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ABSTRACT Benchmark datasets normally have relatively conserved relationships and low fraction of
outliers, indicated from higher determination coefficient (R2) and lower Mean Absolute Error (MAE) in
regression model. Here inspired by the process of peeling onions, we introduced a recursive data elimination
(RDE) of ‘‘outliers’’ strategy to get benchmark dataset. Outliers are labeled using William’s plot in residual
vs leverage (recorded as RDE_W), and the performance was compared with that using residual alone
(recorded as RDE). The validation was performed in single-target and multiple-target ways through the
predictions of mechanical properties including Young’s modulus, tensile strength, and elongation at break
for 643 polyurethane elastomers (the first time this dataset has been released), and compressive strength for
1030 concrete samples. In the single-target way, RDE_W strategy achieved an 8.06% increase in R2 and a
19.87% reduction inMAE compared to RDE. In themultiple-target way the improvement was approximately
3%. SVM outperformed XGB, NN, RF, Lasso and DT algorithms in the RDE_W strategy. Additional
tests also validated the advantages for RDE_W over RDE to generate high-quality benchmark datasets.
We released the data and code to facilitate the construction of high quality benchmark datasets and the
development of new approaches to better understand, explore and design advanced materials.

INDEX TERMS Benchmark dataset, recursive data elimination, polyurethane elastomer, mechanical
properties, regression.

I. INTRODUCTION
In statistical analysis and machine learning studies, an ideal
dataset with comprehensive and representative coverage is
highly appreciated to deliver theoretical soundness, clear
causality and robust conclusions. Benchmark datasets are
approaching such ideal state, characterized by high qual-
ity and consistency, and a low fraction of outliers. They
have been widely used to stringently assess advancements
in new models, strategies and algorithms [1], [2], [3], [4].
To build a benchmark dataset from a raw dataset, the
Bias-Variance Dilemma (BVD) should be carefully treated
to balance the deviation and the sensitivity of different strate-
gies [5], the accuracy of machine learning-based models
and their generalization ability [6]. Evaluation performance
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metrics for machine learning models such as the determina-
tion coefficient, R2 for a regression model and the accuracy
for a classification model normally exhibit relatively small
changes upon the adding and deletion of partial data in the
benchmark dataset, which becomes an important way to eval-
uate the overall quality of a dataset through cross-validation
[7]. In reality, benchmark datasets are highly desired in mate-
rial science, where new data are massively generated and
reported. It is a time-consuming and non-trivial task to get the
frontier for given types of materials, to grasp the rules based
tunable variables toward advanced materials, and to explore
the multivariate and synergistic quantitative relationships.
Especially in materials science, high quality benchmark
datasets become a top concern before the deployment of
statistical analysis and machine learning studies [8], [9], [10],
[11]. A general strategy to build high-quality benchmark
dataset in material science by reducing outliers is invaluable.
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Reducing outliers is an essential way to build benchmark
dataset, and various subjective and objective reasons lie
behind the presence of outliers in raw datasets. The presence
of outliers may lead to biased or erroneous conclusions [12],
while datasets in materials science typically face high dimen-
sionality, nonlinearity, heterogeneity, non-monotonicity and
synergistic impacts,which pose great challenges for outlier
detection [13]. It is feasible to reduce outliers in newly
designed experiments with prior control, and to detect outliers
in posterior treatment. A number of strategies have been
reported to detect outliers based on principles in statistics,
distance, density, clustering, classification, graph and neural
network strategies [14]. Outliers are synonymous with abnor-
mal values according to an assumed probability distribution,
which can be identified according to given cutoffs in statisti-
cal metrics or confidence intervals, such as the six-sigma cri-
teria and the general 1.5∗IQR criteria in a box-plot. Outliers
and normal data can be distinguished from their locations in a
distribution, according to either parametric methods, such as
Gaussian mixture models with global optimal instances [15],
subspace learning and Gaussian mixture models [16], or non-
parametric methods including kernel density functions [17],
kernel local outlier factors [18], fast adaptive kernel den-
sity estimator [19] etc. Parametric methods are based on an
assumed distribution function, and in non-parametric meth-
ods, prior assumption of distribution functions is unnecessary,
which rely on the exact probability density instead [20].
Parametric methods rely on prior assumptions for the dis-
tributions of data, which may lead to overfitting and low
computational efficiency in high-dimensional data with com-
plex correlations. Non-parametric methods do not need such
prior assumption but facing challenges to select optimal band-
width, which are sensitive to noise and suffering from high
computational complexity for large datasets with multiple
magnitude distributions. Both methods confront challenges
in parameter optimization and model interpretability [14],
[21], [22]. Another method of outlier detection involves per-
forming univariate anomaly correction on data following a
normal distribution, setting a threshold of 99% where data
points exceeding this threshold are identified as outliers
and subsequently removed [23]. William’s plot is a pop-
ular graph-based non-parametric outlier detection method,
where based on the plot of residual vs leverage, data points
located outside the two thresholds for residual and lever-
age are considered as outliers [24]. Through the recursive
elimination of outliers, akin to the removal of outer layers
during peeling onionsand following a framework used by
recursive feature elimination (RFE) [25], it is possible to
get high-quality benchmark datasets with conserved core
distributions and correlations. The recursive data elimination
(RDE) strategy has been applied to build a benchmark dataset
for polyurethane elastomers (PUE) [26], resulting in more
conservative multivariate prediction for mechanical proper-
ties distributed over four magnitudes.

