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ABSTRACT This paper addresses the critical challenge of optimal allocation of Thyristor-Controlled Series
Compensator (TCSC) devices in transmission power systems through an innovative optimization framework.
Leveraging an Enhanced Gradient-Based Algorithm (EGBA) augmented with a crossover operator, the
proposed methodology seeks to promote diversity in the solutions generated in each iteration, aiming to
maximize the efficiency of power transmission networks. The algorithm incorporates key components such
as the Gradient Search Process (GSP) and Local Escaping Process (LEP) to guide the exploration process and
prevent premature convergence to suboptimal solutions. Additionally, the crossover operator, a novel addition
in the EGBA, facilitates the exchange of TCSC configurations between solutions, contributing to solution
diversity and potentially revealing novel optimal allocations. Initially, the EGBA and GBA performances are
estimated using the CEC 2017 benchmarks. Moreover, to assess the practical applicability of the suggested
EGBA, it is specifically tailored and implemented to enhance the operation of transmission power systems.
The primary objective is to minimize technical power losses, considering varying numbers of TCSC devices
with experimentation on two distinct IEEE power systems, one with 30 buses and another with 57 buses. The
results are analyzed to validate the ability of the EGBAmethod in optimizing power systems and addressing
technical losses. The novel proposed EGBA method significantly reduces power losses compared to the
original GBA method in both tested power systems. In the first system, the EGBA achieved 0.85%, 2.99%,
and 1.32% lower losses than the GBA when optimizing for one, two, and three TCSC devices, respectively.
In addition, the objective of enhancing the security margin of the transmission lines is involved to optimize
the power flow besides the minimization function of power losses. Similarly, in the second system, the
EGBA outperformed the original GBA by 5.19%, 6.32%, and 5.12% for the same TCSC configurations. The
simulation results demonstrate that the proposed EGBA is not only more effective but also more efficient
than the original GBA and other recent approaches.

INDEX TERMS TCSC technology, TCSC allocation optimization, gradient-based algorithm, CEC
2017 benchmarks, transmission systems.
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I. INTRODUCTION
A static non-linear programming issue that takes into con-
sideration the electrical elements of massive transmission
power grids is called the optimal power flow (OPF). While
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optimizing vital objectives, the primary purpose of the chal-
lenge is to identify the steady-state functioning points of
all electric elements accessible to the power systems [1],
[2]. The OPF problem takes into account several individual
goals, including entire power losses, the fuel costs for power
generation electricity, voltage deviations, polluted emissions,
and voltage stability index [3]. Furthermore, the issue of OPF
requires that a set of operational and physical constraints be
accurately met. These constraints include those enforced by
devices and network limitations, such as switchable capac-
itor banks, transmission line capacity limits, bus voltages,
transformer taps, active and reactive generators’ power, and
transformer taps [4], [5]. Essentially, in order to obtain other
dependent variables such as the voltage magnitude at other
buses, and the reactive power of the generators, the control
variables such as voltage magnitude at generation buses, the
active power of the generators, transformer tap settings, and
injected reactive power at capacitor buses of the OPF problem
must first be determined [6], [7], [8].

Real-world electrical networks frequently use TCSC tech-
nology due to the fact that is a robust and reasonably
priced series FACTs device with exceptional performance
that enables precise, dependable power flow regulation of
power lines [9]. The use of TCSC devices, which provide
series compensating characteristics, is one of the most afford-
able approaches to increase the transmission network’s real
electrical carrying capacity [10], [11]. In order to reduce
area frequency fluctuations and tie-line power, three series
FACTs apparatuses, which are the thyristor controlled phase
shifter (TCPS), the TCSC, and the static synchronous series
compensator (SSSC), are being considered and emulated in
Automatic Generation Control (AGC) assessments pertain-
ing to multi-area associated electrical networks [12]. The
Improved Particle Swarm Optimization Technique (IPSOT)
has been employed as a solution tool in conjunction with the
Integral of Time multi-plied Squared Error (ITSE) as the goal
of reduction to construct the damper controllers. In terms of
vibration dampening at area frequencies and tie-line trans-
mission powers, the TCSC-AGC has demonstrated better
performance than the TCPS and SSSC. Sensitivity testing
has also been conducted to demonstrate the TCSC-AGC’s
resilience through the practical deployment of the TCSC
in transmission networks that highlighted its benefits over
SSSC [13]. A variety of conventional andmetaheuristicmeth-
ods have recently been developed to address OPF such as
sequential unconstrained methodology [14], interior point
method [15], fuzzy linear framework [16], linear and nonlin-
ear programming [17], [18], and Newton-based method [19]
are examples of conventional methodologies. It should be
highlighted, therefore, that these techniques are not helpful
for significant electrical networks and do not result in globally
optimum solutions. Thus, scientists have worked to develop
metaheuristic techniques to overcome the shortcomings of
earlier approaches [20].
Consequently, developing metaheuristic techniques is

essential to overcoming the above-described limitations.

Using a range of heuristic (population-based) approaches to
tackle different OPF challenges has been more common in
the last 20 years [21], [22]. Various solutions for augmenting
the procedures have been characterized to reduce the power
losses. An improved social spider optimizer has been outlined
in [23] that balances the movement patterns of male and
female spiders to minimize power losses. An alteration was
made to the JAYA algorithm, enhancing its capability to refine
generated solutions by incorporating adjustments based on
the worst and best solutions regarding voltage profile and
losses [24]. Gorilla troops optimizer was developed for
designing fractional order controller integrating tilt integral
derivative for stabilizing a three-area hybrid power system
in [25] while a grasshopper optimization was hybridized
with bald eagle searching algorithm [26] to address the unit
commitment. In [27], graphical processing units (GPU-native
sparse direct solver) have been employed to improve the over-
all performance alternating current OPF analysis. An invasive
weed optimizer (IWO) was presented in [28] to combina-
tional approach for OPF research with the inclusion of FACTs
while an Emended Crow Search Algorithm (ECSA) was
utilized on the OPF with adjustments involving a novel bat
technique [29]. A placementmethodology for TCSC in power
systems that takes into account both line interruptions and
normal operation was developed in [30]. In order to minimize
the power system’s voltage stability index, voltage deviation
and power loss, the stochastic OPF problem has been handled
in [31] with the use of an adaptive Lightning Attachment
Procedure Technique (ALAPT) with the inclusion of renew-
able sources. In [32], the impact of hydro constraints has
been investigated in the operation of hydrothermal systems
via a nonlinear multi-period hydrothermal OPFmodel. While
the study resulted in a notable reduction in transmission line
overloads during the IEEE 5 bus and 14 bus networks, it failed
to determine the appropriate TCSC sizing in the investigated
networks, which has a significant impact on these applica-
tions. In [33], the OPF has been solved by the error bound
which could be represented by greatest discrepancy between
the best possible outcomes of OPF models. In [34], Social
Network Search Approach (SNSA) has been employed on a
multi- OPF and applied on practical electrical system. Gorilla
Troops Technique (GTT) was carried out on the IEEE 30 bus
grid in [35] and addition of TCSCmodules to the IEEE 30 bus
system in [36]. However, the allocation and size of the TCSC
devices have not been studied. To increase the voltage sta-
bility and available transfer capability, a multi-objective PSO
for the multi-objective optimal allocation model for TCSC
has been performed in [37]. This study presented a chaos ini-
tialization approach and then set up a variable inertia weight
configuration for the IEEE-30 bus system, which can only
be used to one transmission network. To find the best posi-
tion and compensation level of TCSC devices, an enhanced
version of GA was presented in [38]. To improve the transfer
capacity that is accessible in power systems, the proposed GA
was integrated with twofold mutation probabilities. A modi-
fied version of Subtraction-Average-Based Optimizer (SAO)
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for TCSC allocation, which lessens losses in electric power
grids, is provided in [39]. This study modifies the usual SAO
by incorporating a cooperative learning strategy powered by
the leader solution.

