distributing commands to other subsystems,
detecting faults arising from the interaction of space radiation
with electronic components and subsequent system recovery,
security functions, and spacecraft timekeeping [2], [3].
In recent decades, the space sector has undergone a

significant transformation due to advances in miniaturization
techniques for payloads and electronic components. This
factor, combined with an increased risk tolerance leading
to the widespread use of commercial off-the-shelf (COTS)
electronics also in space, has resulted in a growing interest in
new mission concepts based on limited size, weight, power,
and cost (SWaP-C), such as CubeSats. For approximately
15 years, CubeSats have been key instrument technologies
dominating the space market and facilitating access to space.
Until 1 January 2024, more than 2000 CubeSats have been
launched [4]. According to some forecasts, almost two
thousand CubeSats will be launched in the next four years
(Fig. 1, [4]).
The CubeSat standard, formally known as the CubeSat

Design Specification (CDS), was introduced by Stanford and
California Polytechnic State Universities in 1999 [5], [6].
It specifies that a standard unit (1U) is a cube of 10 cm on
one side (to be precise, 10 cm × 10 cm × 11.35 cm) with a
mass of up to 2 kg [7]. A 1U can be used as a stand-alone
satellite or can be arranged with others to build larger
CubeSats. The main advantage of this standardization is the
possibility for launch vehicle manufacturers to implement
universal deployment systems independently of the CubeSat
manufacturer, such as the Poly Picosat Orbital Deployer
(P-POD) or the NanoRacks CubeSat Deployer (NRCSD;
[8]). The CubeSat standard also provides specific design
requirements and protocols, simplifying the development
process. Following the popularity of the 1U and 3UCubeSats,
an advanced standard for larger CubeSats (6U, 12U and 27U)
was proposed in 2011 to enable the enhancement of CubeSat
capabilities and increase utilization [9].
Although originally intended as educational tools or

low-cost technology demonstrators [6], [10], [11], CubeSats
are currently used in a variety of applications, from
commercial and telecommunication purposes [12], [13] to

high-value scientificmissions [8], [11]. They offer significant
cost advantages compared to traditional satellites, with a
development cost of approximately USD 200 000, as opposed
to the USD 150-350 million required for conventional satel-
lites. In addition, CubeSats typically have short development
times of less than one or two years, compared to the
5-15 years that are required for large mission concepts [14].
These advantages have motivated worldwide government
agencies to actively support CubeSat missions, leading to
the emergence of long-term programs dedicated to CubeSat
technologies, such as the National Aeronautics and Space
Administration’s (NASA’s) Cubesat Launch Initiative [15].
The European Space Agency (ESA) has provided funding for
several CubeSat missions, including those with interplanetary
targets (e.g., [16], [17]), as part of its General Support
Technology Programme (GSTP). The Italian Space Agency
(ASI) has funded the Alcor program, which includes at
least 20 CubeSat missions, and has participated in the
development of the first two Italian CubeSats for deep-space
applications, namely LiciaCube [18] and ArgoMoon [19].
The introduction of the CubeSat standard has also opened
up space exploration to private companies, leading to the
emergence of the so-called New Space Economy, and
has provided scientific opportunities for small educational
institutions.

Recently, the popularity of CubeSat platforms has been
driven by advances in silicon processes and electronics
miniaturization techniques, which enable the integration
of complex processor architectures into a single Field
Programmable Gate Array (FPGA) or System-On-a-Chip
(SoC; [3]). CubeSat C&DH subsystems have reached a state
of relative maturity, with a wide range of implementation
options available. The number of companies and research
institutes worldwide developing their own avionics subsys-
tem for CubeSats is increasing steadily [4]. In this context,
this paper aims to systematically review the state-of-the-
art in OBCs for CubeSats, primarily targeting research and
commercial projects funded by government agencies and
private companies. Although there are several works dealing
with the C&DH subsystem [2], [3], [20], [21], [22], even
for small satellites [23], [24], none of them discusses in
detail OBCs intended for CubeSat platforms ([1] provides
only a general overview of CubeSat subsystems). Therefore,
this paper meticulously reviews recent advances in CubeSat
OBCs, in order to provide developers and researchers with
an understanding of currently available technologies, their
limitations, and the breakthroughs required for future mission
needs. The purpose is to provide an overview of existing and
developing architectures, valuable both to illustrate existing
options for those choosing to purchase a commercial OBC
for their mission, and to support architecture and component
selection for those deciding to design a customized OBC
based on mission-specific requirements.

The structure of the paper is as follows: §II provides basic
knowledge about the C&DH subsystem, its functions, its
general architecture, and the main implementation options

99538 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

used in CubeSats. Furthermore, it analyzes the effects of
space radiation on avionics systems and the main mitigation
techniques used. § III reviews the OBC systems currently
available on the market or under development, analyzing
their architecture and performance based on the nature of
their processing core. § IV discusses the tools used for flight
software (FSW) development. § V presents future trends in
avionics, identifying potential directions for next-generation
systems. Finally, §VI summarizes the main lessons learned
from this literature review and concludes the paper.

II. OVERVIEW ON C&DH SUBSYSTEM: FUNCTIONS,
COMPONENTS AND TECHNIQUES FOR RADIATION
EFFECT MITIGATION
In this review, we specifically refer to the term avionics as the
subsystems, electronic components and functions featured in
the C&DH module.

Typically, there are two data management segments within
a classical C&DH subsystem, each of which has different
purposes and functions [20]. The first segment is responsible
for monitoring and surveilling the satellite bus, while the
second segment aims to monitor the payload, as well as
process the data collected by the payload to support the
spacecraft’s science mission. These two data management
segments can be concentrated in a single processing system
or distributed between two separate processing units, namely
the main OBC and the payload computer. Therefore, there
are two different approaches in the design of the C&DH
subsystem. In centralized architectures, all functions are
concentrated in a single powerful and reliable computing
infrastructure, which serves as the main OBC for satellite
platform monitoring and TM management (including the
processing of data produced by the attitude determination
and control subsystem; ACDS), and as a processing unit
for payload data. In some cases, this approach has been
implemented for smaller satellites due to the constraints on
the mass and volume of electronic components imposed
by their limited size (e.g., [25]). However, it is generally
poorly adopted because this type of architecture suffers
from potential system-level failures due to its dependence
on a single processor or computing unit. Moreover, this
design requires high energy consumption, limited system
reconfiguration possibilities and complex interfaces [23].
A centralized OBC, which also incorporates payload com-
puter functions, is poorly scalable and must be redesigned
for each mission. In distributed architectures, which are
the most commonly used approach, functions are divided
and shared across a computing architecture consisting of
multiple modules. In this case, platform and payload control
functions are assigned to different devices and processors.
This approach is favoured because basic satellite tasks (such
as platform management, TC decoding and maintenance
reports) consume less power. More demanding tasks, such
as attitude determination and control, processing of scientific
data produced by the payload, intensive signal processing
(e.g., data compression, time/frequency domain filtering, and

feature extraction), fault monitoring or cryptography, require
very high processing power and more advanced proces-
sors [21]. A distributed approach ensures the scalability of
the OBC, as themodular architecture allows the hardware and
software subsystems to be reused in future missions.

The design of the C&DH subsystem is a very demanding
process that uses typical system engineering design tech-
niques. It starts with the definition of the system functions,
requirements, and specifications, and leads to the definition
of the system architecture and the selection of electronic
components. This is often an iterative process, which should
consider the requirements of other satellite subsystems (this
approach is called concurrent engineering) and, since these
are systems intended for space, also the extremely harsh
environmental conditions and the effects of radiation. In this
section, we present the conventional avionics architecture
typically used as a reference in the C&DH subsystem and
OBC design process and analyze in detail the effects of
radiation in avionics systems.

A. CONVENTIONAL AVIONICS ARCHITECTURE
The design of the avionics architecture is generally influ-
enced by the nature of the mission, leading to significant
variability in existing avionics systems. Space agencies,
institutions and companies have long emphasized the need
to standardize avionics systems, with the aim of making
these systems scalable, enabling the reuse of elements and
modules in different missions, and increasing the efficiency
of subsystem design, leading to a reduction in costs and
development time. To achieve this goal, it is essential to
identify recurring architectural elements and precisely define
their functions, interfaces, and interconnection protocols.
[3], [22]. In this context, the ESA’s Space Avionics Open
Interface Architecture (SAVOIR) initiative [26] established
a functional architecture for classical satellites that serves as
a reference for avionics standardization efforts.

Fig. 2 shows a functional view of the SAVOIR reference
architecture. In this general concept, the OBC functions
include [3], [22]:

• TM handling functions. These functions include the col-
lection of fundamental TM and the generation/encoding
of TM data packets according to the Telemetry Transfer
Frame (TTF) protocol. This standardizes the data
structure for space data transmission over a TM link.

• Telecommand (TC) handling functions. These include
receiving, authenticating, and decoding TCs sent from
ground stations, distributing commands to control vital
spacecraft functions, and implementing security mea-
sures to protect against unauthorized TCs. Optionally,
they could also provide for the cryptography of data
transmitted on the downlink.

• I/O peripheral and interface (I/F) handling functions.
These support physical sensor and actuator I/Fs to
acquire essential spacecraft data. Sensor monitoring can
be managed directly in point-to-point mode or via a
data concentrator function, typically implemented in one

VOLUME 12, 2024 99539

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

FIGURE 2. SAVOIR avionics functional reference architecture [26]. The red box marks the functional blocks included in the OBC. The colored
squares map the general SAVOIR functions in the various subsystems of a CubeSat. Depending on the specific CubeSat mission, TCs and TM can
be handled by the main OBC or the telemetry, tracking, and command (TT&C) subsystem. Similarly, the management of the payload data and its
TM may be the task of the OBC, the payload computer or both.

or more remote terminal units (RTUs)/remote interface
units (RIUs).

• Time management functions. These provide a timer and
generate events of synchronization, including the poten-
tial inclusion of Global Navigation Satellite System
(GNSS).

• Processing and storage functions. These are responsible
not only for storing and processing the critical satellite
bus data but also for storing and executing the FSW.

• Fault detection and reconfiguration functions. These
identify and correct faults, thus maintaining the correct
operation of the processing functions even when errors
occur.

• Payload data routing functions. These manage the
monitoring and control of the payload units. Optionally,
a function for storing telemetric payload data during
periods when there is no contact with the ground stations
can be included.

In the case of conventional satellites, the term C&DH
subsystem is a hyperonym for various platforms and devices
for processing data onboard the satellite, while the on-board
computer (OBC) usually refers to hardware and software
components specifically designed to manage the satellite

platform. The FWS component (§ IV) is responsible for
space platform surveillance and control tasks, autonomy, and
TM data processing. The HW functionalities of the OBC
are limited to logic-arithmetic operations, data storage, and
signal and data transmission. In the case of CubeSats, this
distinction becomes more blurred, as the OBC can in many
cases perform several functions within the C&DH subsystem
and share tasks with other subsystems, as shown in Fig. 2.
This is because there is no single, standardized approach to
designing OBCs for nanosatellite platforms, and the specific
functions often depend on the mission case.

The core of an OBC is the Central Processing Unit
(CPU), which is responsible for managing high-level pro-
cesses within the system. In general, several CPU imple-
mentation options are available, using different embedded
processors. For CubeSats platforms, most often adopted
CPU architectures are quite varied. Early systems use
microcontroller (µC)-based architectures for their simplic-
ity of implementation (often integrated with FPGA-based
HW accelerators). More recent systems typically opt for
integrated SoC architectures. The use of ASICs in CubeSat
avionics systems is uncommon, mainly because their design
and implementation are complex and expensive. Further

99540 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

discussion of the OBC implementation choices in CubeSats
is provided in §III.

B. RADIATION EFFECTS IN SPACE
The space environment poses harsh challenges to electronic
components, mainly due to ubiquitous radiation. Space radi-
ation produces a chaotic and inhomogeneous environment,
characterized by a wide range of particles, energies, and
fluxes and is strongly influenced by the level of solar activity.
Radiation risk changes significantly in different orbital
regions, such as low Earth orbits (LEOs), geostationary orbits
(GEOs), and deep space trajectories. Three main sources of
space radiation have been identified [27]:

• Radiation belts. These belts surround planets that have
a magnetic field, such as Earth, Jupiter, Saturn and
Uranus. These belts are responsible for trapping charged
particles, especially electrons (e−) and protons (p+).
The magnetic field accelerates e− up to energies of the
order of 30 MeV and p+ up to energies of the order
of 500 MeV, creating potentially dangerous zones for
electronic devices near these celestial bodies. Around
the Earth, the radiation belt is called the Van Allen
belt and is a particularly critical source of radiation
for LEO missions. However, this radiation source must
also be considered when planning fly-by or randez-
vouz missions in proximity to other planets with a
magnetosphere.

• Solar flares. During solar events, such as so-called
flares, solar particle events (SPEs) or coronal mass
ejections (CMEs), p+ with energies of up to 500 MeV
and, to a lesser extent, heavy ions with energies of up to
10 MeV/nucleon can be emitted. Flares are influenced
by the solar cycle, with a higher number of events
occurring during periods of solar maximum.

• Cosmic rays. These high-energy ion streams come
from outside the Solar System, probably produced by
supernova explosions. Interstellar electromagnetic fields
and shock waves scatter the ions and accelerate them to
energies of thousands of GeV.

Radiation can damage or cause malfunctioning of elec-
tronic devices and systems, causing the so-called radiation-
induced effects [28], [29]. These effects can have a substantial
impact on the reliability of space systems, causing faults, i.e.,
incorrect hardware or software states, resulting in errors in
programs or data structures. Such errors can lead to failures
of space system components [30]. Radiation-induced errors
can be classified into two categories: ‘‘soft’’ errors, which
can be recovered with power cycles and can cause only
temporary component failures, and ‘‘hard’’ errors, which
can lead to permanent effects, causing hardware degradation
and/or damage [29].
The effects of radiation on semiconductors should not

be underestimated during the C&DH design, especially
in CubeSats, in which COTS components are commonly
used. These effects can be broadly classified into two main
groups: cumulative effects and single-event effects (SEEs).

The cumulative effects comprise ionizing phenomena, such
as the total ionizing dose (TID), and nonionizing phenomena,
such as the displacement damage (DD). Cumulative effects,
as the term indicates, involve gradual changes in the
operational parameters of devices. SEEs, instead, induce
abrupt alterations or transient behavior in circuits. The
following subsections analyze these effects and their impact
on integrated circuit (IC) technologies in detail.

1) CUMULATIVE EFFECTS
TID accounts for the amount of radiation that impacts
electronic components during mission lifetime and is a
critical parameter for the design of electrical circuits incor-
porating metal-oxide-semiconductor field-effect transistors
(MOSFETs; [29], [31]). Charged particles, especially e−

and p+, can directly or indirectly ionize semiconductors,
creating electron-hole (e-h) pairs in the silicon dioxide
layer. Fig. 3 shows the physical process behind the TID
degradation mechanism and its impact on the behavior of
a MOSFET. The holes created within the oxides led to
progressive changes in the device performance parameters.
For instance, positive charges collected in gate oxides lead to
a decrease and increase in threshold voltage in N-MOS and P-
MOS transistors, respectively, as positive charges gradually
activate or inhibit gate activation [28], [31]. In addition to
threshold voltage shifts, trapped charges are also responsible
for increased current leakage, reduced carrier mobility, and
increased noise levels. In worst-case scenario, functionality
may be completely disabled because of the high leakage
current and inability to shut off current between the transistor
source and drain [32], [33].

TID is typically measured in rad, where 1 rad(material) is
defined by an amount of energy equal to 100 erg deposited per
gram of target material. Since the energy absorbed per unit
mass varies among materials, the type of material is always
specified [e.g., rad (Si)]. The SI unit is gray [Gy], which is
equivalent to 100 rad.

Being a cumulative and long-term effect, TID increases
over time, causing gradual semiconductor performance
degradation and eventual failure of MOS devices [29], [32],
[33]. Mitigation of this effect should always be considered
in the design of avionics systems for space systems. TID
can be mitigated through shielding, careful selection of
inherently radiation-resistant components, or redundancy
(§II-C). However, it must be emphasized that most CubeSat
missions operate in LEO and with a short lifetime [10].
This considerably reduces the risk of TID failures for
such missions. Short-duration missions in LEOs typically
encounter relatively low TIDs, ranging from 1 to 10 krad(Si)
per year, depending on shielding [34], [35], [36], [37].
Commercial ICs typically fail after being exposed to
3-30 krad of radiation [38]. Furthermore, TID is a relevant -
but not critical - factor in modern COTS µCs because
of manufacturing technology and size scaling, miniaturized
oxides in sub-90 nm devices being less susceptible to
charge accumulation. Instead, these devices are much more

VOLUME 12, 2024 99541

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

vulnerable to SEEs [33]. The risk of degradation for TID
increases dramatically for long-duration missions or deep-
space trajectories.

The second main cumulative radiation effect, called the
DD effect, refers to the gradual degradation of the electrical
and optical properties of semiconductor devices due to
structural damage in the crystal lattice. This damage is
caused by collisions of nonionizing radiation particles, which
displace Si atoms from their original lattice sites [31],
[39]. In space, p+, neutrons, and heavy ions are the
main sources of DD, while e− contribute less because of
their smaller cross section. Photons can also cause DD
indirectly by producing high-energy secondary e− through
the Compton effect, especially with prolonged or repeated
exposures [33], [40]. DD primarily affects devices whose
operating characteristics depend on the bulk properties of
the materials, such as photonic and optoelectronic devices.
On satellites, the most affected components are photovoltaic
cells in solar panels, charge-coupled devices (CCDs) used
in many payloads as particle detectors, and photodiodes
used in optical communications and camera chips [33].
The performance of MOS devices in OBCs is relatively
insensitive to the DD, as they are surface devices that are less
affected by bulk defects. Shielding and careful component
selection should also protect any critical parts of OBCs
against this effect. [40].

2) SEES
SEEs are caused by the prompt interaction of a radiation
particle (with energy up to several hundred MeV/nucleon in
the case of heavy ions) with MOS devices. SEEs are not
cumulative effects. The physical mechanism that produces
SEEs can be attributed to the charge deposition induced by
the passage of protons and heavy ions in the oxide, followed
by the charge collection at the output node of the circuit [27],
[31]. Charge collection occurs immediately after the creation
of traces left by ionizing particles in the oxide and is driven
by three main processes, namely, drift in the depletion region,
diffusion, and channeling, as shown in Fig. 3. These three
charge collection processes result in a transient current pulse
being driven through the device.