Here we selected two datasets in material science to
train and test the proposed ‘‘peeling onion’’ strategy. It was

performed for single-target or multiple-target predictive
regression models, built using six machine learning algo-
rithms including RF, XGB, NN, SVM, Lasso and DT. The
first dataset records the mechanical properties for PUEs, with
643 samples and each one has Young’s modulus (YM, MPa),
tensile strength (TS, MPa), and elongation at break (EB, %)
which was collected and annotated in recent studies [26],
[27]. This dataset is the first time to be released associated
with this work. The second dataset contains 1030 con-
crete samples with compressive strength (CS, MPa) [28].
To predict these four mechanical properties, features in com-
position, processing, structure and measurements were also
well organized. We present the methods, results and discus-
sion in the following sections, the newly proposed strategy,
utilizing William’s plot for recursive elimination of out-
liers, shows significant advantages in building high-quality
benchmark dataset.

II. METHODOLOGY
The workflow of this study is illustrated in Figure 1. Three
stages were performed on statistical analysis, outlier identifi-
cation, and the comparison of RDE and RDE_W strategies in
single-target and multiple-target ways. The statistical metrics
for these two datasets are presented in Table 1 and Figure S1
in the supplementary information. The mechanical properties
in the PUE dataset have heavily tailed distributions. We then
applied a logarithmic transformation to enhance their sim-
ilarity to a normal distribution, indicating that the normal
distribution has a skewness of 0 and kurtosis of 3, and the log
values are closer to them. In the following section, where we
build machine learning regression predictive models, we pre-
dict logYM, logTS and logEB without further notation.

The 643PUE dataset comprised 3 regression predictive
properties: logYM, logTS and logEB, each associated with
20 features that accounted for the elements in composition-
processing-structure-property-performance (CPSPP) rela-
tionships [29], [30]. For the composition, formulation was
recorded by hard segment contents and ratios (CHS and R),
molecular weight for polyols (PO_MW) and molecular vol-
ume (FCVm), topological features and physical parameters
were computed using RDkit [31] for constitutional (count
of atoms, groups, and bonds, NumNHCO, NumHAcceptors,
RingCount etc.), connective (Chi indices), topological (Bala-
banJ, BertzCT), MOE-type (such as EState_VSA series), and
molecular properties descriptors (TPSA) and polarity (Mol-
LogP). Interactions between monomers were labeled using
cohesive energy density (CED) and Flory-Huggins interac-
tions (Fchi). Processing settings mainly included reaction
temperatures (Tr1, Tr2) and the feed of monomers (PMStep),
form methods (Form_method) and measurements settings
(CSArea, StrainRate) were recorded.

The 1030 concrete dataset is well known and has one
single property, the compressive strength was measured using
a unified standard and procedure. There are 8 features in
CPSPP, including the formulation of 5 components (Cement,
Blast Furnace Slag, Fly Ash, Water, Superplasticizer),
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FIGURE 1. The workflow of this work including 1) statistical analysis of
the four mechanical properties, 2) RDE using residual alone, RDE_W using
both residual and leverage in William’s plot to identify outliers,
3) comparison of RDE and RDE_W strategies in single-target and multiple
-target ways using six machine learning algorithms.

2 structural parameters for the content of Coarse Aggregate,
and Fine Aggregate, as well as the storage time before the
measurement (Age).

A. ‘‘OUTLIER’’ IDENTIFICATION
William’s plot involves standardized residual and leverage
value, which are calculated based on the following defini-
tions. The standardized residual (zei) measures the deviation
of the observed values from the predicted values, scaled by
the standard deviation of the residuals, defined as

zei =
ei
se

=
yi − ŷi
se

(1)

where zei and ei are the standardized and the absolute residual
for the i-th observation, yi and ŷi are the i-th observed and
predicted values, and se is the estimated standard deviation
of the residuals. A general consensus for an absolute zei is
regarded as an outlier, which is adapted in this work in the
RDE strategy. The leverage values (hi) measure the influence
of each observation on the predicted values in a regression
model, defined as [32]:

hi = xTi (X
TX )−1xi (2)

TABLE 1. Statistical summary for mechanical properties of 643 PUEs, and
the concrete dataset with 1030 samples.

where xi is the descriptor row-vector of the i-th compound,
xTi is the transpose of xi, X is the descriptor matrix, and XT is
the transpose of X . The warning leverage (h∗) [32] is usually
set to:

h∗
= 3(M + 1)/N (3)

where N is the total number of samples, and M is the number
of features involved in the correlation. An outlier is identified
by its location according to a combined threshold in (hi, zei).