To obtain OPF solutions, the authors employed an
improved particle swarm optimization technique. The OPF
of IEEE 30- and 57-bus networks provided with TCSC and
TCPS was carried out in [40]. The analysis considered the
positions of the FACTs devices to be fixed. Improved particle
swarm optimisation was used in [41] to solve the OPF created
with serial FACTs devices, where it was capable of handling
challenging OPF situations. Using a generalized interline
power flow controller (GIPFC), the OPF problem has been
tackled in [42] and improved the efficiency of the current
transmission lines. Employing the ameliorated ant lion opti-
mization technique, the authors were able to find the solutions
for the OPF modeled with FACTs. To generate high-quality
OPF solutions, the success history-based adaptive differen-
tial evolution (SHADE) technique has been combined with
the overpowering of feasible solutions constraints address-
ing strategy. Using the adaptive parallel seeker optimization
technique, OPF solutions have been achieved in [43] while
taking into account the best possible allocation of TCSC.
Case studies with OPF were conducted under both nominal
and contingency settings. Numerous methods exhibit remark-
able convergence characteristics and proficiently establish
inequality bounds. Nonetheless, these conventional strategies
are susceptible to getting trapped in local minima due to
their reliance on the initial setup, rendering them incapable
of attaining the true optimal outcome. Furthermore, while
dealing with discrete and integer variables, each technique
struggles and necessitates modelling specific versions of the
OPF. Therefore, creating metaheuristic methods is crucial to
getting over the restrictions mentioned above [44].
In order to enhance the power system available transfer

capability, optimizing the TCSC parameters and places was
addressed for mitigating the network congestion [45]. The
system’s sensitivity to parameter changes was estimated in
this study using sensitivity factor-based approaches. These
approaches, nevertheless, are limited to linear approxima-
tions of system behaviour and may occasionally fail to
identify the globally best solution, which could end up to
inadequate outcomes in nonlinear systems. Sensitivity-based
approaches are therefore less effective when many TCSCs
are needed to relieve electrical grid congestion. Several
heuristic/metaheuristic techniques can be used to concur-
rently locate and optimise TCSCs in order to overcome
this problem. In [46], the integration of FACTs devices into
the system has been coded using Newton Raphson load
flow equations to determine their optimal locations while a
heuristic optimization algorithms in [47] has been adopted to
identify suitable locations for FACTs devices and optimize
their parameters. In [48], a GA has been designed to opti-
mize a nonlinear objective function, focusing on the practical
incorporation of FACTs devices within a congested network.
In [49], Teaching-Learning-Based Optimizer (TLBO), Gray

Wolf Optimizer (GWO) and Particle SwarmOptimizer (PSO)
have been applied and compared for optimizing the TCSC
reactance for stable system operation and congestion miti-
gation. In this study, the suitable locations were determined
in a separate pre-stage employing the line utilization factors.
Thereafter, TLBO, GWO and PSO have been contrasted with
the application on the standard IEEE-30 bus systemwhere the
findings indicated that TLBO provided better performance
than PSO andGWO.Unfortunately, because the pre-specified
TCSC placement using the line utilisation factor was predi-
cated on a single static operating situation, it might not be able
to adjust efficiently to changes in real time brought about by
fluctuating loads and generation patterns. Under the changed
circumstances in the power system, this static placement
might not be beneficial. Additionally, under certain operating
conditions, the pre-specified placements might not always
find the best places to mitigate congestion, which could result
in suboptimal performance in congestion management and
voltage stability.

This study demonstrates an Enhanced Gradient-Based
Algorithm (EGBA) incorporating the Gradient Search Pro-
cess (GSP) and Local Escaping Process (LEP) for handling
different benchmark functions and the TCSC optimal alloca-
tion issue. The exceptional indicated solution contains GSP
and LEP to guide the exploration process and prevent pre-
mature convergence to suboptimal solutions. Initially, the
effectiveness of the proposed EGBA and GBA is evaluated
using the CEC 2017. Besides, to assess the practical applica-
bility of the proposed EGBA is specifically implemented for
the optimal allocation of TCSC devices to minimize technical
power losses in transmission power systems. Furthermore,
the accuracy and superiority of the proposed EGBA over the
others can be observed while considering a range of TCSC
devices.

■ A new metaheuristic approach called EGBA is devel-
oped.

■ The EGBA algorithm is utilized to determine the best
placement and rating for TCSC devices that are inte-
grated with the IEEE 30-bus and IEEE 57-bus power
network.

■ It is successfully implemented for enhancing power sys-
tem performance via TCSC allocation under varying
numbers of TCSC devices.

■ Additionally, the goal of improving the security margin
of transmission lines is incorporated to optimize power
flow, alongside the objective of minimizing power
losses.

■ The voltage profile is further improved for all buses
based on the proposed EGBAwith average improvement
of 7.22% and 8.08% for both systems.

■ The results of the simulation reveal that the proposed
EGBA outperforms many other modern alternatives as
well as the original GBA in terms of effectiveness and
efficacy. Also, the proposedmethod is proven to be supe-
rior by the statistics and convergence analysis results
considering CEC 2017 benchmark functions.
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The following is the structure of the remaining portions of
the paper: The approach to use for minimizing power losses
when TCSC devices are present is discussed in Section II.
The optimization frameworks for the original GBA and its
improved version (EGBA) are provided in Section III. The
simulation findings, which are divided into two subsections,
are presented in Section IV. The experimental research con-
ducted to identify the optimal EGBA version is covered in the
first subsection. The allocation and size problem for TCSC
devices to lower the power network losses is provided in
the second subsection. This solution is derived using the
suggested EGBA and additional competitive metaheuristic
algorithms. The findings of the current study are discussed
in Section V.