Charge deposition is usually modeled using the linear
energy transfer (LET) quantity [27], [29], which is the amount
of energy transferred per unit length traveled in the target
material per unit specific mass density (MeV · cm2/mg).
The higher the energy of a charged particle crossing a
MOS device, the more energy is deposited on it. Based
on the quantity of energy deposited, various effects result,
such as single-event transients (SETs), single-event upsets
(SEUs) and single-event latch-ups (SELs). The former two
are typically soft failures, while the latter is a hard error.
a) SET. This term refers to the creation of a transient spike

of current or voltage in the signal path, which causes
various effects [29]. These are mostly soft errors, often
repairable with power cycling. One possible effect of
a SET is the interaction of the produced current pulse

with the electronic system internal clock signal. This
interaction can widen the clock signal at the trailing
edge and can narrow it at the leading edge. This affects
the processing speed of the system as a function of the
clock signal [41]. In complex systemswith synchronized
computing nodes, the precise synchronization of all
nodes can be severely compromised by a critical SET.
Since charged particles can strike electronic components
at any time and any place, there is no possible
countermeasure to protect the system against an SET
except complete radiation shielding [29]. If the voltage
spike is captured by a memory cell, register or flip-flop
and causes a state change, the SET can become an SEU.

b) SEU. This occurs when the energy transfer induced
by a charged particle causes a stored bit to change,
resulting in a change in the state of a flip-flop or memory
unit cell (from 1 to 0 or vice versa). The state change
can also affect several adjacent memory cells, resulting
in a so-called multiple-bit upset (MBU). The effect of
an SEU depends on the location and function of the
affected bit. Nondestructive effects include corruption of
the information stored in a memory element and thus a
change in its state. This can be resolved by updating the
elements with the correct value (memory scrubbing or
device restart). Destructive effects can result in damage
to the CPU program, such as computation errors, dead-
locks, or incorrect command execution [29]. In LEO,
p+ trapped in the radiation belt and produced during
SPEs are the most significant source of SEUs [42],
[43]. SEUs are considered a common occurrence for
static random access memory (SRAM) devices exposed
to radiation, since such devices are based on flip-flop
technology. In contrast, flash devices, which are based
on electrically erasable programmable read-only mem-
ory (EEPROM) technology, are immune to SEUs [29].
Component reliability with respect to SEUs is a major
concern when developing OBCs for space applications,
especially when COTS components are used. Although
cumulative effects and SETs can be mitigated (even
partially) by using adequate shielding, this is often
not enough to prevent SEU-induced errors. Therefore,
their management through the use of fault-tolerant
techniques is critical in spacecraft. Watchdog timers
and information redundancy techniques, such as error
detection and correction (EDAC) schemes, are two of the
most classic methods used to mitigate SEUs (see §II-C).

c) SEL. This is a hard error. It occurs when the energy
of the incident particle is so high that it induces an
anomalous high-current state in the device, resulting
in permanent device failure. If there is no overcurrent
protection circuit, the device will burn out. This makes
SEL one of the most dangerous SEEs for MOS
devices [29]. SELs can be avoided by controlling the
power consumption of the chip and separating it from
the power supply line if a high current state occurs.
SELs can occur in both SRAM and flash devices and

99542 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

FIGURE 3. Effects of space radiation on electronic components. TID is a cumulative effect due to charge accumulation in the SiO2 layer or at the
SiO2-Si interface. This is due to (a) the generation of e-h pairs in the oxide as a result of radiation-induced ionization; (b) the migration of low
mobility holes to the SiO2-Si interface; and (c) the trapping of gaps by Si substrate defects or at the interface. (d) Charge accumulation leads to a
progressive change in the features of MOSFETs, such as a decrease in threshold voltage in the case of an n-MOS. SEEs are due to the impact of
single particles that create e-h pairs along their trajectory and generate (e) the spread of electric field lines, a phenomenon known as funneling,
(f) the drift of charges in the equilibrium depletion region and g the charge diffusion, inducing (h) a transient current pulse that can lead to
either a temporary or permanent failure. [31]

this mainly relies on the hardware architecture of the
device.

C. MITIGATING SPACE RADIATION EFFECTS
Managing the effects of radiation on electronic systems is
a fundamental aspect of electronic design for space appli-
cations. This task can be extremely challenging and costly.
There are several strategies to reduce the radiation effects.
The most basic approach involves the use of appropriate
packaging and shielding. However, this method increases
the overall weight of on-board components and is often
insufficient to properly protect against ionization phenomena
caused by high-energy photons and particles [32]. Further-
more, shielding sometimes compounds radiation effects due
to nuclear reactions induced within the packaging materials,
which potentially lead to the creation of secondary particles.
This process, in turn, induces errors and faults [32], [42].
Shielding, which is always employed in satellites, must
therefore be rigorously combined with other mitigation
techniques.

Two other approaches include using radiation-hardened
(rad-hard) devices and/or implementing fault-tolerant

techniques [44]. Rad-hard systems refer to those designed to
be resistant to radiation-induced effects within defined limits
limits (see Tab. 1). This resistance is achieved by using appro-
priate techniques during the manufacturing process [45].
Their development and implementation are often demanding
and very expensive. Therefore, although they are widely used
in large satellites, their integration into CubeSats remains
limited due to their energy consumption, cost constraints,
and mission lifetime. CubeSats, especially those intended for
low orbits, often incorporate COTS components due to their
affordability and quick availability in the market. However,
COTS components are more sensitive to radiation than
space-grade components [46], [47]. Therefore, their reliable
use requires strategic integration with rad-hard components,
mitigation techniques and extensive testing [23]. This section
summarizes some of the most common key techniques
for mitigating radiation-induced system failures within
CubeSats. These include hardware redundancy, memory
and firmware protection techniques, and protection circuit
integration. Multiple of these techniques are often combined
when developing an OBC. The choice of a particular
technique depends on the specific OBC design and is

VOLUME 12, 2024 99543

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

TABLE 1. Radiation tolerance levels of COTS, rad-tolerant and rad-hard
components. Data from [3].

influenced by factors such as on-board processing capacity,
mission duration and budget, component specifications, and
radiation environment.

1) HARDWARE REDUNDANCY
This technique is very successful in mitigating cumulative
effects [46] and SEUs [32]. Redundancy involves the
introduction of a duplicate device or component within the
system that performs the same functions. Redundancy can
be static or dynamic. Dynamic redundancy, also known as
cold redundancy, activates an unpowered backup component
when the original one becomes unreliable or fails com-
pletely. Dynamic redundancy is a system-level fault-tolerant
technique that can mitigate degradation due to cumulative
effects, in that, when one component fails due to radiation
accumulation, the unpowered component can take over its
tasks. Static redundancy, known as hot redundancy, involves
the simultaneous operation of redundant components and is
used to handle SEU-induced errors [44], [48].
Two commonly used static redundancy techniques are dual

modular redundancy (DMR) and triple modular redundancy
(TMR; [40]). They are based on the use of two or three
identical modules (one of which acts as a voter in the case of
TMR) operating in synchrony, performing the same functions
simultaneously and comparing their respective outputs. These
architectures allow for the detection of a single error in a
logical path when the outputs of the modules do not match,
rebooting the systemwhen a mismatch is detected [32]. DMR
can be implemented at the processing unit level of an OBC,
by including two independent chips on the board in a lockstep
configuration ([49]); e.g., [50]), or by using multicore
processors [51]. TMR can be used at the level of hardware
logic (e.g., [52]) or with other components, such as memories
(e.g., [53]). The TMR approach improves fault tolerance
and reliability, but carries a higher risk of multiple failures
over time, potentially reducing the system lifetime [44]. For
CubeSat applications, this may be acceptable due to the often
short mission duration.

2) MEMORY PROTECTION TECHNIQUES
Memory systems, especially SRAMs, are highly sensitive
to SEUs. Memories, in particular caches and register files,
are also the main components affected by SEUs in pro-
cessors [54]. The most commonly used memory protection
techniques on OBCs involve employing memory hardware
redundancies, utilizing information redundancy techniques

such as EDAC strategies, and implementing periodic memory
scrubbing.

EDAC codes are a particular class of error correction
codes (ECCs) that use check bits to detect and recover
errors in read or transmitted data. These codes can be
implemented in hardware, software or a combination of
both [55]. When implemented in hardware, the memory
architecture is extended to accommodate additional check
bits and is called EDAC-corrected memory or ECC memory.
Software EDAC strategies are more cost-effective and are
implemented in the fault detection isolation and recovery
(FDIR)module, which is typically part of the FSW.Hamming
codes are the most popular EDAC solutions [56], [57],
[58]. They are linear block codes that allow for single-error
correction and double-error detection (SECDED). In this
approach, the number r of check bits, required to correct
for 1-bit errors in a dataword of m bits, can be calculated
according to m + r + 1 ≤ 2r . An example is the Hamming
(12, 8) code, which converts an 8-bit dataword (m) into a
12-bit codeword (m + r), that is capable of correcting for a
1-bit error. More advanced codes, such as the Golay, Reed-
Solomon (R-S) and Bose-Chaudhuri-Hocquenghem (BCH)
codes, are able to detect and correct multiple errors [59].

To prevent two different particles from hitting the same
word during ECC checks and to avoid the accumulation of
errors that could result in MBUs, EDAC strategies are often
combined with periodic memory scrubbing [60]. Memory
scrubbing consists of periodically reading and comparing
all data in memory, reloading them if an error is detected.
By frequently checking the memory, the ECC can recover an
incorrect value before further bit errors occur [32].
In recent years, a new trend that has rapidly emerged in

space avionics is the adoption of novel memory technologies,
which show higher tolerance to TID and SEEs than standard
memories. Among these technologies, ferroelectric RAMs
(FeRAMs, [61]) and magnetoresistive RAMs (MRAMs,
[62]) are now widely adopted in OBCs, chosen for their
ability to retain data in hostile environments, due to their
operating principles. FeRAMs store data as electrical charges
in polarized ferroelectric capacitors, while MRAMs store
data as magnetic charges in magnetic tunnel junctions
(MTJs). Their unique operating technology makes them
inherently rad-hard, showing reduced vulnerability to SEEs
and resistance to a TID of up to 1 Mrad [32]. Other
technologies exhibiting similar radiation-tolerant properties,
such as resistive RAM (RRAM, [63]) and potentially
Phase-change Memories (PCMs, [32]) have also been tested
in relevant environments and are poised for future oppor-
tunities. A comparison between the performances of these
memory technologies and traditional memories is shown in
Tab. 3.

3) FIRMWARE PROTECTION TECHNIQUES
Ensuring the reliability of the FSW is a crucial task for
a successful space mission. This is particularly true when
considering the growing complexity of the on-board software

99544 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

resulting from the use of CubeSats for increasingly complex
mission purposes, the challenging real-time processing
capability requirements, and the strong hardware-software
dependence in avionics systems. In addition, just like
data storage memories, program memory is also subject
to SEU-induced failures, thus requiring the integration
of fault-tolerance techniques that enable in-orbit firmware
maintenance. Two key protectionmethods are firmware repli-
cation [64] and in-orbit firmware updating [65]. Firmware
replication involves storingmultiple copies of the firmware in
different memory allocations or different memories, allowing
the firmware to be protected against any corruption of
its primary version [64]. A bootloader, a critical software
component in the system, checks the integrity of the firmware
image and, in case of failure, uploads the uncorrupted version
into the program memory [23], [46]. However, it is worth
noting that that the bootloader itself represents a single point
of failure in a system with only one hardware component
or OBC. Indeed, if the bootloader fails, the entire system
could become inoperable, compromising mission objectives.
To mitigate this risk, hardware-level redundancy, such as
multiple physical components in a TMR configuration or
multiple OBCs, can be implemented. The in-orbit firmware
updating uses a transfer protocol and bootloader to transmit
and upload a new version of the firmware image through the
uplink channel, providing a facility to upgrade the firmware
directly in orbit [65]. This tehnique allows for solving
software issues and introducing new functions after satellite
launch.

With the widespread adoption of multicore processors
and systems even in CubeSat OBCs, other fault-tolerance
software methods are emerging, such as firmware task
rescheduling, task swapping, and checkpointing [66], [67].
In task rescheduling, a scheduler reassigns the tasks of the
core affected by a fault to other processing cores in the
system. Task swapping comprises methods that prevent the
occurrence of a failure by monitoring the reliability of
different cores for all executing applications and evaluating
which specific task scheduling can reduce the soft error rate.
Last, checkpointing periodically saves the state of a process
during error-free execution and, in the event of a fault, restarts
task execution to before the error occurred.

4) PROTECTION CIRCUITS
These circuits include watchdog timers and overcurrent
protection circuits, which provide protection against SEUs
and SELs, respectively. The watchdog timer is a clock
countdown register that can be internal or external to the
processor. When the timer is expired, it then resets the
processor (unless the timer is updated by the processor itself),
returning it to a predetermined restart position. Such timers
can be implemented in both hardware and software and are
used to monitor the condition of a processor [68]. If the
processor jumps to an incorrect memory location due to an
SEU, the watchdog timer resets the processor to a previous
state using a checkpoint, thus restoring operations.

Overcurrent and overvoltage protection circuits detect
high-current or high-voltage levels and trigger a reset of the
power supply, preserving the device from loss of functionality
induced by SELs. These circuits are typically small hardware
devices that are integrated into the power supply circuit of
the OBC board. They include bypass diodes and resistors,
which can be used to suppress current and voltage spikes,
respectively [23], and latching current limiters (LCLs), which
provide timed and controlled monitoring of overcurrent states
and interrupt the supply line in case of power overload [69].

III. CUBESAT OBCS STATE-OF-THE-ART
The landscape of CubeSat OBCsmirrors the evolutionary tra-
jectory observed in larger spacecraft C&DH subsystems. The
current generation of processors exhibits robust capabilities
to manage the computational demands of CubeSat missions,
offering a spectrum of options ranging from cost-effective
COTS solutions to customized proprietary platforms. The
emergence of new applications for LEO satellites, along with
the migration of COTS electrical, electronic, and electrome-
chanical (EEE) devices from the automotive industry to the
space sector - driven by a higher acceptance of risk by the
space sector - impacted the growth of the market surrounding
CubeSats, which offer low-cost, rapid development solutions
for technology demonstration and new mission concepts.
This growth has resulted in a proliferation of companies and
research institutions developing their own OBC solutions.

The currently available avionics systems can be catego-
rized into two main types: commercial OBCs and mission-
specific OBCs [70]. This differentiation is crucial to gain
insight into the varied landscape of OBC systems utilized in
the realm of CubeSat technology.

Commercial OBCs are single- or multi-board computers
that are tested and ready as a finished product on the
global market. They are referred to as commercial because
they are turnkey devices that can be easily integrated
into a satellite. In our analysis, this category includes
OBCs marketed by leading private CubeSat companies, such
as Alén Space (Spain), EnduroSat (Bulgaria), GomSpace
(Sweden), Innoflight (US), ISISpace (Netherlands) and
Xiphos (Canada) among others. These OBCs represent
versatile solutions for different mission objectives and are
designed to serve a wide range of customers and applications.
They generally have a wide variety of communication
interfaces, making them easy to integrate on-board. This
strategic choice not only optimizes the distribution of
nonrecurring engineering costs across multiple missions, but
also improves the efficiency of software development through
the judicious reuse of resources - attributes of considerable
allure in a fiercely competitive market landscape. Moreover,
they are based on established EEE components, which
increases their attractiveness for critical missions requiring
proven reliability [23].

Mission-specific OBCs, on the other hand, are often
developed in-house by universities, research centres, or com-
panies formissionswith specific requirements and objectives.

VOLUME 12, 2024 99545

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

In terms of components and manufacturing costs, they are
generally less expensive than commercial OBCs because they
only include the modules needed to optimize resources. How-
ever, they require large investments in terms of research and
development and have the disadvantage of being designed
specifically for a particular mission and thus being less
versatile. Among others, our analysis places the CubeSpace
processor board family developed by NASA Goddard Space
Flight Center (GSFC) in this category. Although these devices
feature commercial aspects, such as the incorporation of
COTS components and the goal of a flexible architecture
adaptable to various missions, they are primarily tailored to
meet the specific needs and requirements of NASAmissions,
thus falling into the mission-specific OBC category.

In this section, we present a review of commercial and
mission-specific OBCs currently available on the market or
under development. Interesting surveys on avionics intended
for small satellites already exist in the literatures [23]
and [24], laying the groundwork for similar work to our
exploration. However, they focus on the general category
of SmallSats. Here, our focus narrows to CubeSat-type
satellites, emphasizing the critical role of tailored OBCs in
meeting strict constraints of low mass, small form factor and
low power [70].

A. ARCHITECTURES
In this analysis, we categorize OBCs based on their
processing units, which may include traditional µCs, rad-
hardµPs, FPGAs, and hybrid processors such as FPGA/GPU
SoCs. The nature of the processing core of an OBC and its
attributes, first of which are processing capabilities, speed
and power consumption, are the main factors shaping the
overall performance of an OBC. Therefore, they must to
be carefully analyzed. We analyzed more than fifty Cube-
Sat OBC projects, both commercial and mission-specific,
designed by companies and research centers worldwide. Our
bibliographic search was based on satellite martketplaces
such as satsearch and SatCatalog; public databases such
as [4]; and scientific databases such as Scopus, using ‘‘on-
board data handling’’ and ‘‘on-board computer’’ as keywords
and filtering specifically for ‘‘CubeSat’’ and ‘‘nanosatellite’’.
Our targets were mainly research and commercial projects
(scientific or technological demonstration missions) funded
by government agencies and private companies. However,
we also included secondary (academic/educational) projects
in our analysis when we considered the results to be techno-
logically interesting or useful from a historical perspective.
Our focus was to provide a qualitative assessment of OBCs,
identifying trends in their design choices, and emphasizing an
understanding of their key attributes rather than quantitative
metrics. A representative list of the OBCs considered in our
investigation is shown in Tab. 5.

1) COTS µCS
COTS µCs have traditionally been the preferred option
for early CubeSat avionics systems designed for LEO

missions, especially those with shorter durations and lower
processing requirements. The choice of COTS µCs is largely
influenced by their numerous advantages, including low
power consumption, minimal weight, proven reliability, easy
availability in the commercial market, and user-friendly
programming. These features make them perfectly suited
to the limited SWaP-C resources typical of nanosatellite
missions. These µ Cs are typically built on reliable processor
architectures, providing the simplest and most cost-effective
solution to perform basic OBC tasks, such as telemetry man-
agement and storage, command execution, and basic attitude
determination and control system (ADCS) functions. Several
COTS µCs have been shown to tolerate the radiation levels
typically found in LEO environments [71], making them
suitable for CubeSat applications. Among the options are
severalµCs fromworld-leadingmanufacturers, such as Texas
Instruments (TI;MSP430),Microchip Technology (including
some PIC, ARM-based or AVR µ Cs), ST Microelectronics
(STM32).

The µC architecture most commonly used in CubeSat
OBCs is based on the ARMCortex family of processors [72].
These processors are widely used in CubeSat avionics for
a multitude of compelling reasons. They have low power
consumption, offer a balance between processing power
and energy efficiency, and are readily available on the
commercial market. In addition, the ARM Cortex family
offers a wide range of devices with different performance
levels and features, allowing space mission designers to
choose the most suitable option for their specific mission
requirements. Furthermore, radiation-hardened versions of
some ARM Cortex processors are available, which could
enable avionics systems based on them to be easily adapted
to the challenges of the space environment beyond the
LEO. Lastly, ARM-based processors benefit from a strong
developer community that provides valuable development
and debugging support, making them seamlessly integrated
into nanosatellite OBCs. These advantages make ARM
Cortex-based µC a common choice for a variety of CubeSat
avionics applications, ranging from basic sensor interfacing
to more complex data management and processing tasks.
Several commercial and mission-specific OBCs are based on
ARMCortex-M andARMCortex-RµCs (see Tab. 5 and [73],
[74], [75])

The choice between the ARM Cortex-R and Cortex-M
for avionic system design depends on the mission-specific
requirements and associated trade-offs. The Cortex-R series
is specifically designed for safety-critical applications that
require robust real-time support. These processors often
feature redundancy schemes for fault tolerance, such as
ECCs, lockstep execution, and other safety mechanisms.
The Cortex-M series is designed for highly power-efficient
applications that require modest deterministic real-time
processing. In CubeSat OBCs, ARM Cortex-M µCs, have
emerged as the preferred and most popular option [72],
mainly due to their affordability, high availability, and robust
development ecosystem.

99546 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

Several factors influence the process of selecting a par-
ticular µC for avionics applications, such as computational
performance, power consumption, memory requirements,
peripheral needs, compatibility of the operating system
(OS) and the availability of an integrated development
environment [76]. This process can be challenging and may
require extensive testing and qualification procedures [77].
Ultimately, the decision depends on mission requirements
and priorities and is often a trade-off between computing and
processing capabilities and energy efficiency. For missions
with tight energy constraints and low power consumption as
a priority, alternativeµC choices includeMSP430 by TI [78],
[79], PIC µCs by Microchip Technology or and 8-bit and 16-
bit AVR µCs by Atmel (now Microchip Technology). Such
µC families are renowned for their energy efficiency and
simplicity of implementation and are suitable for missions
engaged in simple data handling and low-power operations,
which operate with less demanding computing requirements.
In particular, the MSP430 finds application not only in
OBCs [50], [80], [81] but also in payloads [82], [83] and other
critical subsystems designed for battery-powered and energy-
constrained scenarios. However, these µCs have limitations
in terms of processing capacity and peripheral functions
compared to more robust µC families.

To conclude, it is important to note that while COTSµC are
the simplest and most cost-effective option for implementing
basic OBC functions, their processing limitations make
them unsuitable for high computational cost operations or
data-intensive applications. In addition, their deployment in
missions characterized by elevated radiation levels decreases
their reliability. Consequently, some missions opt for higher
performance architectures, such as hybrid architectures, SoCs
or GPUs.