II. PROBLEM FORMULATION: TCSC ALLOCATION IN
TRANSMISSION NETWORKS
A. TCSC MODELING
Among the various FACTs devices, the TCSC stands out
as a popular choice due to its numerous benefits. These
benefits include its effectiveness, rapid response time, and
cost-efficiency [50]. The TCSCs can operate in two modes:
inductive and capacitive, allowing them to either increase or
decrease the reactance of a transmission line. Figure 1(a)
illustrates how a TCSC is connected in series with a trans-
mission line within a power network. Its internal structure
consists of a capacitor (C) in parallel with an inductor (L),
with their combined behavior controlled by a thyristor-based
valve. The valve’s operation is determined by the extinction
angle (α), which can be adjusted within a range of 90◦ to 180◦

[51]. The TCSC compensator acts as a variable capacitor,
changing the reactance (resistance to AC current) of the
transmission line as depicted in Fig. 1(b) [52]. Essentially,
the TCSC’s reactance replaces the original reactance of the
transmission line (XLine). To avoid overcompensating the line,
the necessary XTCSC value can be calculated using a specific
equation [53].

XTCSC (α) =
XL(α) × XC
XL(α) + XC

(1)

XL(α) =

(
π

π − sin(2α) − 2α

)
XL,max (2)

XL ,max = (2π f )L, XC =
−1

j (2π f )C
(3)

By replacing the terms XL(α) and XC , the formulation of
Eq. (1) becomes as follows:

XTCSC (α) =

(
π

−2α−sin(2α)+π

)
XL,max × XC

XC +

(
π

−2α−sin(2α)+π

)
XL,max

(4)

B. LOSSES MINIMIZATION AND CONSTRAINTS
Reducing total network losses is the main objective since it
improves voltage profile and electrical system performance.
For computing purposes, this objective function (OF) can be

FIGURE 1. (a) TCSC Circuit model (b) Configuration of transmission line
with TCSC [54].

mathematically described as follows [55]:

PLoss=
Nbus∑
m=1

Nbus∑
n=1
m̸=n

Gmn
(
V 2
m − 2×

(
VmVncos (θmn)+V 2

n

)
(5)

where the variables θmn and Vmn indicate the phase angle and
voltage difference, respectively, between busesm and n, while
Nbus denotes the number of buses. Moreover, Gmn indicates
the conductance of the transmission line connecting buses m
and n.

Lots of equality and inequalities constraints pertaining to
both dependent and independent variables must be satisfied
in order to address the TCSC allocation problem.

The following are the control variables for optimum TCSC
allocation challenges:

1. Reactance compensation for each TCSC device that
needs to be deployed.

2. Each TCSC device that is installed will require the
selection of potential transmission lines.

3. Injecting reactive power into the transmission system
with the use of current Var sources.

4. The voltage of the generator
5. The output powers of the generator.
6. Transformer tap configurations.
Therefore, Equations. (6) and (7) indicate that the speci-

fications for reactance compensation, independent variables,
and TCSC places are required to be satisfied.

−50%XLineTCSC,k ≥ XTCSC (α)k ≥ +50%XLineTCSC,p ,

k = 1, 2, . . .NTCSC (6)

Nlines ≥ LineTCSC,k ≥ 1, k = 1, 2, . . .NTCSC
(7)

VOLUME 12, 2024 97809



A. S. Aljumah et al.: Enhancing Power System Performance via TCSC Technology Allocation

where LineTCSC,k refers to the potential lines for fixing TCSC
devices; Nlines expresses the entire number of transmission
lines; NTCSC signifies the entire number of allocated TCSC
devices; XLineTCSC,k designates the reactance of the corre-
sponding lines which are designated for fixing TCSC device.

Regarding independent variables, Equations (8)–(11) con-
trol the limitations for tap settings, generator output powers,
generator voltage, and reactive power injection from Var
sources, respectively [56].

Tpmink ≤ Tpk ≤ Tpmaxk , k = 1, 2, . . .Nt (8)

Pgnminm ≤ Pgnm ≤ Pgnmaxm ,m = 1, 2, . . .Ngn (9)

Vgnminm ≤ Vgnm ≤ Vgnmaxm ,m = 1, 2, . . .Ngn (10)

QIminVr ≤ QIVr ≤ QImaxVr ,Vr = 1, 2, . . .Nq (11)

where Nq designates the entire number of VAr sources, Ngn
indicates the entire number of generation plants, andNt stands
for the entire number of transformers. Pgn describes the
real generators’ power output; Tp reveals the tap values that
describe the tap transformers. Besides, the two symbols Vgn
and QI illustrate the generators’ voltages and the reactive
power that are injected by VAr sources, respectively.

Furthermore, with regards to dependent variables, the
restrictions pertaining to apparent power flow across the
transmission lines, bus voltage, and generators’ reactive
power output are handled by Eqs. (12)–(14).

|SFL | ≤ SFmaxL ,L = 1, 2, . . .Nlines (12)

Vmin
m ≤ Vm ≤ Vmax

m ,m = 1, 2, . . .Nbus (13)

Qgminm ≤ Qgm ≤ Qgmaxm ,m = 1, 2, . . .Ng (14)

where SF signifies transmission flow constraints and Qg
indicates the generators’ reactive power.

While minimizing network losses, it’s crucial to maintain
the balance between active and reactive power at each bus
in the system. This balance is ensured by fulfilling specific
equality constraints, which are achieved through the execu-
tion of a load flow analysis.

III. PROPOSED EGBA FOR OPTIMAL TCSC ALLOCATION
IN POWER SYSTEMS
The GBA serves as a powerful metaheuristic approach
adept at addressing intricate optimization problems through
the amalgamation of population-based and gradient-based
methodologies [57]. Within this framework, the navigation of
search agents in the problem space is orchestrated by New-
ton’s method, a technique intricately woven into the structure
of the GBA [58]. In an effort to refine and amplify this
methodology, an innovative adaptation EGBA is introduced.
The proposed EGBA distinguishes itself by seamlessly inte-
grating a crossover strategy into the foundational GBA
structure, thereby enriching the diversity exhibited by the
generated search agents. This advanced design incorporates
a crossover strategy, contributing to the creation of a more
diverse and randomly configured population in subsequent
iterations. Crucially, the essential elements of the GSP and

LEP, inherent in the GBA, remain integral to the proposed
EGBA. The deliberate retention of these core mechanisms
ensures that the modified version upholds the fundamental
principles of directing the search toward promising areas and
circumventing entrapment in local optima.

A. INITIALIZATION
The commencement of the EGBA involves the initiation of a
set of initial search solutions, each evolving with respect to
its position along a path determined by gradients. The maxi-
mum number of iterations is denoted by tMx . This process is
articulated through the following expression:

Xk = XMn + rd0 ×
(
XMx − XMn

)
; k = 1 : Nx (15)

Here, the notation Xk represents each searching individual
within the population, and ‘‘XMn’’ and ‘‘XMx’’ denote the
lower and upper boundaries of the dimensions (Dim), respec-
tively. rd0 represents a randomly generated values within the
boundary [0,1]. Nx denotes the count of search individuals
within the population. This initialization stage marks the
inception of the EGBA algorithm, setting the groundwork for
subsequent gradient-guidedmovements of the search individ-
uals within the defined solution space.