2) RAD-HARD PROCESSORS
Due to advancements in satellite technology and payload
miniaturization, interest in deep-space CubeSat missions
has grown in recent years [8]. The design of the C&DH
subsystem for these missions is extremely challenging due
to the high risk of radiation exposure, which is particularly
significant for the space environment beyond the LEO.
To ensure the reliability of the electronics and prevent failures
caused by high levels of ionizing radiation, the OBCs of
these missions cannot rely exclusively on COTS components.
It is essential to incorporate radiation-hardened (rad-hard)
processors or devices into these missions, especially consid-
ering their scientific relevance and costs. One of the most
famous and powerful rad-hard µPs, specifically designed for
space applications, is the RAD750 µ P [84], [85], developed
by BAE Systems. This µP has the same architecture and
operation as the commercial IBM PowerPC 750, but is
specifically designed to be resistant to a TID of up to
200 krad (Si). It is widely used in large space missions (e.g.,
Mars Reconnaissance Orbiter, MRO; Fermi Gamma-Ray
Space Telescope, FGST; James Webb Space Telescope;
JWST), claiming a flight heritage of almost 20 years. It is

also available in the standardized CompactPCI 3U or 6U
formats [86], which is suitable for use in minisatellites [23],
[24] or 3U-6U CubeSats. Although the RAD750 has been
proposed as the OBC for some deep-space CubeSat projects
[87], no deep-space CubeSat mission has been launched to
date using this processor. In fact, although RAD750 offers
the highest radiation tolerance, its cost is prohibitive for use
in nanosatellites [24], [88]. Conversely, LEON processors
(based on the SPARC V8 architecture) are widely used
in OBCs for deep-space CubeSats. These processors were
developed specifically for space applications by ESA and are
available in different models (LEON2, LEON3, LEON3-FT,
etc; [89]). The FERMI OBC developed by Argotech (Italy)
[90] used onboard LiciaCube and ArgoMoon, is based on
this type of processor. Although the widespread adoption of
rad-hard processors in the CubeSat architecture is still in
a nascent stage of development, with this lack of progress
mainly attributed to the significant financial investment
required for the development of new rad-hard devices, these
processors are expected to be increasingly used in future
ESA and NASA nanosatellite missions. This prediction is
especially relevant given based on the growing interest in
using CubeSats beyond LEO.

3) FPGAs
FPGAs have gained considerable attention in recent years for
CubeSat missions, particularly due to their reprogrammable
hardware nature, enabling fast and efficient parallel process-
ing, or making them suitable for rad-hard architectures.

The use of FPGAs as central processing units in nanoatel-
lites, both in OBC systems [52], [91] and payloads [92],
has been explored for years. FPGAs differ from traditional
CPUs or µCs in that they consist of logic gates that can be
configured to execute any function and offer parallel process-
ing capabilities. These features offer several advantages over
conventional processing units. Specifically, FPGAs allow the
design of customized, application-specific architectures that
exploit parallel processing capabilities to perform multiple
tasks simultaneously. For data-intensive applications that
benefit from parallelism and hardware acceleration, such
as image processing and analysis and computer vision
applications, FPGAs have shown higher energy efficiency
compared to conventional hardware accelerators such as
multi-core CPUs and GPUs [93].

Additionally, FPGAs allow system inputs and outputs to
be reconfigured as needed, enabling system interfacing with
multiplememories, sensors, and peripherals [24]. Their paral-
lel processing capability makes them particularly suitable for
complex tasks such as image processing, data compression,
and sensor data fusion. Numerous space applications can ben-
efit from the use of FPGAs for real-time on-board data pre-
processing, resulting in transmission bandwidth savings, such
as synthetic aperture radar [94], hyperspectral imaging [95],
and optical remote sensing data processing [96]. Additionally,
the programmable and configurable nature of FPGAs makes
them suitable for designing whole systems on a single chip,

VOLUME 12, 2024 99547

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

enabling conventional processors, and even multicore and
multiprocessor systems [97], to be implemented using logic
synthesis. These types of processors are called soft-core
processors. Commercial OBCs by Sky Labs (Slovenia; [98])
and AAC Clyde Space [99] are examples of architectures that
utilize soft-core processors implemented on FPGAs.

FPGAs encompass three primary process technologies:
antifuse, FLASH, and SRAM based. Antifuse FPGAs are
favored in early space applications [100], [101] as they
boast resilience against SEEs and lower power consumption.
However, they have the disadvantage of lacking reconfigura-
bility because they are strictly one-time programmable. Flash
FPGAs offer advantages similar to those of antifuse FPGAs,
including non-volatility and reduced power consumption, but
it is difficult to make them highly integrated and low-cost
because of their manufacturing complexity. SRAM FPGAs
benefit from frequent updates driven by µP advancements
that make them the most attractive candidates for implement-
ing complex satellite control algorithms [52], but have the dis-
advantage of being highly susceptible to SEUs [102], [103].
Rad-hard SRAM FPGAs are currently available and are
utilized in some concepts for deep-space applications (such
as the NG-MEDIUM device by NanoXplore; [104]; [105]).
However, they have high costs that make them prohibitively
expensive for smaller and cheaper CubeSat designs [92].
Actually, the radiation susceptibility of these devices can be
mitigated by exploiting the reconfigurable hardware nature
of FPGAs, which allows the implementation of specific
fault-tolerant computing strategies, including internal logic
redundancies [91], [103] and memory scrubbing techniques
(such as the Readback and Blind scrubbing [106], [107]).
These techniques make FPGAs suitable for designing
rad-tolerant and rad-hard soft-core processors and systems.
The ESA’s LEON processors [89] are famous examples of
rad-hard soft-core processors, in which radiation tolerance
is achieved by incorporating redundancy and fault tolerance
at the design level. The rad-tolerant architecture developed
for the OBC of the RadSat mission also shows how, using a
modern FPGA, an acceptable level of TID immunity can be
achieved without using expensive rad-hard µPs [88].
Because CubeSats have stringent SWaP-C constraints,

FPGAs can be a favorable choice for implementingOBCs and
data processing systems, as they provide better performance
(in terms of speed) while reducing components and allowing
easy implementation of error mitigation techniques.

4) HYBRID ARCHITECTURES, SOCS AND FAULT-TOLERANT
HYBRID SYSTEMS
The emergence of hybrid architectures has the potential to
revolutionize CubeSat on-board computing, greatly improv-
ing its performance in terms of processing speed and capabil-
ity. Hybrid architectures refer to architectures that combine
heterogeneous processing units, such as CPUs+FPGAs or
CPUs+GPUs, in the same chip (SoC), module (System-on-
a-Module, SoM) or board. The main advantage of using
hybrid architectures in space applications is the possibility

of assigning applications and algorithms to the portion of
the device for which they are best suited to achieve the
desired optimal performance [108], improving the speed and
throughput of the system.

SoCs are the most popular examples of hybrid architec-
tures. These devices integrate processor cores, memories,
peripherals, and FPGA and/or GPU fabrics into a single
chip. This integration realizes the advantages of combining
different processingmodules into one IC, resulting in reduced
power consumption, size, and weight, while simultaneously
enhancing processing capabilities. As a result, SoCs are
ideal for CubeSat applications that require high performance,
compact size, and efficient power consumption.

Most state-of-the-art CubeSat OBCs are based on hybrid
architectures, particularly CPU + FPGA SoCs (see Tab. 5).
Popular COTS SoCs include the AMD-Xilinx Zynq-7000
family (featuring a dual-core ARM Cortex-A9 processor
and a 28-nm SRAM FPGA; [109]), MicroSemi Smart-
Fusion 2 FPGAs (including a ARM Cortex-A9 core and
a SEU-immune flash FPGA; [110]) and AMD-Xilinx
Zynq UltraScale+ MPSoC devices [111], available both as
CPU+FPGA SoCs (CG devices; featuring a dual-core ARM
Cortex-A43, a dual-core ARM Cortex-R5F and a 16-nm
finFET FPGA fabric) and CPU+FPGA+GPU SoCs (EG
devices, which integrate also a Mali-400 GPU). COTS SoCs
are predominantly used in CubeSat OBCs for LEO non-
critical applications. Popular examples include the Xiphos
Q-Card family (Q7s and Q8s including a Zynq-7000 and a
Zynq UltraScale+ MPSoC EG respectively; [112], [113]),
AAC Clyde Space Kyrten-M3 (SmartFusion 2 SoC; [114]),
Space Inventor Z7000-P4 (Zynq-7000; [115]), and Innoflight
CFC-400 (Zynq UltraScale CG; [116]).

Recently, a Zynq UltraScale+ MPSoC EG device was
deployed as deep neural network (NN) hardware accelerator
onboard the Leopard Data Processing Unit (DPU), developed
by KP Labs for the Intution-1 hyperspectral mission [117].
This CubeSat, launched in late 2023, is the first in-orbit
demonstration of a deep NN integrated on the edge in a
COTS FPGA-based accelerator. This system can be used
to accelerate machine learning (ML) and deep learning
(DL) models for on-board image and data processing, such
as real-time object detection and classification, and data
compression, applications that have attracted significant
interest in recent years, especially in the EO field [118].
Leopard DPU is capable of completing up to three trillion
operations per second, demonstrating the high capabilities of
FPGA-based SoCs to accelerate artificial intelligence (AI)
inference in space.

Due to the increasing interest in integrating AI algorithms
directly onboard satellites, particularly for multispectral and
hyperspectral EO missions, many projects have suggested to
use CPU+GPUSoCs in the CubeSat field [119], [120], [121].
GPUs are devices consisting of lightweight cores and on-chip
memories that were originally designed to accelerate graphics
applications, but are now used as hardware accelerators in
general-purpose computing. For example, they are used to

99548 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

increase parallelism in software programs and to accelerate
any kind of high-performance application, such as clustering
of very large data sets [122]. Different CPU+GPU SoCs,
such as the Nvidia Jetson X2i [123] and Xavier NX [124]
series and the AMD Embedded G-Series SoC family [125],
have been proposed in many CubeSat payload processing
systems. The educational nanosatellite Multiview Onboard
Computational Imager (MOCI), developed by University of
Georgia and planned to be launched by 2024, is one of the
first CubeSat to include a Nvidia X2i in the design of its
Accelerated Flight Computer (AFC; [126], [127]). Similarly,
the Space Edge One (SE-1), a small form factor (0.25 U) on-
board computing system developed by Spiral Blue (Australia;
[128]), utilizes a Jetson Xavier NX and underwent space
testing in 2023. The Unibap SpaceCloud iX5 (Sweden;
[129]) is based on a AMD G-Series SoC and is deployed
in the Hyperspectral Thermal Imager (HyTI) CubeSat [130],
launched in March 2024.

In addition to the goal of integrating complex AI algo-
rithms in space, there is a clear need for high-reliability
hybrid solutions. COTS SoCs offer attractive trade-offs
between SWaP-C, processing performance and flexibility, but
are not rad-hard by design, thus requiring fault mitigation
techniques. Recent developments integrate high-performance
COTS SoCs with rad-hard or rad-tolerant components in
fault-tolerant hybrid OBC architectures. In these systems,
the COTS SoC acts as a high-performance node (HPN) for
the most demanding computations, while the rad-tolerant
component acts as a reliable computing node (RCN)
and external supervisor. NASA GSFC has pioneered this
type of hybrid approach through the SpaceCube family
of processing systems, with SpaceCube V3.0 being the
latest development [131]. SpaceCube V3.0 is a computing
system (3U-220mm form-factor) that features two HPNs,
a Zynq UltraScale+ CG device and a Xilinx-AMD Kin-
tex UltraScale FPGA [132], while a rad-tolerant FPGA
(Microchip Technology’s RTAX FPGA; [133]) acts as an
external supervisor responsible for monitoring, configur-
ing, and scrubbing the HPNs. SpaceCube V3.0 is also
available in a smaller version (1U form-factor), SpaceCube
v3.0 mini [134], which features a Kintex UltraScale FPGA
as a HPN and a rad-tolerant ProSIC FPGA (Microchip
Technologies; [135]) as a high-reliability supervisor and
watchdog. Such a fault-tolerant hybrid architecture is also
featured in some of the systems mentioned above (such as
the Xiphos Q-card family, Innoflight CFC-400 and Unibap
SpaceCloud iX5) and in the latest high-performance payload
processors such as multiMIND [136], the COTS-based
Highly Integrated Computer System (CHICS; [137]) and the
Scalable On-board Computing for Space Avionics (ScOSA;
[138]). multiMIND was developed by Thales Alenia Space
Germany as part of the EIVE E/W band demonstration
mission [139], which successfully flew in 2023. It is based
on a Zynq UltraScale+ MPSoC EG device, with a rad-hard
Vorago Cortex-M0 µC [140] acting as a robust watchdog
and anti-latch-up supervisor circuit. CHICS is currently

being developed jointly by EVOLEO Technologies GmbH
and Airbus Defence and Space Ottobrunn. It uses a Zynq
UltraScale+ MPSoC as the central processing node, which is
partitioned into isolated safe and non-safe areas according to
the criticality of the application, while a rad-tolerant PolarFire
FPGA (soft-core RISC-V; [141]) acts as the external
supervisor. Finally, ScOSA, currently under development
at the German Aerospace Center (DLR), is a modular
SAVOIR-based architecture that also combines COTS-based
HNPs with rad-tolerant RCNs, this time in variable numbers
and configurations. The minimum configuration uses two
Zynq 7020 SoCs as redundant HPNs, while an FPGA,
with a rad-tolerant LEON3 soft-core processor, serves as
RCN.

B. DESIGN CONSIDERATIONS
There are several key elements to consider when designing or
selecting an OBC for CubeSat applications. These elements
must comply with the strict constraints of low power, low
mass and small form factor imposed by the standard. This
section briefly discusses the factors that must be considered,
such as processing core performance, power efficiency,
supported types of memory and communication interfaces,
and reliability in the space environment [23], [70], [73].
By incorporating these factors, the selection or design of the
OBC can be customized tomeet the specific requirements and
challenges posed by different mission profiles.

1) PROCESSING CORE PERFORMANCE
When designing or selecting an OBC, the performance of the
processing core is an important parameter to consider. There
are several figures of merit for assessing the performance
of a processor (such as the clock rate, million instructions
per second [MIPS] or million floating-point operations
per second [MFLOPS]). However, for more complex CPU
architectures, specific benchmarks should be used [142],
[143]. The selection of the processing core should consider
performance, power consumption and cost, mission data
processing and transmission needs, and the role of the
OBC in payload management. In missions with very limited
power and where the OBC has simple tasks (limited to
on-board health monitoring, TM storage, TC execution, and
avionics management), µCs are the most effective choice.
In contrast, in satellites where the OBC has to handle the
payload as well, the payload determines the computing
demands. Some payloads may require significant computing
resources and the use of hardware accelerators (FPGAs
and/or GPUs). The processing core of the OBC should also
be chosen considering the amount of data to be processed
and downloaded to Earth, as it has to handle the data, the
bandwidth of the communication subsystem, and the storage
memory (type and capacity).

2) MEMORY TYPES
In addition to the processor, the performance of an OBC
depends on the memory. There are four different types

VOLUME 12, 2024 99549

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

of memory in an OBC: boot memory, working memory,
safeguard memory and mass storage. The boot memory is
a nonvolatile read-only memory (ROM) that contains the
FSW firmware and, in particular, the boot loader. This
memory is usually implemented as EEPROM [73] or NOR
flash memory [70]. These types of memory are inherently
immune to SEE, so they are used to store critical FSW
processes. The working memory is RAM memory, usually
SRAM or dynamic RAM (DRAM), used for the real-time
execution of FSW, including the OS kernel and software
applications for satellite control. The boot loader loads the
OS kernel from the ROM to the RAM and initializes the
OBC [73]. The safeguard memory retains its contents after
the processor is reset or reconfigured and is used to store
critical FSW parameters and satellite configuration data
(e.g., the health status of sensors and actuators). The FSW
continuously stores selective data in the safeguard memory,
which can be accessed after a fault. The safeguard memory
is typically a nonvolatile memory (EEPROM, FeRAM,
MRAM; [70]). Finally, the mass memory is a nonvolatile
memory used to store housekeeping and payload data during
periods of no contact with ground stations. Storage memories
should be chosen carefully based on several factors. They
should be sized considering that the satellite can transmit
data to the ground only when it is in a contact window,
which often lasts for only a few minutes in the case of
LEO satellites. Furthermore, to allow for efficient data
transmission, their capacity must be optimized to fit the
communication bandwidth, because a storage capacity that
exceeds the transmission speed to ground causes resource
misallocation. The type of memory should be chosen on
the basis of its reliability in maintaining the integrity of the
stored data and its resilience to radiation effects. Several
options with varying performances are available, summarized
in Tab. 3.

3) POWER EFFICIENCY
Power efficiency is a key consideration in the design of the
OBC and the choice of CPU and memories, and is directly
influenced by the size of the satellite and the available
power budget. Although the CubeSat standard itself does
not specify power limits, and power availability can vary
significantly depending on the size and configuration of the
CubeSat, the power available for the C&DH subsystem is
generally severely limited. As reported in [144], the total
power available on a CubeSat is typically 1-2 W for a 1U
CubeSat, 5-6 W for a 3U CubeSat, and for larger CubeSats
(6U+) can be around 20 W with body-mounted solar cells,
potentially reaching up to 100-120 W with deployable solar
cells. As a result, the power consumption of the C&DH
subsystem is typically limited to a few W [144] or a few
tens of W. As shown in Tab. 5, depending on technology,
OBCs for CubeSat used for simple platform control and
to handle routine satellite tasks can consume up to 1-5 W,
while more complex systems can consume up to tens
of W.

4) RELIABILITY
It is crucial to design the OBC to maximize its reliability in
harsh space radiation environment. This involves selecting
components with sufficient radiation resistance, considering
factors such as the orbit and the TID to which they will
be exposed. While short-term missions in LEOs typically
encounter low radiation levels [34], [35], [36], [37], extended-
duration or interplanetarymissions facemuch higher levels of
exposure.

In the realm of µCs, notably, MSP430 and dsPIC33
demonstrated resilience in radiation environments of up to
20 krad (Si) and 15 krad (Si) respectively [71]. Extensive
research and characterization of the effects of radiation
were also conducted on ARM Cortex-M architectures, which
demonstrated their ability to maintain functionality when
exposed to up to 50 krad (Si) [145], [146].

FPGAs generally show good TID performance, with
resilience levels varying depending on the technology.
Modern SRAM FPGAs can function properly in the presence
of high ionizing radiation exposure (e.g., Xilinx FPGAs
functioning properly up to ≥ 100 krad (Si), with values
depending on the family [102]), but their reliable use in
space requires specific techniques to mitigate SEU-induced
errors [103]. Flash FPGAs generally have a lower acceptable
TID due to the radiation-induced charge build-up in the
floating gate (e.g., ProASIC 3 FPGA family, which can
withstand 20-30 krad of TID [135]), although there are
flash FPGAs with rad-hard TID performances (e.g, RTG4
FPGA [147], with TID tolerance up to 100 krad).
Considering the widespread use of COTS components in

CubeSats and the growing interest in long-duration and/or
beyond LEO missions, which entail significantly higher
radiation exposure, it is crucial to conduct a thorough analysis
of the radiation susceptibility of the chosen components and
evaluate potential mitigation strategies (§ II-C) from the early
stages of system development.

5) COMMUNICATION INTERFACES
Ensuring proper data handling and effective communication
between the OBC and other satellite subsystems is critical
to mission success. Selecting the appropriate data bus is a
critical aspect of satellite and OBC architecture design. This
choice can be challenging as communication interfaces can
potentially represent a bottleneck in the data processing and
delivery chain. Therefore, a careful selection of components
based on a trade-off analysis between several high-level
requirements, such as the data rate, power consumption,
availability, simplicity and reliability in the space radiation
environment, is paramount [148]. Tab. 4 provides an overview
of the data buses most commonly used in CubeSats,
highlighting their performance and applications in some
CubeSats. This section briefly covers these data buses,
their main distinctive features and constraints, and general
recommendations for the data bus selection.

CubeSats typically use several types of buses, the
most common of which include linear and point-to-point

99550 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

configurations, with some recent projects proposing wireless
data buses (e.g., [149]), which have not yet reached
technological maturity. Linear buses are used to connect
multiple bus nodes together using the same set of wires
or lanes and are widely used in CubeSats because of their
simplicity, ease of implementation, and the limited amount
of wiring they require [150], although they have limited
performance (e.g., data rate) compared to point-to-point
topology. The latter can connect only two nodes together,
offering higher performance and speed. Linear buses from
the military and aeronautical industry, such as MIL-1553, are
widely used in large missions, but are very rarely employed in
CubeSats due to their high complexity and cost [144]. Instead,
the data buses commonly used in CubeSats come from the
commercial and automotive industry, exploiting the widely
available components and design possibilities, and include
the Inter-Integrated Circuit (I2C), Controller Area Network
(CAN) and RS-485, which are predominant in the majority
of current systems [144], [150], [151].
The I2C bus is the most adopted linear bus in Cube-

Sats [151], due to its simplicity, low power consumption
(50-150 mW depending on the number of the nodes) and
the high availability of commercial ICs with I2C interfaces.
It operates with two wires to connect multiple nodes in a
controller/target configuration, with data rates of 100 kbps
up to 400 kbps and effective data throughputs in practical
implementations in CubeSats of approximately 60% of the
data rate. It is designed for short distances, limited to
several tens of centimeters in practical cases [144], [150],
[151]. Despite its popularity, the I2C bus caused a lot of
in-orbit issues in numerous CubeSats projects, especially
bus lockups [152], representing a potential single point of
failure in CubeSat missions [153], [154], [155]. Being a non-
differential bus, I2C is it less robust compared to differential
buses like CAN and RS-485 and is more susceptible to bit-
errors [152], hence requires a careful error handling, such as
supplementary watchdog timers and bus lockup protection
circuits, and buffers to protect remote chips to parasitic
powering [151], [155]. For all these reasons, and for the high
number of CubeSat in-orbit failures caused by the I2C bus,
several developers recommend the CubeSat community to
avoid I2C buses and to prefer more reliable busses, such as
CAN and RS-485 [154], [155] However, when the choice of
I2C cannot be avoided (e.g. because some on-board devices
only provide I2C interfaces), it is strongly recommended to
use the I2C buses only to connect sensors non-critical for the
operation of the satellite and always accompanied by fail safe
mechanisms [152], [155]. A more reliable linear bus, which
is becoming a viable alternative in CubeSats, is the CAN
bus [156], designed to operate reliably in harsh environments
and offering an embedded error handling. It supports higher
data rates, up to 1 Mbps or 5 Mbps for enhanced versions like
CAN FD, and is particularly valued for its ability to handle
multiple nodes with minimal wiring, with slightly higher
power consumption than I2C (150-300 mW, depending on

the number of the nodes; [150], [151]. However, the CAN
bus has a high protocol overhead, which reduces, in a
practical implementation in CubeSats, the effective data
throughput to about 40% of the data rate [144], [150].
For higher throughput and higher performance systems, the
choice of linear bus can fall on the RS-485 [148]. It is
a differential asynchronous serial bus that generally uses
a Universal Asynchronous Receiver-Transmitter (UART) at
the data layer, and requires an external differential driver.
In terms of robustness, due to its differential signal nature,
it is more robust than I2C but it has not embedded error
handling, making it less robust than CAN. It supports higher
data rates, similar to CAN bus (around 1 Mbps), but with
a smaller protocol overhead, resulting in enhanced effective
data throughput in CubeSats, approximately 60% of the data
rate, with a lower power consumption (10-100 mW; [144],
[150]). One drawback is that, unlike CAN and I2C, this bus
is specified only at the physical level, and the development
of its data protocol is left to the developer. For use in
CubeSats, the data protocol therefore requires to be entirely
specified and standardized [144]. In terms of trade-off
between reliability, power consumption and effective data
throughput, CAN and RS485 are equally recommended in
CubeSat applications. The exact choice will be dependent on
the exact mission and will most likely be between two factors:
if reliability is of primary concern, then CAN is the most
likely choice; if the low power consumption and high data
throughput are of high importance, then RS485 is the better
choice [148].

For subsystems and components requiring dedicated, high-
speed connections to the OBC, point-to-point links are
used. Popular choice in CubeSats include Serial Peripheral
Interface (SPI), Universal Serial Bus (USB), Ethernet and
RS-422 [144], [151] and more advanced options like
SpaceWire, the only data bus specifically designed for space
applications and whose implementation in CubeSat OBCs
is growing in the last years [99], [157]. Among these, SPI
is the most popular option until now, since is supported by
the vast majority of microcontrollers and, hence, it does not
require any external ICs to operate. However, it has several
drawbacks, such as the large amount of chip select lines that
must be connected to the pins of the OBC (thus, if the amount
of lines exceeds themaximum amount supported by the OBC,
it requires the use ofmultiplexer chips to reduce the amount of
chip select pins). Furthermore, like I2C, it has low reliability,
as it has no built-in safety mechanisms, and requires buffer
chips to prevent parasitic powering [152], [155]. For these
reasons, it has been reported that, similar to I2C, SPI should
be avoided as much as possible in future space applications
and replaced by buses with higher reliability [155]. The USB
serial bus and the SpaceWire network can be considered a
viable alternative to SPI, or be used as high performance
buses to implement high-speed transfer payload data [148],
[157], as they provides different methods for fault detection
and a high data throughput.

VOLUME 12, 2024 99551

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

IV. FLIGHT SOFTWARE STATE-OF-THE-ART
One of the crucial aspects of the successful operation of a
space mission is the FW. The FSW serves as the backbone
of an OBC, and is responsible for managing various critical
functions and ensuring program execution. It is responsible
for communicating instructions to the satellite to enable the
execution of operations required for mission success. The
FSW is usually considered as the set of software running
on the C&DH subsystem, but it also includes all software
running on the electronic modules of all subsystems and
payloads available on the satellite. [158].
Considering the complexity of the C&DH subsystem

and the harsh radiation environment in which a satellite is
normally immersed, it is necessary to equip the on-board
avionics with an FSW that meets characteristics such
as extensibility, scalability, modularity, reusability, and
reliability [159]. Existensibility signifies that changes to
software and programs must not affect the functionality of
the base system, which must always ensure its operability.
Extensibility is directly related to scalability, that is, the
ability to customize the FSW for different goals, making the
system suitable for different mission purposes. Modularity
signifies that functionality is well defined in specific modules
and implies flexibility in integrating or removing functions,
such as the ability to handle multiple payloads. Finally,
reusability and reliability reflect the portability of software
across multiple hardware platforms and the ability to
handle any anomalies through fault-tolerance techniques,
respectively.

As technology continues to evolve, current nanosatellite
FSWs have undergone significant developments, enabling
improved performance, reliability, and adaptability. When
developing an FSW for a space mission, two major design
decisions must be made: the open-source framework, which
will serve as the basis for building the software applications,
and the operating system (OS), which manages hardware
resources. In the following subsections, we discuss the
features that define the state-of-the-art of FSWs developed for
nanosatellites, presenting the general architecture of an FSW
and focusing primarily on the frameworks and OSs used.

A. FSW FRAMEWORKS
As the complexity of nanosatellite missions continues to
grow, so does the demand for advanced software to manage
the intricacies of an OBC. Therefore, if the right tools are
not provided, FSW design can become very challenging,
thereby causing very long development times, high costs, and
potentially unreliable end results. Therefore, to develop an
FSW in a proper way, a framework is needed. A framework
is a supporting logical architecture on which software can
be designed and implemented, and provides a series of
code block snippets that can be reused to facilitate FSW
development and reduce development time [23].

There is a set of selection criteria to consider when
choosing the optimal open-source framework for FSW
development, depending on the OBC hardware [158]. First,

the availability of the framework source code and respective
documentation should be considered. The source code should
be available in an open internet repository, with a compre-
hensive user manual and several examples and applications
showing how to use it (if possible, a software development kit
should also be available). In addition, the chosen framework
should have a small footprint, i.e., occupy the minimum
possible space in memory and CPU load, and a certified
flight heritage, i.e. have proven its success in previous
missions. Finally, the framework should be able to evolve
and improve based on missions. Therefore, it should have
optimal quality attributes (reliability, well-defined semantics,
modularity and portability in different OSs and processors),
a well-established development community providing long-
term support, and the possibility of standardization based
on the Consultative Committee for Space Data Systems
(CCSDS) recommendations and protocols.

A further important consideration when it comes to
open-source frameworks is their security and cyber resiliency
attributes. While these frameworks come with many advan-
tages, such as reduced development costs and community
support, their open-source nature can lead to security issues,
such as code tampering, dependency risks, and exposure
to vulnerabilities [160]. Because source code is publically
accessible, anyone can review, modify, and potentially
hack it, compromizing the authenticity and integrity of the
software. This can introduce faults, bugs, and vulnerabilities
into the software that could result in the corruption or
modification of data and commands, as well as the execution
of incorrect on-board actions, posing a risk to the integrity
and functionality of satellite systems and potentially causing
catastrophic mission loss [161]. Open-source software often
relies on numerous dependencies that, if not analyzed for
security, can introduce additional vulnerabilities. Open-
source software can be examined by anyone for secu-
rity vulnerabilities, which can become a prime target for
malicious attacks aimed at gaining control of satellite
operations [162]. This poses a challenge for cybersecurity of
space missions, particularly for high-engagement scientific
and commercial missions funded by government agencies
or private companies. The Open Source Security Foundation
(OpenSSF) identifies some basic criteria for evaluating the
security of an open-source framework through the use of
the ‘‘Security Scorecards’’ tool [163]. These security best
practices include: conducting peer reviews for each request
to merge new contributions to detect various unintentional
problems, including vulnerabilities; completing continuous
integration testing and code analysis before merging new
contributions to reduce the number of vulnerabilities; using
automatic dependency update tools to identify obsolete
or insecure requirements and apply updates; and avoiding
dangerous workflow patterns that could allow malicious
authors to gain write access to the repository. In addition,
the framework has to be actively maintained, with regular
patches and bug fixes, and actively tested [160]. Although
these criteria alone can not guarantee system security, they

99552 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

constitute a set of quality assurance best practices that
framework developers and administrators should adhere to
during the development and maintenance of open-source
software [162]. In addition, cyber resilient space missions
should implement appropriate protection mechanisms to
prevent unauthorized access along the TC/TM data channel,
which is the main target of attacks. Comprehensive protection
of satellite communication links should include authentica-
tion, integrity checks and encryption. The uplink should be
checked for integrity and authentication to ensure that the
satellite remains protected from the control of unauthorized
persons [164], [165], [166].
FSW Architecture: Typically, the FSW has a layered

structure, as shown in Fig. 4. The lowest layer is the
hardware, which represents the physical components of the
computing system, including the processor, memory, storage
devices, I/O devices, etc. This hardware layer executes
instructions provided by the software layers above it. The
available hardware is the first aspect to consider when
designing an FSW, as it imposes limitations on the software
itself. Computing power, memory capacity, peripherals and
communication protocols depend on the hardware. Specific
software applications also depend on the hardware. For
example, the high processing power of COTS processors and
their consequent widespread use have resulted in an increase
in functional software requirements and the development
of programs responsible for FDIR [47]. In addition, the
architecture of the FSW is inherently tied to the available
hardware and the possibility of choosing a centralized or
distributed system (§ II).
The processor support libraries layer includes device

drivers, libraries, and low-level software that interact directly
with the processor and other hardware components. It pro-
vides support for tasks such as handling interrupts, managing
memory at a low level, and interacting with hardware
peripherals. The Operating System is a crucial layer that
manages hardware resources and provides a set of services
to applications. It abstracts away the hardware complexities,
allowing applications to run on different hardware platforms.
The OS handles tasks such as process and memory man-
agement, and device drivers. The middleware layer acts as a
bridge between the application layer and the OS. It facilitates
communication and data exchange between applications and
the OS. In some computer systems, middleware is part of the
OS itself. Middleware and OS are often formalized in the
framework, which comprises software tools and libraries that
provide a base for building applications. This is an abstraction
layer that avoids low-level details and provides a set of tools
and conventions for developers to work with. A framework
may have its own optimized OS distribution, or provide
application program interfaces (APIs) for abstract OSs that
allow compatibility with multiple OSs. The last layer is the
application layer, that is the closest layer to the end-user.
It includes the software applications with which users interact
directly. The application layer interacts with the lower layers
to provide services and functionality.

FIGURE 4. FSW general layered model.

1) CORE FLIGHT SYSTEM
The core Flight System (cFS) [167], [168] is a standardized
open-source FSW framework (complying with the CCSDS
standard) and a set of reusable software applications devel-
oped by the NASA GSFC. It is specifically designed to
provide an FSW development environment that is reliable,
robust, scalable, readily maintainable, and testable. cFS
provides a runtime development environment independent of
both the OS and hardware, and a set of basic and reusable
software applications, typically part of an FSW. Three are
the main features of the cFS framework: a dynamic run-
time environment, a layered software architecture, and a
component-based design.

The 3-layer architecture of the cFS is shown in Fig. 5.
It consists, from bottom to top, of [167]:

• Abstraction Library Layer. This is the lowest-level
layer and contains a set of software libraries that enable
the FSW to interface with a real-time OS (via the OS
Abstraction Layer, OSAL), andwith hardware resources
(via the Platform Support Package - PSP - layer).
It provides APIs for abstract OSs and hardware systems,
allowing the framework to adapt to multiple OSs
(RTEMS, VxVorks, FreeRTOS) and different processors
(such as MCP750, RAD750, SPARC LEON3).

• cFE Core Layer. This represents the core of the FW
and contains a set of mission-independent core services
that can be reused and configured according to mission
needs. These services enable the management of the
cFE and cFS applications (Executive Services; ES), the
exchange of messages between applications (Software
Bus; SB) and their modification (Table Services; TBL).
They also provide most of the basic functionality for the
operation of a spacecraft, such as sending errormessages
to the ground (Event Services; EVS) and onboard time
synchronization (Time Services; TIME).

• Mission and cFS Application Layer. It consists
of reusable software modules that provide standard
spacecraft functionalities shared by all missions, such
as data or command storage, memory and housekeeping
data management, mission scheduling, etc. Currently,
13 open-source cFS applications have been tested and
made available to the user. This layer also provides
mission-specificmodules containing the functionality of
particular space missions. In fact, this layer also serves

VOLUME 12, 2024 99553

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

FIGURE 5. Three-layered architecture and software components of the
NASA cFS framework [167].

as an environment for developing new mission-specific
FSW applications (in C and C++).

cFS has an important flight heritage and has been
implemented in several large spacecraft, including the Lunar
Atmosphere and Dust Environment Explorer (LADEE),
and the Magnetospheric MultiScale (MMS) and Global
Precipitation Measurement (GPM) missions [167]. It was
used in the Dellinger CubeSat that flew in 2017 [169], [170].

2) KUBOS
KubOS [171] is an open-source Linux-based FSW frame-
work developed by the software start-up KubOS Corporation
(US). The company provides a software developed kit (SDK)
that allows users to create their own KubOS project [172].
The KubOS platform contains a number of microservices
that provide the basic critical functionalities required by an
FSW and provide a reliable development environment for
mission-specific FSW applications. KubOS features a 3-layer
architecture, as shown in Fig. 6, which are (from the bottom
to up):

• KuBOS Linux. This layer provides the basic OS,
software abstractions for communication busses (e.g.,
SPI, I2C), and drivers needed to communicate with
connected hardware devices. It provides its own
customized Linux distribution, which offers higher
abstraction and development capabilities for software
application design. The OS is coupled with a proprietary
bootloader (U-boot) responsible for loading, updating
and recovering it in case of failures, to mitigate the risks
inherent in the use of Linux in space applications.

• KuBOS Services. This layer provides a collection of
persistent micro-services that allow interaction with
the satellite hardware and perform basic functionality.
These include: Reusable inter-mission Hardware Ser-
vices, which expose the functionality of each hardware
device connected to the OBC (ADCS, GPS, radio, etc)
to the rest of the bus; Core Services,for monitoring
the OBC, telemetry management, task scheduling, and

FIGURE 6. Three-layer structure, services and modules of the KubOS
framework [171].

application management; and Payload Services, which
are custom-designed for particular payload hardware
and are not intended to be reused between missions. The
microservice-based architecture, in which each critical
component is a separate process, allows specific changes
in one service to be made without affecting the others,
making improvements and upgrades easier.

• Mission applications. This layer contains a series of
user-level programs that can be executed when needed
and govern the high-level behavior of the satellite
(e.g. management of states, execution of defined tasks,
monitoring of on-board behavior or payload operations).
These applications are written by users using several
supported programming languages (C, Python, Rust and
Lua).

KubOS currently supports 3 CubeSat OBC boards (ISIS-
OBC, Pumpkin Motherboard Module 2, Beaglebone Black
Rev. C), but has no flight heritage yet. In addition, this
framework has not yet been standardized as a reference
architecture.

3) NANOSAT MO
The NanoSat MO Framework ([173]) is a standardized
open-source framework designed by the ESA specifically
for nanosatellite missions, with the aim of simplifying the
development of software applications, their control and
management, and their deployment in satellite platforms. It is
a spin-off of the standardized CCSDS Mission Operations
(MO) Services Architecture (CCSDS 520.0-G-3 standard,
[174]).

Fig. 7 shows the architecture of the NanoSat MO
framework. The main feature of its software architecture
is the independence between the application layer (host-
ing software applications) and the underlying middleware
and hardware platform. To create this independence, the
framework structure comprises two main sets of services:
the MO Monitor and Control Services (M&C Services) and
new Platform Services [175], [176]. The M&C Services
are standardized MO services that are already defined and
provided by the CCSDS MO Services Architecture. They
enable monitoring and control of applications (through e.g.,
parameter state provisioning, command invocation, and alert
notification; [174]), and allow applications to be managed
from the ground or other applications. Platform services are
developed specifically for the NanoSat MO Framework and
contain sub-services that allow management of the satellite
hardware peripherals, enabling applications to interface with

99554 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

FIGURE 7. NanoSat MO high-level architecture [176].

the platform (such as: ADCS service, Optical Data Receiver
Service, etc. [176]).

The unique architecture of the NanoSat MO framework
makes it completely independent of the underlying hardware
technology (and even the OS). It also provides the ability
to develop software applications on the ground, which can
then be installed and deployed in the satellite, and started and
stopped from the ground at any time. NASA provides an SDK
that facilitates the creation of applications based on the Java
language [177].

NanoSat MO has a proven flight heritage in nanosatellites.
It was developed as part of ESA OPS-SAT CubeSat,
an experimental mission launched in 2019 with the purpose
of testing and demonstrating new software and mission
operation concepts [175]. NanoSat MO will also be imple-
mented in ESA upcoming 8-Sat-2 CubeSat, facilitating the
development of AI applications used directly onboard the
satellite for EO purposes [178].

4) SAVOIR - CORDET
The Component ORiented DEvelopment Techniques
(CORDET) framework is a FW reference architecture
developed as part of ESA’s SAVOIR initiative ([26], §II-A)
by the SAVOIR-FAIRE working group.

CORDET reference architecture is based on the segrega-
tion of two main components, the Application Software and
Execution Platform (Fig. 8). The Application Software layer
uses mission-dependent software components to manage
the functionality of the satellite bus and its subsystems
(e.g., FDIR management, autonomous task planning, and
subsystem management). These components are developed
independently of the execution environment. The Execution
Platform layer then provides services for the execution of
these software components and deploys the components
from the higher abstraction layer to the chosen physical
architecture. The mapping of components from the Appli-
cation Software to the Execution Platform is accomplished
using a set of design rules materialized in an interaction

FIGURE 8. SAVOIR - CORDET FW reference architecture [26].

layer [179]. This bimodal architecture clearly separates the
management of satellite functionality from computing issues
(such as interapplication communication, on-board time, and
libraries), allowing users flexible application development.

CORDET services comply with the European Cooperation
for Space Standardization (ECSS) Packet Utilization Stan-
dard. There is an existing plan to conform such an architecture
to the CCSDS standard [180]. Unlike the other frameworks
analyzed in this paper, CORDET does not represent a
particular FSW implementation and does not provide specific
API rules [158], but simply outlines a generic architecture
for service-oriented applications. However, there is a formal
specification of CORDET implemented in the C language,
developed by a company that is a member of the consortium
founded by the ESA to specify CORDET (P&P Software
GmbH). This specification is called the C2 Implementation
and it is open source [181], [182].

The CORDET C2 implementation has a flight heritage
on large satellites, successfully flying onboard the CHarac-
terising ExOPlanets Satellite (CHEOPS; launched in 2019,
in progress). It will also fly on-board the Solar wind
Magnetosphere Ionosphere Link Explorer (SMILE; 2025)
and the Atmospheric Remote-sensing Infrared Exoplanet
Large-survey (ARIEL; 2029). It has no flight heritage in
CubeSats, although it is also considered an FW framework
for nanosatellite applications [158].