B. GSP EXPLORATION AND CONVERGENCE
ENHANCEMENT
The GSP is harnessed within the optimization framework
to augment the exploration of the scanning universe and
expedite the convergence towards the optimal solution. This
method leverages gradient-based techniques to guide the
search process effectively. The iterative refinement of find-
ings in each cycle is accomplished through the application of
the following mathematical expression:

X∗
k = rd1 ((1 − rd2)Ak + rd2Bk) + (1 − rd1)Ck ; k = 1 : Nx

(16)

In this equation:
X∗
k and Xk correspond to the updated and previous solution

vectors associated with the solution position.
rd1 and rd2 represent two randomly generated values

within the boundary [0,1].
A, B and C denote three newly assessed solutions, calcu-

lated as follows:

Ak =XBest + rand × σ1 × (XR1 + XR2) − GSP; k = 1 : Nx
(17)

Bk = Xk + rand × σ1 × (XBest + Bk) − GSP; k = 1 : Nx
(18)

Ck = Bk + σ2 × (Ak − Bk) ; k = 1 : Nx (19)

GSP = σ1 × randn
(
2 × Xk × 1X
ε + ypj − yqj

)
(20)

Here:
σ1 is a pivotal parameter subject to variations based on the

sine function.
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σ2 represents a randomized parameter.
randn and rand denote a generated integer number and a

uniformly distributed generated number within the boundary
[0,1].
XBest symbolizes the optimal searching solution yielding

the minimum objective score.
XR1 and XR2 illustrate two randomly chosen and distinct

solutions.
This intricate process, involving the exploration and

convergence-enhancing mechanisms of the GSP, demon-
strates the sophistication and adaptability embedded within
the EGBA method for optimization endeavors.

C. LEP FOR AVOIDING LOCAL OPTIMA
The LEP is a crucial component employed within the
optimization framework to steer the program away from
local optima, thereby enhancing the algorithm’s adaptabil-
ity. Following each iteration, the EGBA method refines its
findings through the utilization of the ensuing mathematical
formulation:

X∗
k=

{
X∗
k + Dk + L2 (XR1 − XR2) if rd3 < 0.5

X∗
k + Dk +

L2
2 (XR1 − XR2) Else

}
if rd4<9

(21)

Dk = φ1 (L1XBest − L2Xk) + σ1φ2 (L3Ak − Bk) (22)

In this expression:
9 signifies the likelihood of activating the LEM step.
rd3 and rd4 are random values within the range [0,1].
φ1 and φ2 represent two randomly generated values using

a uniform distribution function within the interval [−1, 1].
L1, L2, and L3 are three random numbers produced through

the following equations:

L1 = (2 × ζ × rd5) − (ζ − 1) (23)

L2 = (rd5 × ζ ) − (ζ − 1) (24)

L3 = (rd5 × ζ ) − (ζ − 1) (25)

ζ =

{
0 M1 > 0.5
1 Else

(26)

Here, M1 indicates a randomly generated number within the
set [0,1].

Xk =

{
XR3 if M2 < 0.5
XMn + rd0 ×

(
XMx − XMn

)
Else

(27)

D. CROSSOVER STRATEGY INCORPORATION
In this research endeavor, an advanced EGBA is intro-
duced, featuring an augmented crossover operator seamlessly
integrated with the original EGBA. This augmentation is
designed to significantly enhance the diversity of the solu-
tions generated by the algorithm. The application of the
crossover operator is strategically orchestrated for each solu-
tion in every iteration, contingent upon a predefined crossover

TABLE 1. Parameters of the compared algorithms.

probability. The operational paradigm of the crossover oper-
ation unfolds as follows:

X_newk,j =

{
XSR,j if rd6 < CRp
X∗
k,j Else

k = 1 : Nx; j = 1 : Dim (28)

where , X_new corresponds to the new generated solution
position; X∗

k stands for the upgraded one after either the GSP
as activated in Eq. (15) or the LEP as activated in Eq. (21)
while Xk is the previous solution position. CRp indicates
the crossover probability while rd6 is a randomly generated
values within the boundary [0,1].

Based on that model, a new solution vector is synthesized
by exchanging components between the current upgraded
solution vector and a randomly selected one from the popula-
tion. The activation of this crossover operation is governed by
a condition based on the crossover probability (CRp) which
is set in this study to 25%. Consequently, a random value
(rd6) within the range [0,1] is generated where the crossover
is employed when it is less than crossover probability, show-
casing a judicious selection criterion. On the other side, any
dimension of the new generated solution position (X_new)
may exceed the permissible limit. Therefore, each dimension
should be preserved if it is exceeded. The mathematical rep-
resentation of the preservation mechanism is encapsulated in
the following expression:

X_newk,j=


XMn,j if X_newk,j < XMn,j
XMx,j if X_newk,j > XMx,j
X_newk,j Else

k=1 : Nx; j=1 : Dim (29)

E. OBJECTIVE EVALUATION AND CONSTRAINTS
HANDLING OF TCSC ALLOCATION IN POWER SYSTEMS
In addressing the TCSC allocation problem, due considera-
tion is accorded to both equality and inequality constraints.
To satisfy the equality criteria inherent in load flow balancing
equations, the Newton-Raphson (NR) technique is employed.
This technique is particularly significant in power network
engineering as it upholds power balancing requisites, portray-
ing the system’s steady state. Consequently, the NR approach
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FIGURE 2. EGBO flowchart.
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FIGURE 3. Converging trends of EGBA and GBA for CEC 2017 benchmarks.
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FIGURE 3. (Continued.) Converging trends of EGBA and GBA for CEC 2017 benchmarks.
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TABLE 2. Statistical indices of EGBA, GBA, GTT, DMO, SAO, RKA and AOT for CEC 2017 problems.
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TABLE 2. Statistical indices of EGBA, GBA, GTT, DMO, SAO, RKA and AOT for CEC 2017 problems.

serves as a crucial tool for illustrating three-phase circuits,
prominently utilized by the MATPOWER [59] framework.

Within the scope of operational constraints, two distinct
categories emerge, namely decision variables and dependent
variable constraints. Decision variables persist in adhering to
their defined limits, with any overruns triggering a random
regeneration within the specified bounds, thereby ensuring
compliance with the constraints articulated in Eqs. (6)-(11).
This preservation mechanism, delineated in Eq. (29), plays
a pivotal role in maintaining the integrity of the decision
variables.

Moreover, the objective function, encompassing the sec-
ond category of constraints related to dependent variables,
is designed to extend and penalize violations. Consequently,
if a solution violates any of the corresponding constraints,
it faces rejection in the subsequent iteration. The objective
function (OFt ), along with the overall network losses (OJ)
defined in Eq. (5), can be expressed as follows:

OFt = OJ + λ1

NLd∑
L=1

1V 2
L + λ2

Ng∑
g=1

1Q2
g + λ3

Nlines∑
l=1

1SF2
l

(30)

where, 1VL , 1Qg, and 1SFl are characterized by:

1VL =

{
Vmin
L − VL if VL < Vmin

L

Vmax
L − VL if VL > Vmax

L
(31)

1Qg =

{
Qming − Qg if Qg < Qming

Qmaxg − Qg if Qg > Qmaxg
(32)

1SFl = SFmaxl − SF l if SFl > SFmaxl (33)

Additionally, penalty factors, denoted as λ1, λ2, and λ3,
are introduced to penalize violations in load voltages, reactive
outputs from generators, and line power flows, respectively.
The depicted graphical representation in Figure 2 illustrates
the principal stages comprising the proposed EGBA, shed-
ding light on the key components and sequential progression
integral to the methodology.