B. FSW OPERATING SYSTEMS
The OS plays a crucial role in the FSW structure, as it
manages hardware resources and provides essential services
for the development of software applications. Selecting the
appropriate OS can considerably simplify the development of
FSW and its applications. As discussed in § IV-A, the FSW
frameworks used in the CubeSat landscape offer their own
optimized version for the OS or are compatible with different
OSs. In recent years, the integration of real-time operating
systems (RTOSs) has become an important advancement
in the field of small satellite missions. An RTOS offers

VOLUME 12, 2024 99555

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

TABLE 2. Main topics covered by the paper and key references.

precise processing time management and efficient resource
utilization. There is a wide range of RTOSs, ranging
from open-source solutions, such as FreeRTOS, to licensed
platforms, such as VxWorks.

All RTOS have a central element, the kernel, which serves
as an abstraction layer connecting applications with the
hardware device and handles services. These services include
APIs that can be used to simplify the management of I/O
devices, memories, timers and interrupts.

In the following sections, we provide an overview of the
various OSs suitable for CubeSat applications.

1) FREERTOS
FreeRTOS [183] is an open-source real-time OS specifically
developed to run real-time applications on µCs and small
µPs, supporting a wide range of processor architectures,
such as ARM and RISC-based architectures. Support for
a wide variety of hardware architectures is one of the
strengths of this OS. The FreeRTOS kernel consists of
only three files in the C language. FreeRTOS has a so-
called microkernel architecture [184], which signifies that
the kernel provides only a basic set of OS functionalities,
such as the scheduling of processes, communication between

them, and their synchronization. All other functionalities
of the OS, including device drivers and system libraries,
operate on programs separate from the kernel. The small
footprint of the kernel is another strength of this OS,
as it makes it flexible, scalable, and easily executable
in various small embedded applications. FreeRTOS also
features a small memory footprint, which makes it suitable
for applications where the memory capacity is limited. All
these features make it suitable for real-time applications
that require critical tasks, such as sensor monitoring,
while maintaining low power consumption. For this reason,
numerous CubeSat OBCs are based on FreeRTOS (see
Tab. 5). This OS, which offers the simplest implementation
option, has been proposed in several projects for the devel-
opment of FSWs for resource-constrained CubeSat missions
[75], [185], [186], [187].

2) RTEMS
The Real-Time Executive for Multiprocessor Systems
(RTEMS, [188]) is a widely used open-source RTOS with no
kernel-space/user-space separation (monolithic architecture),
designed to provide deterministic performance through low
lantency of management of scheduling, threads and external

99556 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

TABLE 3. Comparison of memories used in CubeSat OBCs. Data and information from [23], [32], [62], [63], [70], and [215].

interrupts [189], [190]. Its key feature is its high level
of portability, as this OS currently supports 19 processor
architectures (including all microprocessors developed for
use in space, such as SPARC ERC32 and LEON, PowerPC,
MIPS Mongoose-V), approximately 200 board support
packages (BSPs) and various open API standards, including
the Portable Operating System Interface (POSIX). To limit
application complexity and reduce the size of the kernel,
the RTEMS provides core services dedicated exclusively to
task management, interrupts, synchronization and interthread
communication. Other services, such as support for I/O
and memory file systems, networks and programming
languages, are provided as optional features [190]. Thus,
RTEMS can be considered a simplified OS with optional
attributes of memory and process management, resulting in
an application-dependent size of the RTEMS kernel. RTEMS
has been sponsored, deployed and used extensively in space
missions, including NASA’s MRO and ESA’s ExoMars Trace
Gas Orbiter. This OS is particularly well suited to the
constrained resources of nanosatellites and runs in numerous
CubeSat OBCs (Tab. 5).

3) RODOS
The Realtime Object-Oriented Distributed Operating System
(RODOS, [191]) is an open-source RTOS specifically
designed for the aerospace field, as it has a small footprint,
which allows it to be suitable for all high-reliability
applications. This OS was jointly developed by the DLR
and the Department for Aerospace Information Technology
at the University of Würzburg as part of the DLR’s
microsatellite program. RODOS is written mainly in the
C++ programming language and supports a wide range
of processor architectures, such as ARM Cortex-M, Atmel
AVR, 32-bit STM3 and PowerPC architectures. It can be
used as a stand-alone OS or as a guest OS on top of Linux
and some RTOSs. The main feature of RODOS is that,
in addition to the kernel (which provides support for the basic
functionalities of the OS), it also integrates its own real-
time middleware, which allows transparent data exchange
between software applications. The RODOS kernel and
middleware provide an integrated object-oriented framework
that allows for optimized management of software resources
and a communication infrastructure between applications,

VOLUME 12, 2024 99557

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

TABLE 4. Common communication interfaces in CubeSat OBCs. Data and information from [1], [144], [148], [150].

guaranteeing a high degree of modularity for their develop-
ment. Software applications or modules can be integrated
by the user as easily accessible and modifiable independent
building blocks, providing flexibility in the development of
FSW [192].

RODOS has flight heritage on board the two microsatel-
lites forming the DLR’s FireBird constellation, the Technol-
ogy Experiment Carrier-1 (TET-1) and Bi-spectral Infrared
Optical System (BIROS) satellites [193], which were decom-
missioned in 2019 and 2020, respectively. In particular,
BIROS integrated two different software experiments in its
RODOS-based payload processing unit, namely the Verifi-
cation of IMage analysis Onboard a Spacecraft (VIMOS;
optical image on-board processing software, [194]), and the
Verification of Autonomous Mission planning Onboard a
Spacecraft (VAMOS; on-board task scheduling software,
[193]). RODOS was also used in the SOlutus NAno satteliTE
(SONATE), a Cubesat mission developed by the University
of Würzburg, to manage the software of the Autonomous
Sensor And Planning (ASAP) instrument and to enable
communication with the main OBC.

4) VXWORKS
VxWorks [195] is a proprietary RTOS developed by the
Wind River System company (US). Its two main attributes
are its low latency (measurement of the time interval
between the generation of an interrupt and the subsequent
external response generated by the interrupt handler) and
minimal jitter (random variation of latency values), which
make it a fast, stable and reliable OS, suitable for highly

complex, high-performance applications requiring critical
reliability [196]. Due to its compatibility with a wide catalog
of processors (32- and 64-bit processors based on Intel,
Atmel, Power, RISC-V; LEON and other architectures) and
the various programming languages that can be used for
its software application development (C++, Python, Rust),
it is used in various sectors, including aerospace, defense,
automotive, medical, and telecommunications. VxWorks has
a layered architecture, in which the kernel is separated from
the middleware, BSPs, applications, and other packages, and
supports application development via docker containers. This
architecture allows applications to be isolated from the rest
of the system and provides the OS with modularity and easy
upgradability, enabling easier bug fixing and testing of new
functionalities. VxWorks is one of the most widely used OSs
in spacemissions, particularly inNASAprograms. It has been
used by NASA for more than 30 years on major scientific
missions, such as the Clementine spacecraft, the Juno space
probe, and the JWST. It is also used in new-generation
CubeSat applications. The FSW of the PEARL CubeSat
bus infrastructure, an initiative developed by the Space
Dynamics Laboratory (SDL) with the aim of migrating the
CubeSat standard from the use of COTS components to the
use of space-grade components, is based on the VxWorks
OS [197].

5) LINUX
Linux is a family of open-source general-purpose OSs. Since
the Linux kernel source file is open-source, there are several
Linux distributions, both commercial and purpose-built by

99558 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

TABLE 5. Representative list of CubeSat OBCs covered in the analysis.

VOLUME 12, 2024 99559

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

TABLE 5. (Continued.) Representative list of CubeSat OBCs covered in the analysis.

99560 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

TABLE 5. (Continued.) Representative list of CubeSat OBCs covered in the analysis.

VOLUME 12, 2024 99561

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

TABLE 5. (Continued.) Representative list of CubeSat OBCs covered in the analysis.

embedded developers, with varying system and memory
space requirements. This feature makes Linux a highly
flexible OS suitable for many embedded applications and
widely used in space systems (the more famous examples
of space vehicles using Linux as their OS are SpaceX’s
Falcon and Dragon). Linux can simplify software application
development due to its advantages, such as the support
of a wide range of hardware devices (provides the widest
support for hardware platforms of any OS, including LEON
processors), the compatibility with numerous communication
protocols and standards, the availability of standardized
development tools and a large developer community, open
source license conditions that allow supplier independence,
and the low adoption cost. Furthermore, although it is not
an RTOS, as it is designed to be a general-purpose OS with
no real-time functionality, it can support the development
of real-time applications, as patches for the Linux kernel
implementing real-time computing functionalities (known
as PREEMPT_RT) are available. The use of a Linux
OS in avionics systems has the potential to simplify the
FSW design, as there is a large catalog of existing Linux
applications that can be readily integrated into an OBC
(such as data compression, operations scheduling, security,
etc.). Moreover, parts of the software can be developed and
debugged on a desktop computer and easily transferred to an
OBC [198].

Linux is used in several CubeSat projects, including the
QuakeSat [199], UWE-1 and UWE-2 [200] and Aalto-1
[201] missions. In addition, there are also certain initiatives
designed to demonstrate the use of smartphones with the
AndroidOS, which is based on Linux, to build satellite OBCs,
such as the NASA PhoneSat project [202] and the STRaND-1
mission [203].

V. FUTURE BREAKTHROUGHS
Approximately 20 years after their first launch and thousands
of missions being launched [4], CubeSats have proven
their potential in facilitating high-quality scientific research
and enabling new mission concepts. They are attractive
platforms for a wide range of mission objectives, includ-
ing the demonstration of cutting-edge space technologies,

telecommunications, space science and astrophysics, and
EO [8]. They could be used as piggybackmissions to enhance
the scientific return of larger traditional spacecraft. Simul-
taneously, CubeSats could offer the possibility of building
innovative space system architectures, which have hitherto
not been feasible due to the high costs associated with larger
satellites. Among these, distributed space systems, such as
swarms, constellations, and arrays of nanosatellites [87],
[207], [208], [209], provide unprecedented temporal and spa-
tial coverage. To meet the needs of next-generation science
and exploration, it is essential to develop avionics systems
characterized by three key attributes [22], [210]: modular-
ity, reconfigurability, and autonomy. Emerging trends that
will contribute to enhancing the capabilities of CubeSat
C&DH subsystems include the use of distributed hybrid
fault-tolerant architectures (§III-A4) and advanced AI-based
algorithms [204].

A. DISTRIBUTED HYBRID FAULT-TOLERANT
ARCHITECTURES
As discussed in §III-A4, hybrid architectures, which combine
various processing units (multicore µPs, FPGAs, GPUs,
etc.) on a single board or chip (SoC), are revolutionizing
onboard CubeSat computing, increasing its performance,
computational speed, and parallel processing capability,
with significant implications for improving data and image
processing. Multicore architectures will play a key role in
next-generation flight computing, enabling parallel process-
ing on a single chip and facilitating the implementation of
new fault-tolerance techniques, such as task rescheduling or
swapping (§II-C3). The Proton 600k multi-core computer
developed by Space Micro (US; [211]) is an example of such
an architecture, featuring an 8-core ARM Cortex processor.
The combined use of various processing units will enable
the development of distributed avionics systems, reducing the
processing load on each chip, allowing flight software tasks to
be optimized by distributing algorithms and applications over
several cores, and increasing overall system performance and
reliability. Furthermore, according to the latest developments
in hybrid architectures (§III-A4), future CubeSat avionics

99562 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

systems should combine the use of COTS and rad-hard
components to exploit the advantages of both devices, such
as the high performance, low power consumption, and low
cost typical of COTS units and the high reliability and flight
heritage of rad-hard components [24].

B. ADVANCED AI-BASED ALGORITHMS
AI, particularly ML models such as NNs, has the potential
to address complex problems by utilizing the inherent
information within the data. Specifically, convolutional NNs,
which are suitable for image processing, can significantly
improve the scientific value of satellite data by reducing the
need for extensive preprocessing and postprocessing, which
are typically required by traditional onboard processing
techniques, while optimizing downlink data transmission.
The ESA 8-Sat program [212] is the first experiment to
demonstrate the extraction of image features directly onboard
a CubeSat using convolutional NNs implemented in a Vision
Processing Unit (VPU). Future CubeSat avionics systems
could exploit NNs, and ML-based algorithms in general, not
only for onboard image processing, but also for navigation
and platform control [213], task scheduling [206] and for
FDIR functions. The system could be trained to recognize
early anomalies and malfunctions onboard the satellite based
on telemetry data correlations, enabling early warning of
potential failures [205], [214]. Furthermore, as demonstrated
by the success of KP Labs Intuition-1 mission and its
novel Leopard DPU, the use of FPGA SoCs as hardware
accelerators (AI engines) could facilitate the implementation
of AI algorithms in CubeSats. FPGA SoCs offer significant
advantages for the acceleration of algorithms, as they
enable efficient implementation of sequential components
on processors and accelerate highly parallel or iterative
operations on the FPGAwith a low power consumption [131].
As a result, increasingly complex AI algorithms could
be implemented, overcoming the challenges of computing
power and memory resources associated with the use of ML
models in CubeSats.

VI. CONCLUSION
This paper systematically reviews the development method-
ologies, radiation mitigation techniques, and hardware and
software platforms that currently shape the state-of-the-art
in the OBCs subsystems for CubeSats. On-board computing
is a key factor when designing CubeSat missions, as high-
performance OBCs are required to address the computational
challenges of future missions. Consequently, it is essential
to review currently available technologies to gain a full
understanding of their performance and limitations, so that
engineers can make the most appropriate choices when
designing C&DH subsystems for their missions. Tab. 2
categorizes the main topics covered in our analysis and
provides a comprehensive overview of the most important
literature considered in our survey, summarizing key papers
and references for each topic.

The main lesson learned from this analysis is that CubeSat
OBCs use different options for their hardware implemen-
tation, aligning with advancements in embedded systems.
The OBCs of CubeSat missions with reduced performance
requirements and intended mainly for the LEO environment,
tipically use low-power COTS microcontrollers (mainly
based on the ARM architecture or the MSP430 series), which
offer the optimum trade-off between power consumption and
the performance required for basic tasks, such as monitoring
the health status of the on-board subsystems and telemetry.
However, as the C&DH subsystem progressively integrates
more functions, such as complex ADCS calculations or
payload data processing, the OBC computing requirements
increase, leading to higher performance devices such as
FPGA or GPU SoCs. These OBCs offer significantly higher
computing capabilities, enabling advanced processing tasks,
such as the executing of complex data processing algorithms
directly onboard the satellite. The use of AI-based algorithms
for real-time on-board data analysis drives many current
and future CubeSat missions. Small boards integrated with
hardware accelerators, such as GPUs, VPUs, and FPGA
SoCs, are already available on the market. Among these,
FPGAs, in particular, appear promising for DL model
acceleration, offering a trade-off between high portability,
configuration flexibility, performance, low cost, and low
power consumption. Rad-hard versions of FPGAs are also
available, potentially extending the market for DL-based
solutions to long-termLEO or interplanetary explorationmis-
sions. Additionally, with the increasing interest in employing
CubeSat platforms beyond LEO, careful consideration must
be given to hardware component selection and fault-tolerance
techniques. Following the latest developments, future sys-
tems could benefit from hybrid fault-tolerant architectures
that combine COTS and rad-hard devices.

From a FW perspective, several frameworks can be used
to facilitate CubeSat FSW development. The challenge
for future missions lies in designing modular FSWs that
simplify the debugging process and ensure their scalability
and extensibility to different mission objectives. CubeSat
FSWs shall include fault-tolerance software techniques
based on the use of multicore processors (such as task
rescheduling) and exploit the benefits of using OSs for real-
time multiprocessing. It should also incorporate increasingly
complex AI algorithms.

REFERENCES
[1] J. W. Cutler and J. Beningo, ‘‘On-board data handling systems,’’ in

Cubesat Handbook, C. Cappelletti, S. Battistini, and B. K. Malphrus,
Eds., New York, NY, USA: Academic, 2021, ch. 10, pp. 199–219.

[2] N. P. Fillery and D. Stanton, ‘‘Telemetry, command, data handling and
processing,’’ in Spacecraft Systems Engineering. Hoboken, NJ, USA:
Wiley, 2011, ch. 13, pp. 439–466.

[3] G. Furano and A. Menicucci, ‘‘Roadmap for on-board processing and
data handling systems in space,’’ in Dependable Multicore Architectures
at Nanoscale, M. Ottavi, D. Gizopoulos, and S. Pontarelli, Eds., Cham,
Switzerland: Springer, 2018, pp. 253–281.

[4] E. Kulu. Nanosats Database. Accessed: Jun. 16, 2024. [Online].
Available: https://www.nanosats.eu/

VOLUME 12, 2024 99563

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

[5] H. Heidt, J. Puig-Suari, A. S. Moore, S. Nakasuka, and R. J. Twiggs,
‘‘CubeSat: A new generation of picosatellite for education and industry
low-cost space experimentation,’’ in Proc. 15th Annual/USU Conf. Small
Satell., 2000, pp. 1–19.

[6] J. Puig-Suari, C. S. Turner, and R. J. Twiggs, ‘‘CubeSat: The development
and launch support infrastructure for eighteen different satellite customers
on one launch,’’ in Proc. 14th Annu. AIAA/USU Conf. Small Satell., 2001,
pp. 1–5.

[7] Cal Poly CubeSat Laboratory. CubeSat Design Specification Revision
14.1. Accessed: Jun. 16, 2024. [Online]. Available: https://www.
cubesat.org/cubesatinfo

[8] A. Poghosyan and A. Golkar, ‘‘CubeSat evolution: Analyzing CubeSat
capabilities for conducting science missions,’’ Prog. Aerosp. Sci., vol. 88,
pp. 59–83, Jan. 2017.

[9] R. Hevner, W. Holemans, J. Puig-Suari, and R. J. Twiggs, ‘‘An advanced
standard for CubeSats,’’ in Proc. 25th Annu. AIAA/USU Conf. Small
Satell., 2011, pp. 1–12.

[10] J. Bouwmeester and J. Guo, ‘‘Survey of worldwide pico- and nanosatellite
missions, distributions and subsystem technology,’’ Acta Astronautica,
vol. 67, nos. 7–8, pp. 854–862, Oct. 2010.

[11] D. Selva and D. Krejci, ‘‘A survey and assessment of the capabilities of
CubeSats for Earth observation,’’ Acta Astronautica, vol. 74, pp. 50–68,
May 2012.

[12] E. Buchen, ‘‘Small satellite market observations,’’ presented at the
29th Annu. AIAA/USU Conf. Small Satell., Logan, UT, USA, Aug.
8–13, 2015, Paper SSC15-VII-7. [Online]. Available: https://digital
commons.usu.edu/smallsat/2015/all2015/51/

[13] A. Zeedan and T. Khattab, ‘‘A critical review of baseband architectures
for CubeSats communication systems,’’ 2022, arXiv:2201.09748.

[14] F. Davoli, C. Kourogiorgas, M. Marchese, A. Panagopoulos, and
F. Patrone, ‘‘Small satellites and CubeSats: Survey of structures, archi-
tectures, and protocols,’’ Int. J. Satell. Commun. Netw., vol. 37, no. 4,
pp. 343–359, Jul. 2019.

[15] J. Crusan and C. Galica, ‘‘NASA’s CubeSat launch initiative: Enabling
broad access to space,’’Acta Astronautica, vol. 157, pp. 51–60, Apr. 2019.

[16] R. Walker, D. Koschny, C. Bramanti, and I. Carnelli, ‘‘Miniaturised
asteroid remote geophysical observer (M-ARGO): A stand-alone deep
space CubeSat system for low-cost science and exploration missions,’’
presented at the 6th Interplanetary CubeSat Workshop, Cambridge, U.K.,
May 30–31, 2017.

[17] S. Speretta, A. Cervone, P. Sundaramoorthy, R. Noomen, S. Mestry,
A. Cipriano, F. Topputo, J. Biggs, P. Di Lizia, and M. Massari, ‘‘LUMIO:
An autonomous CubeSat for lunar exploration,’’ in Space Operations:
Inspiring Humankind’s Future. Cham, Switzerland: Springer, 2019,
pp. 103–134.

[18] P. Tortora and V. Di Tana, ‘‘LICIACube, the Italian witness of DART
impact on didymos,’’ in Proc. IEEE 5th Int. Workshop Metrol. Aerosp.
(MetroAeroSpace), Jun. 2019, pp. 314–317.

[19] V. Di Tana, C. Fiori, S. Simonetti, and S. Pirrotta, ‘‘ArgoMoon, a
multipurpose CubeSat platform for missions in Moon vicinity and orbit,’’
in Proc. Eur. Planet. Sci. Congr., 2018, pp. 1–2.

[20] W. Ley, F. Merkle, J. Block, J. Kreuser, R. Röder, A. Kohlhase, R. Schlitt,
H. D. Schmitz, C. Arbinger, B. Lübke-Ossenbeck, S. Montenegro,
and P. Turner, ‘‘Subsystems of Spacecraft,’’ in Handbook of Space
Technology. Hoboken, NJ, USA: Wiley, 2009, ch. 4, pp. 200–398.

[21] G. Lentaris, K. Maragos, I. Stratakos, L. Papadopoulos, O. Papanikolaou,
D. Soudris, M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, and G. Furano,
‘‘High-performance embedded computing in space: Evaluation of
platforms for vision-based navigation,’’ J. Aerosp. Inf. Syst., vol. 15, no. 4,
pp. 178–192, Apr. 2018.

[22] On Board Computer, Data Handling Systems and Microelectronics,
Technology Harmonisation Advisory Group (THAG), Technology Har-
monization Dossier, European Space Agency, Paris, France, 2021

[23] NASA. (2024). State-of-the-Art of Small Spacecraft Technology.
Accessed: Jun. 16, 2024. [Online]. Available: https://www.nasa.
gov/smallsat-institute/sst-soa/

[24] A. D. George and C. M. Wilson, ‘‘Onboard processing with hybrid and
reconfigurable computing on small satellites,’’ Proc. IEEE, vol. 106,
no. 3, pp. 458–470, Mar. 2018.

[25] M. Alam, A. Khamees, T. Aboelnaga, A. Amer, A. Harbi, M. Alamir,
H. Alarwsh, and O. A. Elsayed, ‘‘Design and implementation of an
onboard computer and payload for nano satellite (CubeSat),’’ in Proc.
Int. Undergraduate Res. Conf., vol. 5, 2021, pp. 361–364.

[26] ESA. Space AVionics Open Interface aRchitecture (SAVOIR). Accessed:
Jun. 16, 2024. [Online]. Available: https://savoir.estec.esa.int/

[27] S. Duzellier, ‘‘Radiation effects on electronic devices in space,’’ Aerosp.
Sci. Technol., vol. 9, no. 1, pp. 93–99, Jan. 2005.

[28] B. Todd and S. Uznanski, ‘‘Radiation risks and mitigation in electronic
systems,’’ in Proc. CAS-CERN Accel. School, Power Converters, Baden,
Switzerland, May 2014, pp. 245–263.

[29] T. Kuwahara, Y. Tomioka, K. Fukuda, N. Sugimura, and Y. Sakamoto,
‘‘Radiation effect mitigation methods for electronic systems,’’ in Proc.
IEEE/SICE Int. Symp. Syst. Integr. (SII), Dec. 2012, pp. 307–312.

[30] D. P. Siewiorek and R. S. Swarz, ‘‘Faults and their manifestations,’’ in
Reliable Computer Systems, 2nd ed., D. P. Siewiorek and R. S. Swarz,
Eds., Boston, MA, USA: Digital Press, 1992, pp. 22–78.

[31] J. R. Srour and J. M. McGarrity, ‘‘Radiation effects on microelectronics
in space,’’ Proc. IEEE, vol. 76, no. 11, pp. 1443–1469, Jan. 1988.

[32] J. Prinzie, F. M. Simanjuntak, P. Leroux, and T. Prodromakis, ‘‘Low-
power electronic technologies for harsh radiation environments,’’ Nature
Electron., vol. 4, no. 4, pp. 243–253, Apr. 2021.

[33] R. H. Maurer, M. E. Fraeman, M. N. Martin, and D. R. Roth, ‘‘Harsh
environments: Space radiation environment, effects, and mitigation,’’
Johns Hopkins APL Tech. Dig., vol. 28, pp. 17–29, Jan. 2008.

[34] M. Barella, G. Sanca, F. G. Marlasca, W. R. Acevedo, D. Rubi,
M. A. G. Inza, P. Levy, and F. Golmar, ‘‘Studying ReRAM devices at low
Earth orbits using the LabOSat platform,’’ Radiat. Phys. Chem., vol. 154,
pp. 85–90, Jan. 2019.

[35] (1999). Space Radiation Effects on Electronic Components in Low-
Earth Orbit. Accessed: Jun. 16, 2024. [Online]. Available: https://llis.
nasa.gov/lesson/824

[36] S. Samwel, A. Hady, J. Mikhail, M. Ibrahim, and Y. Hanna, ‘‘Studying
the total ionizing dose and displacement damage dose effects for various
orbital trajectories,’’ in Proc. 1st Middle East-Africa Regional IAU
Meeting, 2008, pp. 55–58.

[37] J. Lipovetzky, M. Garcia-Inza, M. R. Cañete, G. Redin, S. Carbonetto,
M. Echarri, F. Golmar, F. G. Marlasca, M. Barella, G. A. Sanca, P. Levy,
and A. Faigón, ‘‘COTS MOS dosimetry on the MeMOSat board, results
after 2.5 years in orbit,’’ 2020, arXiv:2007.00143.

[38] M. Dowd, ‘‘How rad hard do you need? The changing approach to
space parts selection?’’ Maxwell Technol. Microelectron., White Paper,
Jan. 2003. [Online]. Available: https://www.ddc-web.com/resources/
FileManager/dbi/Whitepapers/How_Rad_Hard_Do_You_Need_wp.pdf

[39] J. R. Srour, C. J. Marshall, and P. W. Marshall, ‘‘Review of displacement
damage effects in silicon devices,’’ IEEE Trans. Nucl. Sci., vol. 50, no. 3,
pp. 653–670, Jun. 2003.

[40] R. Baumann and K. Kruckmeyer. (2019). Radiation Handbook for
Electronics. Accessed: Jun. 16, 2024. [Online]. Available: https://www.ti.
com/applications/industrial/aerospace-defense/space/radiation-
handbook-for-electronics.html

[41] J. J. Wang, R. B. Katz, J. S. Sun, B. E. Cronquist, J. L. McCollum,
T. M. Speers, and W. C. Plants, ‘‘SRAM based re-programmable
FPGA for space applications,’’ IEEE Trans. Nucl. Sci., vol. 46, no. 6,
pp. 1728–1735, Dec. 1999.

[42] T. C. MacLeod, W. H. Sims, K. A. Varnavas, R. Sayyah, and F. D. Ho,
‘‘Satellite test of radiation impact on ramtron 512K FRAM,’’ in Proc.
10th Annu. Non-Volatile Memory Technol. Symp. (NVMTS), Oct. 2009,
pp. 24–27.

[43] A. J. Tylka, W. F. Dietrich, P. R. Boberg, E. C. Smith, and J. H. Adams,
‘‘Single event upsets caused by solar energetic heavy ions,’’ IEEE Trans.
Nucl. Sci., vol. 43, no. 6, pp. 2758–2766, Dec. 1996.

[44] D. W. Caldwell and D. A. Rennels, ‘‘A minimalist fault-tolerant micro-
controller design for embedded spacecraft computing,’’ J. Supercomput.,
vol. 16, pp. 7–25, May 2000.

[45] C. S. V. M. Rao and A. Chavan, ‘‘Review on radiation hardness assurance
by design, process and NextGen devices,’’ J. Phys., Conf. Ser., vol. 1916,
no. 1, May 2021, Art. no. 012002.

[46] P. J. Botma, A. Barnard, and W. H. Steyn, ‘‘Low cost fault tolerant tech-
niques for nano/pico-satellite applications,’’ in Proc. Africon, Sep. 2013,
pp. 1–5.

[47] C. M. Fuchs, N. M. Murillo, A. Plaat, E. van der Kouwe, D. Harsono,
and T. P. Stefanov, ‘‘Fault-tolerant nanosatellite computing on a budget,’’
in Proc. 18th Eur. Conf. Radiat. Effects Compon. Syst. (RADECS),
Sep. 2018, pp. 1–8.

[48] A. Burns and A.Wellings, ‘‘Reliability and fault tolerance,’’ in Real-Time
Systems and Programming Languages: Ada, Real-Time Java and C/Real-
Time POSIX. Reading, MA, USA: Addison-Wesley, 2009.

99564 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

[49] I. B. M. Matsuo, L. Zhao, and W.-J. Lee, ‘‘A dual modular redundancy
scheme for CPU–FPGA platform-based systems,’’ IEEE Trans. Ind.
Appl., vol. 54, no. 6, pp. 5621–5629, Nov. 2018.

[50] GAUSS S.r.l, ABACUS OBC. Accessed: Jun. 16, 2024. [Online]. Avail-
able: https://www.gaussteam.com/products/onboard-computer/abacus-2/

[51] M. T. Sim and Y. Zhuang, ‘‘A dual lockstep processor system-on-a-chip
for fast error recovery in safety-critical applications,’’ in Proc. IECON
46th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2020, pp. 2231–2238.

[52] T. Kuwahara, ‘‘FPGA-based reconfigurable on-board computing systems
for space applications,’’ Ph.D. thesis, Fac. Aerosp. Eng. Geodesy, Inst.
Space Syst., Universität Stuttgart, Baden-Württemberg, Germany, 2010.

[53] Ingegneria Marketing Tecnologia (IMT). Cubesat On-Board Computer.
Accessed: Jun. 16, 2024. [Online]. Available: https://www.satcatalog.
com/component/cubesat-on-board-computer/

[54] L. M. Luza, F.Wrobel, L. Entrena, and L. Dilillo, ‘‘Impact of atmospheric
and space radiation on sensitive electronic devices,’’ in Proc. IEEE Eur.
Test Symp. (ETS), May 2022, pp. 1–10.

[55] P. P. Shirvani, N. R. Saxena, and E. J. McCluskey, ‘‘Software-
implemented EDAC protection against SEUs,’’ IEEE Trans. Rel., vol. 49,
no. 3, pp. 273–284, Jan. 2000.

[56] R. W. Hamming, ‘‘Error detecting and error correcting codes,’’ Bell Syst.
Tech. J., vol. 29, no. 2, pp. 147–160, Apr. 1950.

[57] N. Mhatre and S. Aras, ‘‘A hybrid approach to radiation fault tolerance
in small satellite applications,’’ in Proc. 62nd Int. Astron. Congr. (IAC),
Cape Town, South Africa, vol. 11, Oct. 2011, pp. 8930–8937.

[58] C. Hillier and V. Balyan, ‘‘Error detection and correction on-board
nanosatellites using Hamming codes,’’ J. Electr. Comput. Eng., vol. 2019,
pp. 1–15, Feb. 2019.

[59] X. Zhang, ‘‘VLSI architectures for Reed–Solomon codes: Classic,
nested, coupled, and beyond,’’ IEEE Open J. Circuits Syst., vol. 1,
pp. 157–169, 2020.

[60] D. G. Mavis, P. H. Eaton, M. D. Sibley, R. C. Lacoe, E. J. Smith,
and K. A. Avery, ‘‘Multiple bit upsets and error mitigation in ultra-
deep submicron SRAMS,’’ IEEE Trans. Nucl. Sci., vol. 55, no. 6,
pp. 3288–3294, Dec. 2008.

[61] C. Sansoe and M. Tranchero, Use of FRAM Memories in Spacecrafts.
Rijeka, Croatia: InTech, 2011, pp. 213–230.

[62] J. Heidecker, ‘‘MRAM technology status,’’ Jet Propuls. Lab., California
Inst. Technol., Tech. Rep. JPL-Publ-13-3, 2013.

[63] F. Zahoor, T. Z. A. Zulkifli, and F. A. Khanday, ‘‘Resistive random access
memory (RRAM): An overview of materials, switching mechanism,
performance,multilevel cell (MLC) storage,modeling, and applications,’’
Nanosc. Res. Lett., vol. 15, no. 1, Dec. 2020.

[64] Y. Feng, J. Gong, G. Hua, and M. Yang, Software Fault-Tolerance
Techniques, ch. 5. Hoboken, NJ, USA: Wiley, 2017, pp. 151–178.

[65] I. Sünter, A. Slavinskis, U. Kvell, A. Vahter, H. Kuuste, M. Noorma,
J. Kutt, R. Vendt, K. Tarbe, M. Pajusalu, M. Veske, and T. Ilves,
‘‘Firmware updating systems for nanosatellites,’’ IEEE Aerosp. Electron.
Syst. Mag., vol. 31, no. 5, pp. 36–44, May 2016.

[66] S. Ghosh, R. Melhem, and D. Mosse, ‘‘Fault-tolerance through schedul-
ing of aperiodic tasks in hard real-time multiprocessor systems,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 8, no. 3, pp. 272–284, Mar. 1997.

[67] P. Dobiáš, E. Casseau, and O. Sinnen, ‘‘Improving the CubeSat reliability
thanks to a multiprocessor system using fault tolerant online scheduling,’’
Microprocessors Microsyst., vol. 85, Sep. 2021, Art. no. 104312.

[68] N. Murphy and M. Barr, ‘‘Watchdog timers,’’ Embedded Syst. Program.,
vol. 14, no. 11, pp. 79–80, 2001.

[69] A. V. Dias, J. A. Pomilio, and S. Finco, ‘‘A current limiting switch for
applications in space power systems,’’ in Proc. IEEE Southern Power
Electron. Conf. (SPEC), Dec. 2017, pp. 1–6.

[70] W. Sajjad, A. Shafique, U. B. Khalid, and R. Mahmood, ‘‘Design of
reliable, low power, and enhanced performance architecture of on-board
computer for CubeSats,’’ IEEE J. Miniaturization Air Space Syst., vol. 5,
no. 2, pp. 59–72, Jun. 2024.

[71] S. M. Guertin, M. Amrbar, and S. Vartanian, ‘‘Radiation test results for
common CubeSat microcontrollers and microprocessors,’’ in Proc. IEEE
Radiat. Effects Data Workshop (REDW), Jul. 2015, pp. 1–9.

[72] C. A. Lara, M. Fragoso, L. M. Juárez, L. Barboni, R. Reyes, R. Vázquez,
J. P. Acle, and S. de la Rosa, ‘‘Fault tolerant architecture design of a
CubeSat command and data handling system,’’ in Proc. IEEE 24th Latin
Amer. Test Symp. (LATS), Sep. 2023, pp. 1–6.

[73] K. V. C. K. de Souza, Y. Bouslimani, M. Ghribi, and T. Boutot, ‘‘On-
board computer and testing platform for CubeSat development,’’ IEEE J.
Miniaturization Air Space Syst., vol. 4, no. 2, pp. 199–211, Feb. 2023.

[74] L. Gagliardi, F. D. Nardo, G. A. Sanca, F. Izraelevitch, M. Cveczilberg,
and F. Golmar, ‘‘LabOSat-02: Hardware and firmware development of
an on-board computer for small satellites,’’ IEEE Embedded Syst. Lett.,
vol. 16, no. 1, pp. 37–40, Mar. 2024.

[75] H. Leppinen, A. Kestilä, P. Pihajoki, J. Jokelainen, and T. Haunia,
‘‘On-board data handling for ambitious nanosatellite missions using
automotive-grade lockstep microcontrollers,’’ in Proc. Small Satell. Syst.
Services 4S Symp., 2014, pp. 1–10.

[76] B. Sheela Rani, R. R. Santhosh, L. Sam Prabhu, M. Federick, V. Kumar,
and S. Santhosh, ‘‘A survey to select microcontroller for sathyabama
satellite’s on board computer subsystem,’’ in Proc. Recent Adv. Space
Technol. Services Climate Change (RSTS CC), Nov. 2010, pp. 134–137.

[77] J. Praks, ‘‘Aalto-1, multi-payload CubeSat: Design, integration and
launch,’’ Acta Astronautica, vol. 187, pp. 370–383, Oct. 2021.

[78] J. H. Davies, ‘‘The Texas Instruments MSP430,’’ in MSP430 Microcon-
troller Basics, J. H. Davies, Ed., Burlington, NY, USA: Newnes, 2008,
pp. 21–42.

[79] J. Strnadel and P. Rajnoha, ‘‘Reflecting RTOS model during WCET
timing analysis: MSP430/Freertos case study,’’ Acta Electrotechnica et
Inf., vol. 12, no. 4, p. 17, Jan. 2012.

[80] P. Villa, L. Slongo, J. Salamanca, V. Martins, F. Silva, S. Martinez,
L. Mariga, B. Eiterer, I. Vidal, and V. Menegon, ‘‘A complete CubeSat
mission: The Floripa-Sat experience,’’ in Proc. 1st IAA Latin Amer.
Cubesat Workshop, vol. 2, Sep. 2014, pp. 307–314.

[81] Spacemanic. Eddie Onboard Computer. Accessed: Jun. 16, 2024.
[Online]. Available: https://www.spacemanic.com/eddie-onboard-
computer/

[82] J. Mangan, D. Murphy, R. Dunwoody, M. Doyle, A. Ulyanov, L. Hanlon,
B. Shortt, and S. McBreen, ‘‘Embedded firmware development for a
novel CubeSat gamma-ray detector,’’ in Proc. IEEE 8th Int. Conf. Space
Mission Challenges Inf. Technol. (SMC-IT), Jul. 2021, pp. 14–22.

[83] G. A. Sanca, M. Barella, F. G. Marlasca, N. Alvarez, P. Levy, and
F. Golmar, ‘‘LabOSat-01: A payload for in-orbit device characterization,’’
IEEE Embedded Syst. Lett., vol. 16, no. 1, pp. 45–48, Mar. 2024.

[84] R. Berger, D. Bayles, R. Brown, S. Doyle, A. Kazemzadeh, K. Knowles,
D.Moser, J. Rodgers, B. Saari, D. Stanley, andB.Grant, ‘‘TheRAD750—
A radiation hardened PowerPC processor for high performance space-
borne applications,’’ in Proc. IEEE Aerosp. Conf., vol. 5, Sep. 2001,
pp. 2263–2272.

[85] N. F. Haddad, R. D. Brown, R. Ferguson, A. T. Kelly, R. K. Lawrence,
D. M. Pirkl, and J. C. Rodgers, ‘‘Second generation (200 MHz) RAD750
microprocessor radiation evaluation,’’ in Proc. 12th Eur. Conf. Radiat.
Effects Compon. Syst., Sep. 2011, pp. 877–880.

[86] BAE Systems. Systems, Radiation-Hardened Electronics Product
Guide. Accessed: Jun. 16, 2024. [Online]. Available: https://www.
baesystems.com/en/product/radiation-hardened-electronics

[87] P. Kelly and R. Bevilacqua, ‘‘The constellation for Mars position acquisi-
tion using small satellites: CubeSat design feasibility and challenges,’’ in
Proc. Adv. Astron. Sci. 4th IAA Dyn. Control Space Syst. Conf., vol. 163,
2018, pp. 629–640.

[88] B. LaMeres, C. Delaney, M. Johnson, C. Julien, K. Zack, B. Cunningham,
T. Kaiser, L. Springer, and D. Klumpar, ‘‘Next on the pad: RadSat—
A radiation tolerant computer system,’’ presented at the 31th Ann.
AIAA/USU Conf. Small Satell., Logan, UT, USA, Aug. 5–10, 2017,
Paper SSC17-III-11. [Online]. Available: https://digitalcommons.usu.
edu/smallsat/2017/all2017/87/

[89] J. Andersson, M. Hjorth, F. Johansson, and S. Habinc, ‘‘LEON processor
devices for space missions: First 20 years of LEON in space,’’ in Proc.
6th Int. Conf. Space Mission Challenges Inf. Technol. (SMC-IT), 2017,
pp. 136–141.

[90] Argotech. FERMI Deep Space On-board Computer. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.argotecgroup.com/
products-2/

[91] A. Hanafi, M. Karim, I. Latachi, T. Rachidi, S. Dahbi, and S. Zouggar,
‘‘FPGA-based secondary on-board computer system for low-Earth-orbit
nano-satellite,’’ in Proc. Int. Conf. Adv. Technol. Signal Image Process.
(ATSIP), May 2017, pp. 1–6.

[92] K. Ngo, T. Mohammadat, and J. Öberg, ‘‘Towards a single event upset
detector based on COTS FPGA,’’ in Proc. IEEE Nordic Circuits Syst.
Conf. (NORCAS): NORCHIP Int. Symp. Syst. Chip (SoC), Sep. 2017,
pp. 1–6.