IV. SIMULATION RESULTS
In the following paragraphs, we investigate the use of the
novel EGBA in two different cases. Simulations based on
test functions are firstly engaged, focusing on the CEC
2017 evaluations in particular. Such simulated efforts involve
a thorough contrast, comparing the EGBA’s performance
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TABLE 3. Outcomes of the proposed EGBA with respect to the original GBA and recent approaches for TCSC device allocations with respect to scenario 1.

versus several recently developed metaheuristic methods.
Afterward, we extend the simulations to tackle the complex-
ities of TCSC allocating problems in the context of power
systems. the applications are implemented with focus on two
IEEE standard electrical networks, with 30 and 57 buses,
respectively, and assess the effectiveness of the EGBA in
terms of optimizing the distribution of TCSC devices.

A. EXAMINATION OF APPLICATION PERFORMANCE
UTILIZING CEC 2017 BENCHMARKS
The assessment of the effectiveness of optimization strate-
gies necessitates a rigorous validation of their performance,
and benchmark functions serve as integral tools for this
purpose. This section delves into the comprehensive eval-
uation of the proposed EGBA and GBA by leveraging the
CEC 2017 competition as a standardized benchmark [60].
This competition features an array of routines specifically
crafted to appraise various attributes, encompassing diverse
functions with unique characteristics. Across a spectrum of
28 benchmarking functions, our evaluation employs a dimen-
sionality of 30 control variables, each bounded within the
range of [−100, 100]. The scrutiny of the proposed EGBA
extends to a comparative analysis with the conventional
GBA, specifically considering the CEC 2017 benchmarks.
The visual representation of the convergence characteris-
tics of both EGBA and GBA is elucidated in figure 3.
To establish a comprehensive benchmark, we extend our

FIGURE 4. Schematic representation of the IEEE 30-bus system [70].

analysis to include a variety of contemporary optimization
techniques as manifested in table 1. These encompass the
Aquilla Optimization Technique (AOT) [61], GTT [62], Red
Kite Algorithm (RKA) [63], and SAO [64], Slime Mould
Optimizer (SMO) [65] and Dwarf mongoose optimization
(DMO) [66]. The specific configurations for each method
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TABLE 4. Statistical analysis of the proposed EGBA with regard to the original GBA and recent approaches for scenario 1.

FIGURE 5. Convergence curves for the proposed EGBA versus the original
GBA with respect to scenario 1.

FIGURE 6. Twenty runs for outcomes of proposed EGBA with regard to
the original GBA for scenario 1.

under comparison are meticulously outlined in Table 3.
In order to ensure a robust and comprehensive evaluation,
a total of fifty independent operations are executed for each
technique across diverse benchmarks, thereby mitigating
the impact of inherent randomness. The tabulated data in
Table 3 provides a comprehensive array of statistical metrics,
encompassing the best, mean, worst, and standard deviation
(Std) outcomes for the various techniques being compared.
Notably, upon careful examination of Table 3, it becomes
evident that the proposed EGBA technique demonstrates a
notable superiority in efficacy, consistently registering the
most favorable statistical indices across a significant majority

FIGURE 7. Convergence curves for the proposed EGBA versus the original
GBA with respect to scenario 2.

of benchmark functions. This is highlighted by the fact that
the proposed EGBA exhibits an impressive improvement
percentage of 90.17% when compared to AOT. Similarly,
in contrast to SAO, the EGBA method displays a substantial
improvement percentage of 89.29%. Furthermore, it out-
performs RKA with a noteworthy improvement percentage
of 83.04%, while showcasing a commendable improvement
percentage of 80.36% when compared to GBA and GTT.
Finally, it demonstrates a substantial improvement percentage
of 62.5% when compared to the original GBA. These results
underscore the robustness and efficacy of the proposed EGBA
technique, positioning it as a highly competitive and effective
optimization approach when compared to a diverse set of
contemporary methods across varied benchmark functions.

B. PROPOSED EGBA FOR FIXING TCSC DEVICES IN IEEE
30-BUS TRANSMISSION NETWORK
The IEEE standard 30-bus system illustrated in Fig. 4 [68]
is employed in this section to manage the best TCSC allo-
cations. This system has four parts which are 30 nodes,
41 lines, 9 compensators and 4 transformers [69]. In this
system, the tap positions are 0.90 p.u. and the maximum
generating voltage is 1.10 p.u. Besides, the generator bus has
limits of 1.10 and 0.90 p.u, whilst the voltage limitations for
the load buses are 1.05 and 0.95 p.u. The original GBA and
several more modern algorithms, such as AEO, SAO, GWO,
AOT and DMO, are compared with the proposed EGBA.
Both implemented algorithms are run 20 times independently,
with 300 iterations and 50 searching individuals for each
algorithm. Three distinct situations are examined, taking into
consideration one, two, and three TCSC devices, depending
on the number of candidate devices provided.
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TABLE 5. Outcomes of the EGBA versus the original GBA and recent approaches for TCSC device allocations with respect to scenario 2.

TABLE 6. Statistical analysis of the proposed EGBA with regard to the
original GBA and recent approaches for scenario 2.

1) SCENARIO 1
The proposed EGBA is used to optimize the allocation of
a single TCSC device in order to achieve lowest possible
power losses. The acquired outcomes are contrasted with the
original GBA,AEO, SAO,GWO,AOT andDMO. In addition
to this, Table 3 displays the best control variables, which
are the Var source’s injection power, the output power and

FIGURE 8. Twenty runs for outcomes of proposed EGBA with regard to
the original GBA for scenario 2.

generators’ voltage, and the tap value as well as the location
and size of the TCSC device. As illustrated from this table,
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TABLE 7. Outcomes of the proposed EGBA with respect to the original GBA and recent approaches for TCSC device allocations with respect to scenario 3.

FIGURE 9. Convergence curves for the proposed EGBA versus the original
GBA with respect to scenario 3.

the proposed EGBA generates the least amount of power
loss of 2.8067 MW. Additionally, with a −49.98 % size
reduction from the installed line reactance, the transmission
line (28–27) is determined to be the optimal placement for the
TCSC in the proposed EGBA.

When comparing the proposed EGBA to the initial sce-
nario, power losses were reduced by 51.88%. Moreover, the

FIGURE 10. Twenty runs for outcomes of proposed EGBA with regard to
the original GBA for scenario 3.

proposed EGBA achieves a noteworthy decrease percentage
of 0.32% in the power losses when comparing its results with
those of the original GBA. In addition, the proposed EGBA
achieves a decrease percentage of over 1.33% and 0.53% in
comparison to the findings achieved by the AEO and SAO.
In comparison to the GWO, AOT and DMO, the proposed
EGBA reduces power losses by 8.13%, 6.53%. and 7.56%,
respectively.
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FIGURE 11. Voltage profile and improvements regarding the three TCSC installations (Case 3) against the initial case.