VOLUME 12, 2024 99565

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

[93] M. Qasaimeh, K. Denolf, A. Khodamoradi, M. Blott, J. Lo, L. Halder,
K. Vissers, J. Zambreno, and P. H. Jones, ‘‘Benchmarking vision kernels
and neural network inference accelerators on embedded platforms,’’
J. Syst. Archit., vol. 113, Feb. 2021, Art. no. 101896.

[94] N. Hou, D. Zhang, G. Du, and Y. Song, ‘‘An FPGA-based multi-core
system for synthetic aperture radar data processing,’’ in Proc. Int. Conf.
Anti-Counterfeiting, Secur. Identificat. (ASID), Dec. 2014, pp. 1–4.

[95] D. Mandl, G. Crum, V. Ly, M. Handy, K. F. Huemmrich, L. Ong, B. Holt,
and R. Maharaja, ‘‘Hyperspectral CubeSat constellation for natural haz-
ard response (follow-on),’’ presented at the 30th Ann. AIAA/USU Conf.
Small Satell., Logan, UT, USA, Aug. 5–11, 2016, Paper SSC16-XII-
02. [Online]. Available: https://digitalcommons.usu.edu/smallsat/2016/
TS12SciPayload2/2/

[96] B. Qi, H. Shi, Y. Zhuang, H. Chen, and L. Chen, ‘‘On-board, real-
time preprocessing system for optical remote-sensing imagery,’’ Sensors,
vol. 18, no. 5, p. 1328, Apr. 2018.

[97] J. A. Hogan, R. J. Weber, B. J. LaMeres, and T. Kaiser, ‘‘Network-on-
Chip for a partially reconfigurable FPGA system,’’ inProc. 27th Int. ACM
Conf. Int. Conf. supercomputing, pp. 473–474, 2013.

[98] SkyLabs. NANOhpm-OBC. Accessed: Jun. 16, 2024. [Online]. Available:
https://www.skylabs.si/products/nanohpm-obc/

[99] AAC Clyde Space. SIRIUS-OBC-LEON3FT. Accessed: Jun. 16, 2024.
[Online]. Available: https://www.aac-clyde.space/what-we-do/space-
products-components/command-data-handling/smallsat-sirius-obc

[100] J.-J. Wang, B. Conquist, B. Sin, J. Moriarta, and R. B. Katz, ‘‘Antifuse
FPGA for space applications,’’ in Proc. 4th Eur. Conf. Radiat. Effects
Compon. Syst., 1997, p. 11.

[101] L. Rockett, D. Patel, S. Danziger, B. Cronquist, and J. Wang, ‘‘Radiation
hardened FPGA technology for space applications,’’ in Proc. IEEE
Aerosp. Conf., Mar. 2007, pp. 1–7.

[102] H. Quinn, ‘‘Radiation effects in reconfigurable FPGAs,’’ Semicond. Sci.
Technol., vol. 32, no. 4, Apr. 2017, Art. no. 044001.

[103] Z. Liu, Z. Lu, L. Huang, Z. Yao, Z. Lu, and J. Zhang, ‘‘Recent advances
on reliability of FPGAs in a radiation environment,’’ Microelectron. J.,
vol. 148, Jun. 2024, Art. no. 106176.

[104] NanoXplore. NG-MEDIUM SPACE, NX1H35AS. Accessed:
Jun. 16, 2024. [Online]. Available: https://nanoxplore.com/index.php/
product/ng-medium/

[105] L.M. Luza, C. A. Rigo, E. D. Tramontin, V.M.G.Martins, S. V.Martinez,
L. K. Slongo, L. O. Seman, L. Dilillo, and E. A. Bezerra, ‘‘Enabling
deep-space CubeSat missions through state-of-the-art radiation-hardened
technologies,’’ presented at the 3rd IAA Latin Amer. CubeSat Workshop
(IAA-LACW), Ubatuba, Brazil, Dec. 3–7, 2018.

[106] J. Heiner, N. Collins, andM.Wirthlin, ‘‘Fault tolerant ICAP controller for
high-reliable internal scrubbing,’’ in Proc. IEEE Aerosp. Conf., Jun. 2008,
pp. 1–10.

[107] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, ‘‘FPGA partial
reconfiguration via configuration scrubbing,’’ in Proc. Int. Conf. Field
Program. Log. Appl., Aug. 2009, pp. 99–104.

[108] A. Jacobs, C. Conger, and A. D. George, ‘‘Multiparadigm space
processing for hyperspectral imaging,’’ in Proc. IEEE Aerosp. Conf.,
Mar. 2008, pp. 1–11.

[109] AMD-Xilinx. AMD Zynq 7000 SoCs. Accessed: Jun. 16, 2024.
https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-
7000.html

[110] Microchip Technology. SmartFusion 2 SoC FPGAs. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.microchip.com/en-
us/products/fpgas-and-plds/system-on-chip-fpgas/smartfusion-2-fpgas

[111] AMD-Xilinx.AMDZynqUltraScale+MPSoCs. Accessed: Jun. 16, 2024.
[Online]. Available: https://www.amd.com/en/products/adaptive-socs-
and-fpgas/soc/zynq-ultrascale-plus-mpsoc.html

[112] Xiphos Technologies. Q7s Processor. Accessed: Jun. 16, 2024. [Online].
Available: https://satsearch.co/products/xiphos-q7s-processor

[113] Xiphos Technologies. Q8s Processor. Accessed: Jun. 16, 2024. [Online].
Available: https://satsearch.co/products/xiphos-q8s-processor

[114] AAC Clyde Space. KRYTEN-M3. Accessed: Jun. 16, 2024. [Online].
Available: https://www.aac-clyde.space/what-we-do/space-products-
components/command-data-handling/kryten-m3

[115] Space Inventor. OBC-P4. Accessed: Jun. 16, 2024. [Online]. Avail-
able: https://space-inventor.com/modules/on-board-computer?item=on-
board-computer

[116] Innoflight. CFC-400. Accessed: Jun. 16, 2024. [Online]. Available:
https://www.satcatalog.com/component/cfc-400/

[117] KP Labs. Leopard. Accessed: Jun. 16, 2024. [Online]. Available:
https://kplabs.space/leopard/

[118] L. Riha, J. Le Moigne, and T. El-Ghazawi, ‘‘Optimization of selected
remote sensing algorithms for many-core architectures,’’ IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 12, pp. 5576–5587,
Dec. 2016.

[119] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Sep. 2016, pp. 779–788.

[120] Z. E. Khatib, A. B. Mnaouer, S. Moussa, M. A. B. Abas, N. A. Ismail,
F. Abdulgaleel, I. Elmasri, and L. Ashraf, ‘‘LoRa-enabled GPU-based
CubeSat YOLO object detection with hyperparameter optimization,’’ in
Proc. Int. Symp. Netw., Comput. Commun. (ISNCC), Jul. 2022, pp. 1–4.

[121] A. Elshazly, A. Elliethy, and M. Elshafey, ‘‘Tactics overview for
implementing high-performance computing on embedded platforms,’’
IOP Conf. Ser.: Mater. Sci. Eng., vol. 1172, Sep. 2021, Art. no. 012034,
IOP Publishing, .

[122] R. Wu, B. Zhang, and M. Hsu, ‘‘Clustering billions of data points
using GPUs,’’ in Proc. Combined Workshops UnConventional High
Perform. Comput. Workshop Plus Memory Access Workshop, May 2009,
pp. 1–6.

[123] NVIDIA. NVIDIA JetsonTM TX2. Accessed: Jun. 16, 2024. [Online].
Available: https://www.nvidia.com/en-gb/autonomous-machines/embed
ded-systems/jetson-tx2/

[124] NVIDIA. NVIDIA Jetson Xavier NX Series. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.nvidia.com/en-gb/
autonomous-machines/embedded-systems/jetson-xavier-nx/

[125] AMD, 1st and 2ndGeneration AMDEmbeddedG-Series SoCs. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.amd.com/system/files/
2017-06/g-series-soc-product-brief.pdf

[126] C. Adams, A. Spain, J. Parker, M. Hevert, J. Roach, and D. Cotten,
‘‘Towards an integrated GPU accelerated SoC as a flight computer for
small satellites,’’ in Proc. IEEE Aerosp. Conf., Sep. 2019, pp. 1–7.

[127] C. Bonesteel, E. Tichenor, E. Miller, and A. Rodriguez, ‘‘Co-operating
systems: A technical overview of multiple onboard operating systems,’’
in Proc. 36th Annu. Small Satell. Conf., 2022, pp. 1–4.

[128] Spiral Blue. SE-1. Space Edge One. Accessed: Jun. 16, 2024. [Online].
Available: https://www.spiralblue.space/edge-computing-for-space

[129] Unibap. SpaceCloud iX5-106. Accessed: Jun. 16, 2024. [Online].
Available: https://unibap.com/solutions/spacecloud-hardware/ix5/

[130] R. Wright, M. Nunes, P. Lucey, L. Flynn, T. George, S. Gunapala,
D. Ting, S. Rafol, A. Soibel, C. Ferrari-Wong, A. Flom, J.Mecikalski, and
P. Thenkabail, ‘‘HyTI: Thermal hyperspectral imaging from a CubeSat
platform,’’ in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2019,
pp. 4982–4985.

[131] A. Geist, C. Brewer, M. Davis, N. G. Franconi, S. Heyward, T. W. Wise,
G. Crum, and D. Petrick, ‘‘SpaceCube v3.0 NASA next-generation high-
performance processor for science applications,’’ in Proc. 33rd Annu.
AIAA/USU Conf. Small Satell., 2019.

[132] AMD-Xilinx. AMD Kintex UltraScale FPGAs. Accessed: Jun. 16, 2024.
[Online]. Available: https://www.amd.com/en/products/adaptive-socs-
and-fpgas/fpga/kintex-ultrascale.html#!

[133] Microchip Technology. RTAX Radiation-Tolerant FPGAs. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.microchip.com/en-
us/products/fpgas-and-plds/radiation-tolerant-fpgas/rtax-s

[134] A. Geist, G. Crum, C. Brewer, D. Afanasev, S. Sabogal, D. Wilson,
J. Goodwill, J. Marshall, N. Perryman, N. Franconi, T. Chase, and
T. T. Wise, ‘‘NASA SpaceCube next-generation artificial-intelligence
computing for STP-H9-SCENIC on ISS,’’ presented at the 37th
Annu. Small Satell. Conf., Logan, UT, USA, Aug. 5–10, 2023, Paper
SSC23-P1-32. [Online]. Available: https://digitalcommons.usu.edu/
smallsat/2023/all2023/147/

[135] Microchip Technology,Radiation-Tolerant ProASIC 3FPGAs. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.microchip.com/en-
us/products/fpgas-and-plds/radiation-tolerant-fpgas/rt-proasic-3

[136] Thales Alenia Space Germany. multiMIND Payload Processing Core.
Accessed: Jun. 16, 2024. [Online]. Available: https://connectivity.
esa.int/projects/multimind-eive

[137] R. Amorim, R. Martins, M. Ghiglione, T. Helfers, and P. Harikrishnan,
‘‘Dependable MPSoC framework for mixed criticaly applications,’’ in
Proc. 2nd Eur. Workshop On-Board Data Process. (OBDP), Mar. 2021,
pp. 1–9.

99566 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

[138] D. Lüdtke, T. Firchau, C. G. Cortes, A. Lund, A. M. Nepal,
M. M. Elbarrawy, Z. H. Hammadeh, J.-G. Meß, P. Kenny, F. Brömer,
M. Mirzaagha, G. Saleip, H. Kirstein, C. Kirchhefer, and A. Gerndt,
‘‘ScOSA on the way to orbit: Reconfigurable high-performance comput-
ing for spacecraft,’’ in Proc. IEEE Space Comput. Conf. (SCC), 2023,
pp. 34–44.

[139] L. Manoliu, B. Schoch, S. Haussmann, A. Tessmann, R. Henneberger,
J. Freese, F. Steinmetz, D. Wrana, J. Wörmann, M. Koller, and
I. Kallfass, ‘‘The technology platform of the EIVE CubeSat mission for
high throughput downlinks at W-band,’’ Acta Astronautica, vol. 205,
pp. 80–93, Apr. 2023.

[140] VORAGO Technologies. Arm Cortex-M0 MCUs. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.voragotech.com/arm-
cortexm0-family

[141] Microchip Technology.PolarFire FPGAFamily. Accessed: Jun. 16, 2024.
[Online]. Available: https://www.microchip.com/en-us/products/fpgas-
and-plds/radiation-tolerant-fpgas/rt-polarfire-fpgas

[142] A. Clements. Computer Performance. Accessed: Jun. 16, 2024. [Online].
Available: http://alanclements.org/performance.html

[143] A. C. C. P. de Melo, D. C. Café, and R. A. Borges, ‘‘Assessing power
efficiency and performance in nanosatellite onboard computer for control
applications,’’ IEEE J. Miniaturization Air Space Syst., vol. 1, no. 2,
pp. 110–116, Sep. 2020.

[144] S. Speretta, J. Bouwmeester, A. Menicucci, S. Di Mascio, and
M. S. Uludag, ‘‘Command and data handling systems,’’ in Next Gener-
ation CubeSats and SmallSats, F. Branz, C. Cappelletti, A. J. Ricco, and
J. W. Hines, Eds., Amsterdam, The Netherlands: Elsevier, Jan. 2023,
pp. 369–399.

[145] F. G. H. Leite, R. B. B. Santos, N. E. Araújo, K. H. Cirne,
N. H. Medina, V. A. P. Aguiar, R. C. Giacomini, N. Added, F. Aguirre,
E. L. A. Macchione, F. Vargas, and M. A. G. da Silveira, ‘‘Ionizing
radiation effects on a COTS low-cost RISC microcontroller,’’ in Proc.
16th Eur. Conf. Radiat. Its Effects Compon. Syst. (RADECS), Sep. 2016,
pp. 1–4.

[146] H. Akah, D. Elfiky, K. Shahin, E. Elemam, and A. Anwar, ‘‘Total ionizing
dose effects on commercial ARM microcontroller for low Earth orbit
satellite subsystems,’’ in Proc. Int. Conf. Aerosp. Sci. Aviation Technol.,
vol. 17, 2017, pp. 1–8.

[147] Microchip Technology. RTG4 Radiation-Tolerant FPGAs. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.microchip.com/en-
us/products/fpgas-and-plds/radiation-tolerant-fpgas/rtg4-radiation-
tolerant-fpgas

[148] S. van der Linden, J. Bouwmeester, and A. Povolac, ‘‘Design and
validation of an innovative data bus architecture for CubeSats,’’ in Proc.
Reinventing Space Conf., London, U.K., 2016, pp. 1–13.

[149] B. Grzesik, T. Baumann, T. Walter, F. Flederer, F. Sittner, E. Dilger,
S. Gläsner, J.-L. Kirchler, M. Tedsen, S. Montenegro, and E. Stoll,
‘‘InnoCube—A wireless satellite platform to demonstrate innovative
technologies,’’ Aerospace, vol. 8, no. 5, p. 127, May 2021.

[150] J. Bouwmeester, S. P. van der Linden, A. Povalac, and E. K. A. Gill,
‘‘Towards an innovative electrical interface standard for PocketQubes and
CubeSats,’’ Adv. Space Res., vol. 62, no. 12, pp. 3423–3437, Dec. 2018.

[151] J. Bouwmeester, M. Langer, and E. Gill, ‘‘Survey on the implementation
and reliability of CubeSat electrical bus interfaces,’’ CEAS Space J.,
vol. 9, no. 2, pp. 163–173, Jun. 2017.

[152] A. Albalooshi, A. M. Jallad, and P. R. Marpu, ‘‘Fault analysis and
mitigation techniques of the I2C bus for nanosatellite missions,’’ IEEE
Access, vol. 11, pp. 34709–34717, 2023.

[153] L. Kepko, L. S. Soto, C. Clagett, B. Azimi, A. Cudmore, J. A. Marshall,
D. L. Berry, and S. R. Starin, ‘‘Dellingr: Reliability lessons learned
from on-orbit,’’ presented at the 32nd Annu. AIAA/USU Conf. Small
Satell., Logan, UT, USA, Aug. 4–9, 2018, Paper SSC18-I-01. [Online].
Available: https://digitalcommons.usu.edu/smallsat/2018/all2018/1/

[154] J. Guo, J. Bouwmeester, and E. Gill, ‘‘In-orbit results of Delfi-n3Xt:
Lessons learned and move forward,’’ Acta Astronautica, vol. 121,
pp. 39–50, Apr. 2016.

[155] M. Koller, L. Bötsch-Zavřel, M. Eggert, M. Fugmann, C. Holeczek,
M. Kranz, M. Lengowski, T. Löffler, L.-M. Loidold, P. Maier, J. Meier,
U. Mohr, R. Müller, A. Pahler, S. Pätschke, R. Schweigert, D. Starzmann,
M. Steinert, M. Zietz, and S. Klinkner, ‘‘Lessons learned and first results
of the E-band CubeSat EIVE,’’ 2023, doi: 10.21203/rs.3.rs-3748010/v1.
[Online]. Available: https://www.researchsquare.com/article/rs-
3748010/v1

[156] A. Scholz, T.-H. Hsiao, J.-N. Juang, and C. Cherciu, ‘‘Open source
implementation of ECSS CAN bus protocol for CubeSats,’’ Adv. Space
Res., vol. 62, no. 12, pp. 3438–3448, Dec. 2018.

[157] S. C. Clancy, M. D. Chase, A. Yarlagadda, M. D. Starch, and J. P. Lux,
‘‘SpaceWire as a CubeSat instrument interface,’’ presented at the 8th Int.
SpaceWire Conf., Los Angeles, CA, USA, May 14–18, 2018.

[158] D. José Franzim Miranda, M. Ferreira, F. Kucinskis, and D. McComas,
‘‘A comparative survey on flight software frameworks for ‘new space’
nanosatellite missions,’’ J. Aerosp. Technol. Manage., vol. 11, Oct. 2019,
Art. no. e4619.

[159] C. E. Gonzalez, C. J. Rojas, A. Bergel, and M. A. Diaz, ‘‘An architecture-
tracking approach to evaluate a modular and extensible flight software for
CubeSat nanosatellites,’’ IEEE Access, vol. 7, pp. 126409–126429, 2019.

[160] T. Farges and U. Levi-Cescutti, ‘‘Space flight software systems: An
approach to understanding their open source framework paradigm,’’
SODERN Arianegroup, Limeil-Brévannes, France, Tech. Rep., 2022.

[161] M. Manulis, C. P. Bridges, R. Harrison, V. Sekar, and A. Davis, ‘‘Cyber
security in new space: Analysis of threats, key enabling technologies and
challenges,’’ Int. J. Inf. Secur., vol. 20, no. 3, pp. 287–311, Jun. 2021.

[162] J. Curbo and G. Falco, ‘‘A research agenda for space flight software
security,’’ in Proc. IEEE 9th Int. Conf. Space Mission Challenges for Inf.
Technol. (SMC-IT), 2023, pp. 68–77.

[163] OpenSSF. Scorecard. GitHub Repository. Accessed: Jun. 16, 2024.
[Online]. Available: https://github.com/ossf/scorecard?tab=readme-ov-
file#what-is-scorecard

[164] T. Vladimirova, R. Banu, and M. N. Sweeting, ‘‘On-board security
services in small satellites,’’ presented at the MAPLD Int. Conf.,
Washington, DC, USA, Sep. 7–9, 2005.

[165] J. Pavur and I. Martinovic, ‘‘Building a launchpad for satellite cyber-
security research: Lessons from 60 years of spaceflight,’’ J. Cybersecu-
rity, vol. 8, no. 1, Jan. 2022, Art. no. tyac008.

[166] J. Willbold, M. Schloegel, M. Vögele, M. Gerhardt, T. Holz, and
A. Abbasi, ‘‘Space odyssey: An experimental software security analysis
of satellites,’’ in Proc. IEEE Symp. Secur. Privacy (SP), Sep. 2023,
pp. 1–19.

[167] NASA.Core Flight System. Accessed: Jun. 16, 2024. [Online]. Available:
https://cfs.gsfc.nasa.gov/Introduction.html

[168] NASA. Core Flight System BUNDLE. GitHub Repository. Accessed:
Jun. 16, 2024. [Online]. Available: https://github.com/nasa/cfs

[169] A. Cudmore, ‘‘Porting the core flight system to the Dellingr CubeSat,’’
presented at the Flight Softw. Workshop, Laurel, MD, USA, Dec. 4–7,
2017.

[170] eoPortal. Dellingr CubeSat Demonstration Mission. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.eoportal.org/satellite-
missions/dellingr#space-and-hardware-components

[171] Kubos Corporation. KubOS 1.21.0+13. Accessed: Jun. 16, 2024.
[Online]. Available: https://kubos-preservation-group.github.io/kubos/
index.html

[172] Kubos Corporation. kubOS. GitHub Repository. Accessed: Jun. 16, 2024.
[Online]. Available: https://github.com/kubos/kubos/

[173] ESA.NanoSat MO Framework. Accessed: Jun. 16, 2024. [Online]. Avail-
able: https://nanosat-mo-framework.readthedocs.io/en/latest/index.html#

[174] CCSDS. (2010). Mission Operations Services Concept, Green Book,
CCSDS 520.0-G-3. Accessed: Jun. 16, 2024. [Online]. Available:
https://public.ccsds.org/Pubs/520x0g3.pdf

[175] C. Coelho, O. Koudelka, and M. Merri, ‘‘CCSDS mission operations
services on OPS-SAT,’’ presented at the 10th IAA Symp. Small Satell.
Earth Observ., Berlin, Germany, Apr. 2015.

[176] C. Coelho, O. Koudelka, and M. Merri, ‘‘NanoSat MO framework:
Achieving on-board software portability,’’ presented at the SpaceOps
Conf., Daejeon, South Korea, May 16–20, 2016. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/6.2016-2624

[177] ESA. NanoSat MO Framework. GitHub repository. Accessed:
Jun. 16, 2024. [Online]. Available: https://github.com/esa/nanosat-
mo-framework

[178] A. Marin, C. Coelho, F. Deconinck, I. Babkina, N. Longépé, and M.
Pastena, ‘‘8-Sat-2: Onboard AI apps for earth observation,’’ presented
at the Space Artif. Intell., Online Conf., Sep. 13, 2021.

[179] J.-L. Terraillon, ‘‘SAVOIR: Reusing specifications to improve the way
we deliver avionics,’’ presented at the Embedded Real Time Softw. Syst.
Congr. (ERTS), Toulouse, France, Feb. 1–3, 2012.

[180] CCSDS Application Support Services Working Group. SAVOIR as a
CCSDS Onboard Reference Architecture. Accessed: Jun. 16, 2024.
[Online]. Available: https://cwe.ccsds.org/fm/Lists/Projects/DispForm.
aspx?ID=547

VOLUME 12, 2024 99567

http://dx.doi.org/10.21203/rs.3.rs-3748010/v1

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

[181] P&P Software GmbH. The CORDET Framework. Accessed:
Jun. 16, 2024. [Online]. Available: https://pnp-software.com/cordetfw/
about.html

[182] P&P Software GmbH. CORDET Framework, C2 Implementation.
GitHub Repository. Accessed: Jun. 16, 2024. [Online]. Available: https://
github.com/pnp-software/cordetfw

[183] Amazon Web Services. FreeRTOS Documentation. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.freertos.org/
Documentation/RTOSbook.html.

[184] M. H. Qutqut, A. Al-Sakran, F. Almasalha, and H. S. Hassanein,
‘‘Comprehensive survey of the IoT open-source OSs,’’ IET Wireless
Sensor Syst., vol. 8, no. 6, pp. 323–339, Dec. 2018.

[185] A. Yahyaabadi, M. Driedger, V. Parthasarathy, R. Sahani, A. Carvey,
T. Rahman, V. Platero, J. Campos, and P. Ferguson, ‘‘ManitobaSat-1:
Making space for innovation,’’ in Proc. IEEE Can. Conf. Electr. Comput.
Eng. (CCECE), Sep. 2019, pp. 1–4.

[186] I. Latachi, T. Rachidi, M. Karim, and A. Hanafi, ‘‘Reusable and reliable
flight-control software for a fail-safe and cost-efficient CubeSat mission:
Design and implementation,’’Aerospace, vol. 7, no. 10, p. 146, Oct. 2020.

[187] M. Doyle et al., ‘‘Flight software development for the EIRSAT-1
mission,’’ presented at the 3rd Symp. Space Educ. Activities, Leicester,
U.K., Sep. 16–18, 2019.

[188] RTEMS Project. RTEMS Documentation Project. Accessed:
Jun. 16, 2024. [Online]. Available: https://docs.rtems.org/

[189] F. Nicodemos, O. Saotome, and G. Lima, ‘‘RTEMS core analysis for
space applications,’’ in Proc. III Brazilian Symp. Comput. Syst. Eng.,
Dec. 2013, pp. 125–130.

[190] G. Bloom and J. Sherrill, ‘‘Scheduling and thread management with
RTEMS,’’ ACM SIGBED Rev., vol. 11, no. 1, pp. 20–25, Feb. 2014.

[191] S. Montenegro and F. Dannemann, ‘‘RODOS—Real time kernel design
for dependability,’’ in Proc. DASIA DAta Syst. Aerosp., vol. 669, 2009,
p. 66.

[192] F. Dannemann and S. Montenegro, ‘‘Embedded logging framework for
spacecrafts,’’ in Proc. DASIA DAta Syst. Aerosp., vol. 720, L. Ouwehand,
Ed., Aug. 2013, p. 52.

[193] C. Lenzen, M. T. Woerle, T. Göttfert, F. Mrowka, and M.
Wickler, ‘‘Onboard planning and scheduling autonomy within
the scope of the FireBird mission,’’ presented at the SpaceOps
Conf., Pasadena, CA, USA, May 5–9, 2014. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/6.2014-1759

[194] K. Götz, K. Schwenk, and F. Huber, ‘‘VIMOS—Modular commanding
and execution framework for onboard remote sensing applications,’’ in
Proc. Conf. Big Data From Space (BiDS), Jan. 2014, pp. 255–258.

[195] Wind River Systems. VxWorks: Real-Time Operating System for
the Intelligent Edge. Accessed: Jun. 16, 2024. [Online]. Available:
https://www.windriver.com/products/vxworks

[196] P. Hambarde, R. Varma, and S. Jha, ‘‘The survey of real time operating
system: RTOS,’’ in Proc. Int. Conf. Electron. Syst., Signal Process.
Comput. Technol., Jan. 2014, pp. 34–39.

[197] eoPortal. PEARL CubeSat Bus Initiative. Accessed: Jun. 16, 2024.
[Online]. Available: https://www.eoportal.org/other-space-
activities/pearl#pearlsoft-flight-software

[198] H. Leppinen, ‘‘Current use of Linux in spacecraft flight software,’’ IEEE
Aerosp. Electron. Syst. Mag., vol. 32, no. 10, pp. 4–13, Oct. 2017.

[199] S. Flagg, T. Bleier, C. Dunson, J. Doering, L. DeMartini, P. A.
Clarke, L. Franklin, J. Seelbach, J. Flagg, M. Klenk, V. Safradin,
J. Cutler, A. Lorenz, and E. Tapio, ‘‘Using nanosats as a proof
of concept for space science missions: QuakeSat as an operational
example,’’ presented at the 18th Annu. AIAA/USU Conf. Small
Satell., Logan, UT, USA, Aug. 9–12, 2004. [Online]. Available:
https://digitalcommons.usu.edu/smallsat/2004/All2004/53/

[200] M. Schmidt and K. Schilling, ‘‘An extensible on-board data handling
software platform for pico satellites,’’ Acta Astronautica, vol. 63,
nos. 11–12, pp. 1299–1304, Dec. 2008.

[201] H. Leppinen, P. Niemelä, N. Silva, H. Sanmark, H. Forstén, A.
Yanes, R. Modrzewski, A. Kestilä, and J. Praks, ‘‘Developing a linux-
based nanosatellite on-board computer: Flight results from the Aalto-1
mission,’’ IEEE Aerosp. Electron. Syst. Mag., vol. 34, no. 1, pp. 4–14,
Jan. 2019.

[202] A. Guillen, W. Attai, K. Oyadomari, C. Priscal, R. Shimmin, O. Gazulla,
and J. Wolfe, ‘‘PhoneSat in-flight experience results,’’ presented at the
Small Satell. Syst. Services Symp., Majorca, Spain, May 26–30, 2014.

[203] S. Kenyon, C. Bridges, D. Liddle, R. Dyer, J. Parsons, D. Feltham,
R. Taylor, D. Mellor, A. Schofield, and R. Linehan, ‘‘STRaND-1: Use
of a 500 smartphone as the central avionics of a nanosatellite,’’ in Proc.
62nd Int. Astron. Congr. (IAC), Cape Town, South Africa, vol. 11, Oct.
2011, pp. 4051–4069.

[204] A. Russo and G. Lax, ‘‘Using artificial intelligence for space challenges:
A survey,’’ Appl. Sci., vol. 12, no. 10, p. 5106, May 2022.

[205] R. Horne, S. Mauw, A. Mizera, A. Stemper, and J. Thoemel, ‘‘Anomaly
detection using deep learning respecting the resources on board a
CubeSat,’’ J. Aerosp. Inf. Syst., vol. 20, no. 12, pp. 859–872, Dec. 2023.

[206] D. A. Zeleke and H.-D. Kim, ‘‘A new strategy of satellite autonomy
with machine learning for efficient resource utilization of a standard
performance CubeSat,’’ Aerospace, vol. 10, no. 1, p. 78, Jan. 2023.

[207] E. Gill, P. Sundaramoorthy, J. Bouwmeester, B. Zandbergen, and
R. Reinhard, ‘‘Formation flying within a constellation of nano-satellites:
The QB50 mission,’’ Acta Astronautica, vol. 82, no. 1, pp. 110–117,
Jan. 2013.

[208] A. Kak and I. F. Akyildiz, ‘‘Large-scale constellation design for the
Internet of space things/CubeSats,’’ in Proc. IEEE Globecom Workshops
(GC Wkshps), Dec. 2019, pp. 1–6.

[209] NASA Jet Propulsion Laboratory. Sun Radio Interferometer Space
Experiment (SunRISE). Accessed: Jun. 16, 2024. [Online]. Avail-
able: https://www.jpl.nasa.gov/missions/sun-radio-interferometer-space-
experiment/

[210] NASA. (2020). 2020 NASA Technology Taxonomy. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.nasa.gov/otps/2020-
nasa-technology-taxonomy/

[211] Space Micro. Proton-600k Multi-Core Computer. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.spacemicro.com/
products/digital-systems.html

[212] G. Giuffrida, L. Fanucci, G. Meoni, M. Batic, L. Buckley, A. Dunne,
C. van Dijk, M. Esposito, J. Hefele, N. Vercruyssen, G. Furano,
M. Pastena, and J. Aschbacher, ‘‘The F-Sat-1 mission: The first on-board
deep neural network demonstrator for satellite Earth observation,’’ IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 3125567.

[213] I. V. Belokonov, A. V. Kramlikh, and M. E. Melnik, ‘‘Application of
artificial intelligence technology in the nanosatellite attitude determina-
tion problem,’’ IOP Conf. Ser., Mater. Sci. Eng., vol. 984, Nov. 2020,
Art. no. 012036.

[214] S. K. Ibrahim, A. Ahmed, M. A. E. Zeidan, and I. E. Ziedan, ‘‘Machine
learning techniques for satellite fault diagnosis,’’ Ain Shams Eng. J.,
vol. 11, no. 1, pp. 45–56, Mar. 2020.

[215] X. He and R. E. Geer, ‘‘High total-dose proton radiation tolerance in
TiN/HfO2/TiN ReRAM devices,’’ MRS Proc., vol. 1430, Jan. 2012,
Art. no. mrss12-1430.

[216] D. J. Evans, ‘‘OPS-SAT: FDIR design on a mission that expects
bugs—And lots of them,’’ presented at the SpaceOps Conf.,
Daejeon, South Korea, May 16–20, 2016. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/6.2016-2481

[217] J. Willis, P. Walton, D. Wilde, and D. Long, ‘‘Miniaturized solutions for
CubeSat servicing and safety requirements,’’ IEEE J. Miniaturization Air
Space Syst., vol. 1, no. 1, pp. 3–9, Jun. 2020.

[218] A. Utter, M. P. Zakrzewski, A. C. Keene, S. Dietrich, S. Lin,
E. J. McDonald, N. Whitehair, and J. X. Zheng, ‘‘SatCat5: A low-power,
mixed-media Ethernet network for smallsats,’’ presented at the 34th
Annu. Small Satell. Conf., Logan, UT, USA, Aug. 1–3, 2020. [Online].
Available: https://digitalcommons.usu.edu/smallsat/2020/all2020/174/

[219] D. Ohlsson, H. Löfgren, E. Vinterhav, and S. Strålsjö, ‘‘Enabling
advanced missions on small platforms through designing cost effec-
tive SpaceWire-based avionics solutions in the CubeSat form factor:
SpaceWire missions and applications, short paper,’’ in Proc. Int.
SpaceWire Conf. (SpaceWire), Oct. 2016, pp. 1–5.

[220] Alén Space. TRISKEL: OBC, TTC OBSW a Single Module. Accessed:
Jun. 16, 2024. [Online]. Available: https://products.alen.space/
products/triskel/

[221] EnduroSat. On Board Computer. Accessed: Jun. 16, 2024. [Online].
Available: https://www.endurosat.com/cubesat-store/cubesat-obc/
onboard-computer-obc/

[222] GomSpace. NanoMind A3200. Accessed: Jun. 16, 2024. [Online].
Available: https://gomspace.com/shop/subsystems/command-and-data-
handling/nanomind-a3200.aspx

99568 VOLUME 12, 2024

A. Cratere et al.: On-Board Computer for CubeSats: State-of-the-Art and Future Trends

[223] NanoAvionics. CubeSat OBC Main Bus Unit SatBus 3C2. Accessed:
Jun. 16, 2024. [Online]. Available: https://nanoavionics.com/cubesat-
components/cubesat-on-board-computer-main-bus-unit-satbus-3c2/

[224] Spacemanic. Deep Thought On-board Computer. Accessed:
Jun. 16, 2024. [Online]. Available: https://www.spacemanic.com/deep-
thought-onboard-computer/

[225] I. Sünter, ‘‘Design and characterisation of subsystems and software for
ESTCube-1 nanosatellite,’’ Ph.D. thesis, Tartu Univ., Tartu, Estonia,
2019.

[226] T. Kuwahara, F. Böhringer, A. Falke, J. Eickhoff, F. Huber, and
H.-P. Röser, ‘‘FPGA-based operational concept and payload data process-
ing for the flying laptop satellite,’’ Acta Astronautica, vol. 65, nos. 11–12,
pp. 1616–1627, Dec. 2009.

[227] P. Harikrishnan, ‘‘Deterministic COTS based OBC for high performance
and mixed criticality applications,’’ presented at the 16th ESA Work-
shop Avionics, Data, Control Softw. Syst. (ADCSS), Noordwijk, The
Netherlands, Oct. 25–27, 2022.

[228] eOPortal. INTUITION-1 Mission. Accessed: Jun. 16, 2024. [Online].
Available: https://www.eoportal.org/satellite-missions/intuition-
1#performance-specifications

[229] KP Labs. Antelope. Accessed: Jun. 16, 2024. [Online]. Available:
https://kplabs.space/antelope/

[230] Space Inventor. Z7000-P4. Accessed: Jun. 16, 2024. [Online]. Available:
https://space-inventor.com/modules/z7000

[231] Space Micro. Proton-400k Single Board Computer. Accessed:
Jun. 16, 2024. [Online]. Available: https:// www.spacemicro.com/
products/digital-systems.html

[232] eoPortal. Lunar IceCube. Accessed: Jun. 16, 2024. [Online]. Available:
https://www.eoportal.org/satellite-missions/lunar-icecube

[233] A. Pawlitzki, F. Steinmetz, and T. A. S. Germany, ‘‘multiMIND-
High performance processing system for robust newspace payloads
| Thales Alenia Space Germany,’’ presented at the 2nd Eur.
Workshop Board Data Process. (OBDP), Jun. 14–17, 2021. [Online].
Available: https://atpi.eventsair.com/QuickEventWebsitePortal/obdp-
2021/website/ExtraContent/ContentPage?page=10

[234] NASA. SpaceCube Flight Processor Card Family. Accessed:
Jun. 16, 2024. [Online]. Available: https://spacecube.nasa.gov/

[235] Ubotica Technologies. CogniSAT-XE1. Accessed: Jun. 16, 2024.
[Online]. Available: https://ubotica.com/product/cognisat-xe1-product-
overview/

ANGELA CRATERE received the master’s degree
in astrophysics and cosmology from the University
of Bologna, in 2021. She is currently pursuing
the Ph.D. degree with the Department of Elec-
trical and Information Engineering, Polytechnic
University of Bari. Her project aims to design and
develop C&DH subsystems for small satellites,
in particular for CubeSat applications. Throughout
her career, she has had various research interests,
ranging from gravitational wave astrophysics to

onboard microelectronic technologies for space systems. Her main research
interests include investigation concern high-performance and high-reliability
embedded systems for onboard data processing, with a particular emphasis
on the use of ML techniques for nanosatellite onboard image processing.

LEANDRO GAGLIARDI received the bache-
lor’s degree in electronics engineering from the
National University of La Matanza (UNLaM).
He is currently pursuing the Ph.D. degree with
Universidad Nacional de San Martín-CONICET,
focusing on applied sciences and engineering.
His expertise includes developing electronics for
satellite payloads. He has contributed to the
development of small satellite’s payloads and
onboard computers for small satellites. He has co-

authored a publication in IEEE EMBEDDED SYSTEMS LETTERS. His research
interests include testing and validating electronic components for space
applications.

GABRIEL A. SANCA received the bachelor’s
degree in electronic engineering from the School
of Engineering, University of Buenos Aires
(FIUBA), and the Ph.D. degree in applied sciences
and engineering from the School of Science and
Technology (ECyT), Universidad Nacional de San
Martín-CONICET. He received the bachelor’s the-
sis on ‘‘Development of an Interoperable Design
Kit and a Set of Standard Open Cells for a Scalable
CMOS Process’’ with the Microelectronics Lab-

oratory. He received the Ph.D. thesis on ‘‘Integration of RS Devices with
CMOS Technology for Hostile Environment Applications.’’ He is currently
the Head of the Electronic Engineering Program and a Professor with
ECyT, Universidad Nacional de San Martín-CONICET. He is also with the
Nanoelectronic Integration Laboratory, ECyT, Universidad Nacional de San
Martín-CONICET. His research interests include the design of integrated
circuits, micro/nano devices, and applications in hostile environments, with
a particular focus on space systems.

FEDERICO GOLMAR received the Ph.D. degree
in engineering from the University of Buenos
Aires, Argentina. He is currently the Dean and
a Professor with the School of Science and
Technology (ECyT), Universidad Nacional de San
Martín-CONICET. He has made contributions to
understanding and manipulating material proper-
ties at the nanoscale. He has authored numerous
publications and holds several positions in various
scientific organizations. At ECyT, Universidad

Nacional de SanMartín-CONICET, he leads the Nanoelectronics Integration
Laboratory. His research interests includematerials science, nanotechnology,
spintronics, and microelectronics.

FRANCESCO DELL’OLIO (Senior Member,
IEEE) received the M.S. degree in electronic
engineering and the Ph.D. degree from the
Polytechnic University of Bari, Bari, Italy, in
2005 and 2010, respectively.

In 2015, he joined the Department of Electrical
and Information Engineering, Polytechnic Univer-
sity of Bari, as an Assistant Professor, where he
was promoted to an Associate Professor, in 2022.
He is the coauthor of two books, published by

Springer and World Scientific, and more than 60 articles in international
peer-reviewed journals. He has been involved in several research projects
funded by Italian Ministry of University and Research, European Space
Agency, Italian Space Agency, and industrial companies, some of which
involved taking on the role of a Principal Investigator. His research interests
include silicon photonics and nanophotonics, with particular regard to
modeling, design, and characterization of devices and integrated circuits for
telecommunications and sensing. He has of late branched into miniature
sensor-based embedded systems. He is a regular member of organizing
committees and program committees for international conferences, including
the Conference on Lasers and Electro-Optics (CLEO), the Society of
Photo-Optical Instrumentation Engineers (SPIE) Photonics West, and the
IEEE Photonics Conference.

Open Access funding provided by ‘Politecnico di Bari’ within the CRUI CARE Agreement

VOLUME 12, 2024 99569