TABLE 8. Statistical analysis of the proposed EGBA with regard to the
original GBA and recent approaches for scenario 3.

Besides, Figure 5 displays the convergence curves for
the proposed EGBA and the original GBA. The numerical
findings unequivocally demonstrate that the proposed EGBA
yields considerable economic advantages and outperforms
the original GBA in searching. The proposed EGBA con-
verged in less iterations, according to the convergence curves
manifested in Figure 5. In order to statistically assess the
methodologies that were compared, figure 6 displays the out-
comes associated with the proposed EGBA and the original
GBA for scenario 1. The corresponding statistical results
of the calculated Losses (MW) for this scenario are shown
in Table 4. Upon aggregating the lowest indexes from the
acquired target values, it is evident that the suggested EGBA
offers excellent performance. The original GBA, AEO, SAO,
GWO, AOT and DMO get the mean of acquired losses of
2.8331, 3.007, 2.930, 3.472, 3.080, and 3.065 MW, respec-
tively, whereas themean losses, found in the proposed EGBA,
is 2.8092 MW which is lower than the mentioned algo-
rithms. Compared to the outcomes attained by the original
GBA, AEO, SAO, GWO, AOT and DMO, the proposed
EGBA attains reductions in improvement of the acquired
mean of 0.85%, 7.04%, 4.30%, 23.59%, and 9.11%, respec-
tively. According to the worst achieved losses, the proposed
EGBA records the lowest losses of 3.038 MW; in contrast,
the losses received by GBA, AEO, SAO, GWO, AOT and
DMO are 2.8452, 3.180, 3.188, 3.849, 3.172, and 3.109 MW,
respectively. The proposed EGBA provides improvement
reductions of 1.04%, 12.93%, 13.21%, 36.69%, 12.65% and
10.41%, respectively, compared to the findings obtained by
the original GBA, AEO, SAO, GWO, AOT and DMO.

2) SCENARIO 2
The proposed EGBA is used to optimize the allocation of a
single TCSC device in order to achieve lowest possible power
losses. The acquired outcomes are contrasted with the origi-
nal GBA, AEO, SAO, GWO, AOT and DMO. In addition to
this, Table 5 displays the best control variables, which are the
Var source’s injection power, the output power and genera-
tors’ voltage, and the tap value as well as the location and size
of the TCSC devices. From this table, the proposed EGBA
generates the least amount of power loss of 2.7799 MW.
Additionally, the transmission lines (28–27) and (2–5) are
chosen by the planned EGBA with compensation values of
49.99% and 25.55 percent subtraction from the installed line
reactance.

When comparing the proposed EGBA to the initial sce-
nario, power losses were reduced by 47.66 %. Moreover, the
proposed EGBA achieves a noteworthy decrease percentage
of 2.12% in the power losses when comparing its results with
those of the original GBA. Also, EGBA achieves a decrease
percentage of over 3.13% and 1.44 % in comparison to AEO
and SAO. In comparison to the GWO, AOT and DMO, the
proposed EGBA reduces power losses by 16.08 %, 7.74 %.
and 8.14 %, respectively. Besides, Figure 7 displays the
convergence curves for the proposed EGBA and the original
GBA. The numerical findings unequivocally demonstrate that
the proposed EGBA yields considerable economic advan-
tages and outperforms the original GBA in searching. The
proposed EGBA converged in less iterations, according to the
convergence curves manifested in Figure 7.
In this regard, figure 8 displays the outcomes associ-

ated with the proposed EGBA and the original GBA for
scenario 2. The corresponding statistical results of the calcu-
lated Losses (MW) for this scenario are shown in Table 6.
It is clear that the proposed EGBA provides high perfor-
mance when it aggregates the smallest objective indices.
The original GBA, AEO, SAO, GWO, AOT and DMO
get the mean of acquired losses of 2.8813, 2.988, 2.938,
3.501, 3.105, and 3.063 MW, respectively, whereas the mean
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TABLE 9. Outcomes of the proposed EGBA with respect to the original GBA for TCSC device allocations regarding scenarios 4 and 5.

FIGURE 12. Convergence curves for the proposed EGBA versus the
original GBA with respect to scenario 4.

losses, found in the proposed EGBA, is 2.7974 MW which
is lower than the mentioned algorithms. Compared to the
outcomes attained by the original GBA, AEO, SAO, GWO,
AOT and DMO, the proposed EGBA attains reductions in
improvement of the acquired mean of 3.00%, 6.81%, 5.03%,
25.15%, 11.00%, and 9.49%, respectively. According to the

FIGURE 13. Convergence curves for the proposed EGBA versus the
original GBA with respect to scenario 5.

worst achieved losses, the proposed EGBA finds the lowest
losses of 2.8234 MW; in contrast, the losses received by
GBA, AEO, SAO, GWO, AOT and DMO are 3.1302, 3.214,
3.168, 4.18, 3.181 and 3.119MW, respectively. The proposed
EGBA provides improvement reductions of 10.87%, 13.83%,
12.20%, 48.05%, 12.66% and 10.44%, respectively, com-
pared to GBA, AEO, SAO, GWO, AOT and DMO.
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FIGURE 14. SMI regarding Scenarios 4 and 5 utilizing the proposed EGBA versus the initial scenario.

TABLE 10. Outcomes of the proposed EGBA and the original GBA for TCSC device allocations with respect to scenarios 6-8.

3) SCENARIO 3
In this scenario, the proposed EGBA is used to optimize
the allocation of a single TCSC device in order to achieve

lowest possible power losses. The acquired outcomes are con-
trasted with the original GBA, AEO, SAO, GWO, AOT and
DMO where Table 7 displays the regarding control variables.
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FIGURE 15. Graphic representation for IEEE 57-bus power system [72].

As illustrated from this table, the proposed EGBA generates
the least amount of power loss of 2.7596 MW. Addition-
ally, the transmission lines (4-12) and (28-27), and (2–5) are
chosen by the planned EGBA with compensation values of
49.8449.99% and −49.9425.55 and −25.20 percent from the
installed line reactance, respectively. When comparing the
proposed EGBA to the initial scenario, power losses were
reduced by 47.32 %. Moreover, the proposed EGBA achieves
a noteworthy decrease percentage of 1.45 % in the power
losses when comparing its results with those of the original
GBA. In addition, the proposed EGBA achieves a decrease
percentage of over 4.36% and 2.22% in comparison to the
findings achieved by the AEO and SAO. In comparison to
the GWO, AOT and DMO, the proposed EGBA reduces
power losses by 15.49%, 7.59%. and 9.33%, respectively.
Besides, Figure 9 displays the convergence curves for the pro-
posed EGBA and the original GBA. The numerical findings
unequivocally demonstrate that the proposed EGBA yields
considerable economic advantages and outperforms the origi-
nal GBA in searching. The proposed EGBA converged in less
iterations, according to the convergence curves manifested in
Figure 9.

Moreover, figure 10 displays the outcomes associated with
the proposed EGBA and the original GBA for scenario 3.
The corresponding statistical results of the calculated Losses
(MW) for this scenario are shown in Table 8. It is clear
that the proposed EGBA provides high performance when it
aggregates the fewest objective indices. The original GBA,
AEO, SAO, GWO, AOT and DMO get the mean of acquired
losses of 2.8194, 3.010, 2.918, 3.468, 3.079, and 3.071 MW,
respectively, whereas the mean losses, found in the proposed
EGBA, is 2.7826 MW which is lower than the mentioned
algorithms. Compared to the outcomes attained by the orig-
inal GBA, AEO, SAO, GWO, AOT and DMO, the proposed
EGBA attains reductions in improvement of the acquired
mean of 1.32%, 8.17%, 4.86%, 24.63%, 10.65% and 10.36%,
respectively. According to the worst achieved losses, the
proposed EGBA finds the lowest losses of 2.8166 MW; in
contrast, the losses received by GBA, AEO, SAO, GWO,
AOT and DMO are 2.8559, 3.536, 3.189, 3.856, 3.198 and
3.143 MW, respectively. The proposed EGBA provides
improvement reductions of 1.39%, 25.54%, 13.22%, 36.90%,
13.54% and 11.59%, respectively, compared to GBA, AEO,
SAO, GWO, AOT and DMO.
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FIGURE 16. Convergence curves for the proposed EGBA versus the original GBA with respect to scenarios 6-8.

The secure operation of the IEEE 30 power networks
depends on the entire load buses’ voltage profile in com-
parison to the first scenario, based on the candidate TCSC
devices. In this regard, the proposed EGBA is used to com-
pute the voltage magnitude of the buses, and the results are
displayed in Figure 11 in comparison to the initial case. Also,
the regarding improvement is drawn in the secondary vertical
axis.

Looking at the numerical values in this figure, the initial
cases range from 0.9012 to 1.05, with an average initial
value of approximately 1.00. After the additions of the three
TCSC devices, represented by ‘‘Case 3,’’ the values gener-
ally increase, with the mean value rising to approximately
1.088. This indicates an average improvement of around
8.8% across all cases. While some individual cases show
smaller improvements around 4.8%, others demonstrate more
substantial enhancements, reaching up to 19.0%. However,
the mean improvement of 8.8% suggests that, on average,
the additions of the three TCSC devices are effective in

positively impacting the outcomes. This analysis underscores
the overall effectiveness of the TCSC devices installations
based on the proposed EGBA in improving the voltage profile
in the system.

C. ENHANCING SECURITY MARGIN ALONGSIDE POWER
LOSS MINIMIZATION FOR THE IEEE 30-BUS
TRANSMISSION NETWORK
Power system congestion has a substantial impact on the
fluctuation of voltage and current, which can cause unin-
tentional variations in the distribution of power throughout
the network. A security margin enhancement is required to
be included as a critical aim due to this issue. The security
margin is a measure of the system’s capacity to accept varia-
tions in power flow while maintaining safety thresholds [49].
It basically gauges the power system’s ability to endure the
loss of any part, such a generator or a transmission line,
without compromising overall system security. The Security
Margin Index (SMIL) for each individual transmission line
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FIGURE 17. Twenty runs for outcomes of proposed EGBA with regard to the original GBA for scenarios 6-8.

FIGURE 18. Voltage profile and improvements regarding scenario 8 against the initial case.

TABLE 11. Statistical analysis of the proposed EGBA with regard to the original GBA for scenarios 6-8.

(L) can be mathematically modelled as follows [49]:

SMIL =
SFmaxL − |SFL |

SFmaxL
,L = 1, 2, . . . .Nlines (34)

where SFL signifies actual transmission flow and SFmaxL is
the rated transmission flow constraint in the line (L).

Therefore, the Overall Security Margin (OSM) can be
formulated as the summation of the Security Margin Index
(SMIL) of all transmission lines as follows:

OSM =

Nlines∑
L=1

SMIL (35)

Based on that, a higher security margin indicates a greater
ability of the system to tolerate disturbances and component
failures without violating safety constraints. The objective to
enhance the security margin involves optimizing the power

flow such that the system remains robust against potential
disruptions. To optimize the minimization function of power
losses and enhance the security margin, the following func-
tion is considered:

OF = ω1 ×
PLoss

PLoss,max
+ ω2 ×

OSMmax

OSM
(36)

where, ω1 and ω2 are the weighting factors while PLoss,max
and OSMmax are two set values regarding the losses and the
overall security margin objectives. This function seeks to
minimize the combined objective of the normalized losses
and the reciprocal of the security margin. Thus, it max-
imizes the security margin by minimizing the potential
deviations and ensuring the system can handle component
losses effectively. Also, the choice of weights reflects the
relative significance assigned to each objective, taking into
account the trade-offs and priorities among them. Proper
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TABLE 12. Outcomes of the proposed EGBA with respect to the original GBA for TCSC device allocations regarding scenarios 9 and 10.

weight selection involves understanding the problem domain,
stakeholder preferences, and system requirements. To imple-
ment this, two different scenarios are addressed. At first
(Scenario 4), only the minimization of the normalized recip-
rocal of the OSM is considered by setting ω1 = 0 and
ω2 = 1. Second (Scenario 5), both normalized functions are
considered of equal importance by setting ω1 = 1 and ω2 =

1.
In both scenarios, the proposed EGBA and the original

GBA are implemented. Table 9 tabulates their obtained out-
comes for TCSC device allocations regarding scenarios 4 and
5 where Figs. 12 and 13 display their convergence properties.
As shown, the results demonstrate that the proposed EGBA
derives better performance than the GBA. In Scenario 4,
the proposed EGBA successfully maximizes the OSM from
26.63 to 29.91 with 10.96% improvement while the GBA

increases it to 29.85. Similar results are attained in Scenario 5,
the proposed EGBA simultaneously maximizes the OSM and
minimizes the power losses to 29.55 and 2.817 MW while
the GBA achieves lower OSM of 29.48 and higher losses of
2.84 MW. Alternatively, Fig. 14 illustrates the values of the
SMI of each line regarding Scenarios 4 and 5 utilizing the
proposed EGBA versus the initial scenario.

As shown, the EGBA provides substantial improvements
over the initial scenario. EGBA in both scenarios 4 and
5 demonstrates enhanced performance in the security margin
for the IEEE 30-bus transmission network. EGBA-Scenario
4 and EGBA-Scenario 5 show significant improvements over
the initial scenario in most instances. For example, the SMI
for the first line improves from 55.21% in the initial sce-
nario to 65.52% in EGBA-Scenario 4 and further to 78.43%
in EGBA-Scenario 5. This trend is consistent across many
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FIGURE 19. Convergence curves for the proposed EGBA versus the
original GBA with respect to scenario 9.

FIGURE 20. Convergence curves for the proposed EGBA versus the
original GBA with respect to scenario 10.

lines, indicating that the EGBA algorithm enhancements
are effective. These improvements highlight the efficacy of
the proposed modifications in optimizing the power system
performance.

D. PROPOSED EGBA FOR FIXING TCSC DEVICES IN IEEE
57-BUS TRANSMISSION NETWORK
This part uses the standard IEEE 57-bus transmission net-
work that is shown in Figure 15. There are 57 nodes,
7 generators, 80 lines, 3 capacitive sources on buses, and
17 on-load tap changing transformers in the aforementioned
system. The system description is taken from [71]. In order
to lower the power losses, the three situations under study
are examined with consideration for one, two, and three
TCSC devices. Where Table 10 displays their determined
control variables, the proposed EGBA and the original GBA
are implemented. The results demonstrate that the proposed
EGBA reduces power losses by 9.2209663, 9.0879067, and
9.0300855 MW for the scenarios 6-8, while the original
GBA reduces power losses by 9.3262325, 11.277533, and

9.1171028 MW, respectively. Alternatively, Fig. 16 indicates
the converging features, where iterations to identify and cre-
ate the best individual are utilized. The numerical findings
unequivocally demonstrate that the proposed EGBA yields
considerable economic advantages and outperforms the origi-
nal GBA in searching. The proposed EGBA converged in less
iterations, according to the convergence curves manifested in
Fig. 16.
To evaluate the overall efficiency of the proposed EGBA

in addressing the optimal allocation of TCSC devices in
the IEEE 57-bus transmission network, the distribution of
the objective function across 20 runs is visually depicted in
Figure 17 and summarized in Table 11 for scenarios 6-8.
From this data, the following conclusions can be inferred:

■ In the sixth scenario, the suggested EGBA yields signif-
icant improvements over GBA, with a reduction in the
best outcome from 9.326 MW to 9.221 MW, a decrease
in mean losses from 9.910MW to 9.421MW, and a drop
in worst losses from 10.408 MW to 9.754 MW. This
indicates improvements of approximately 0.1129%,
5.89%, and 6.68%, respectively, showcasing the EGBA’s
effectiveness in minimizing losses.

■ In the seventh scenario, EGBA demonstrates superiority
over GBA across all metrics. It achieves reductions in
best, mean, and worst outcomes from 11.278 MW to
9.088 MW, 10.019 MW to 9.423 MW, and 10.494 MW
to 10.277 MW, respectively. These improvements cor-
respond to approximately 19.63%, 6.15%, and 2.07%,
highlighting the EGBA’s consistent ability to optimize
TCSC device allocation and reduce losses.

■ In the eighth scenario, the proposed EGBA finds the
least losses of 9.6106 MW according to the mean
acquired losses, whereas the original GBA gets losses
of 10.1027 MW.

Overall, the numerical results demonstrate the significant
improvements achieved by EGBA over GBA in minimizing
losses across different scenarios in the IEEE 57-bus transmis-
sion network. The improvements range from approximately
0.11% to 19.63%, underscoring the effectiveness of EGBA
in enhancing the allocation of TCSC devices and optimizing
power grid performance.

The IEEE 57 power networks’ secure operation relies
on the voltage profile of all load buses, with the proposed
EGBA used to compute bus voltage magnitudes, as shown in
Figure 18, illustrating improvements compared to the initial
scenario. The initial voltage values range from 0.9359 to
1.0598, averaging around 1.00, while after adding three
TCSC devices (Case 3), values generally increase, with the
mean rising to approximately 1.0651, indicating an average
improvement of about 8.8%. Although some cases show
smaller enhancements around 1.1%, others demonstrate more
substantial improvements of up to 11.7%. Overall, the mean
improvement of 7.22% suggests the effectiveness of TCSC
device installations in enhancing the system’s voltage profile,
as determined by the proposed EGBA.
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FIGURE 21. MVA thermal limit and flows of each line regarding Scenarios 9 and 10 utilizing the proposed EGBA versus the initial scenario.

In order to address the maximization of the security mar-
gin for the IEEE 57-bus system, two different scenarios are
addressed. Only the minimization of the normalized recip-
rocal of the OSM is considered in Scenario 9 while both
normalized functions in Eq. (36) are considered of equal
importance in Scenario 10.

In both scenarios, the proposed EGBA and the original
GBA are implemented. Table 12 tabulates their obtained out-
comes for TCSC device allocations regarding scenarios 9 and
10 where Figs. 19 and 20 display their convergence prop-
erties. As shown, the results demonstrate that the proposed
EGBA derives better performance than the GBA. In Scenario
9, the proposed EGBA successfully maximizes the OSM
from 32.15 to 37.4 with 16.33% improvement while the
GBA increases it to 35.51 with only 10.45% improvement.
Similar results are attained in Scenario 10, the proposed
EGBA simultaneously maximizes the OSM and minimizes
the power losses to 35.5 and 12.17 MW while the GBA
achieves lower OSM of 35 and higher losses of 15.81 MW.
Fig. 21 illustrates the thermal limit (MVA) and the power
flows of each line regarding Scenarios 9 and 10 utilizing the
proposed EGBA versus the initial scenario. As shown, both
EGBA-Scenario 9 and Scenario 10 exhibit significant overall
improvements in the security margins compared to the initial
scenario, indicating the effectiveness of the EGBA in enhanc-
ing system security. The EGBA provides significant ability in
healing several over loadings in lines numbers (1, 2, 3, 6, 14,
15, 16, 17, 23, 25, 26, 27, 28, 57, 58 and 72) in the initial

scenario. EGBA in both scenarios 9 and 10 demonstrates
enhanced performance in the security margin for the IEEE
57-bus transmission network.

V. CONCLUSION
This work proposes a novel EGBA to handle two distinct
IEEE power systems, with 30 and 57 buses, respectively, and
a variety of TCSC devices. These systems are considered to
be challenging engineering issues with limited optimal solu-
tions. Important elements of the algorithm, such as the Local
Escaping Process (LEP) and Gradient Search Process (GSP),
direct the exploration phase and avoid an early convergence to
less-than-ideal solutions. Furthermore, a novel feature to the
EGBA is the crossover operator which allows TCSC config-
urations to be exchanged between solutions, and accordingly
increasing solution diversity and possibly disclosing new
optimal allocations. The applicability of the proposedmethod
is demonstrated by applying it to the CEC 2017 single
objective optimisation functions, and its robustness is exam-
ined through statistical evaluation and convergence results.
Additionally, the proposed EGBA is contrasted with the
approaches of AEA, AOT, GTT, RKA, SAO, and SMO. It has
been discovered that the proposed EGBA has an exceptional
ability to avoid becoming stuck in local optima once it has
been implemented on unimodal and multimodal functions.
The proposed EGBA ismore reliable in reaching the optimum
values over several runs, according to the statistical analysis
of the benchmark functions. The proposed EGBA effectively
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reduces power losses compared to several techniques. It also
converges faster than the original GBA in reducing power
losses. Besidesminimizing losses, the EGBA aims to enhance
the security margin of transmission lines to optimize power
flow. For the IEEE 30 bus system, the EGBA increased the
OSM with a 10.96% improvement while it raised the OSM
with a 16.33% improvement for the IEEE 57 bus system.
Additionally, the EGBA significantly mitigates several line
overloads.
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