B. RECURSIVE DATA ELIMINATION (RDE) STRATEGY TO
REDUCE OUTLIERS
To predict the four mechanical properties YM, TS, EB and
CS, six machine learning algorithms including Lasso [33],
Decision Tree [34], Random Forest [35], Neural Network
[36], Support Vector Machine [37], and Extreme Gradient
Boosting [38] were utilized to build regression predictive
models. Five-fold cross-validation was used to train the mod-
els and predict the values in the testing set, and the absolute
residuals and leverage values for each sample were calculated
from the experimental and predicted values. The final val-
ues were obtained by averaging across the split of train-test
datasets, using 10 different random seeds. The hyperparam-
eters for these models were optimized under a Bayesian
inference framework, following the method introduced by
Ding et al [26], and the values are presented in Table S1 in
the supplementary information.

For each input dataset starting from the raw, regression
models were constructed using these well-structured features
and mechanical properties. The coefficient of determination
(R2) and mean absolute error (MAE) were calculated from
the average of five-fold cross-validation in each iteration.
In RDE_W, the thresholds for the residual and leverage are
fixed at (hi = 0.2, zei =2), while in RDE, zei is adaptive
in a range of 3.83 to 2.04, which allows the elimination of
the top 5% with the largest predictive residuals. In the single-
target way, YM, TS, EB and CS are separately predicted, and
the residual and leverage are calculated based on each pair
of values from prediction and experiment. In the multiple-
target way, YM, TS and EB in the PUE dataset were jointly
considered. Firstly, based on the results of RDE and RDE_W,
we assigned a quantitative score to each sample. The scoring
method involved calculating the number of iterations that
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FIGURE 2. Illustration of RDE_W strategy to recursively remove outliers in
the prediction of mechanical properties, colors from red, green, orange,
yellow and black label the outliers in the 1st to the 5th iterations using
LASSO to build regression models.

each sample remained, with a higher score given to samples
that can survived more iterations of elimination. A sample
assigned a value of 0 indicates it was eliminated at the first
iteration due to large residual and leverage values. In order to
make a simple comparison, besides the presentation of R2 and
MAE as function of data reservation ratio, we also directly
selected their values at a given data reservation ratio of 0.7.

III. RESULTS AND DISCUSSION
Illustrations for the recursive elimination of outliers are
presented in Figure 2 for RDE_W strategy. The schematic
diagrams illustrating the process of outlier elimination in each
iteration for the RDE and RDE_W strategies can be found in
Figure S2. They clearly demonstrate that both strategies are
efficient in removing data points located in the ‘‘out-layers’’
and gradually shifting towards the core region.

In the single-target way, the evolution of R2 and MAE in
the prediction of logYM using six different machine learning
algorithms is shown in Figure 3. The corresponding predic-
tions for logTS, logEB, and CS are presented in Figure S3-S5.
All predictions show similar trends, where R2 increases at a
lower data reservation ratio, and MAE has the opposite trend.
This clearly suggests that the removal of outliers from the raw
dataset can increase the convergence for the complex corre-
lations between mechanical properties and the composition,
processing, and measurement variables. The robustness of
regressionmodels can be significantly improved by removing
outliers, and this is a feasible way to build a benchmark
dataset through the recursive elimination of outliers from the
raw dataset. We also observed that these algorithms have
different performances in the prediction of identical proper-
ties in these two datasets, and their dependence on the data
reservation ratio may be strong for LASSO and DT in the
prediction of logYM, logTS and CS, SVM and NN in the
prediction of CS. The R2 may be improved from around 0.4,
a poor regression model, up to 0.9 in the test set, indicating a
very robust model.

FIGURE 3. Comparison of RDE (blue) and RDE_W (red) in the removal of
‘‘outliers’’ in the prediction of logYM using different machine learning
algorithms. Solid lines are R2 and dash lines are MAE as a function of
data reservation ratio.

In the consideration of BVD to balance data coverage and
the robustness of models, we selected a data reservation ratio
of 0.7 to compare these two strategies using different machine
learning algorithms. The comparison between R2 and MAE
is presented in Figure 4. The six popular machine learning
algorithms exhibit different performance in the regression
predictive models for the four mechanical properties. The
compression strength distributed in the widely-used concrete
dataset shows the most remarkable improvement for RDE_W
compared to RDE, which is also indicated by the obvious
difference in R2 and MAE for the six machine learning algo-
rithms. Overall, the RDE_W strategy achieved an advantage
of 8.06% over RDE in increasing R2, and 19.87% in reducing
MAE at a fixed data reservation ratio of 0.7.

In the multiple-target way, logYM, logTS and logEB in
the PUE dataset were used as multiple constraints to build a
benchmark dataset, in comparison to the one reported before
[26], [27]. From the iterative regression models, the R2 and
MAE for the reserved samples as a function of data reserva-
tion ratio is shown in Figure S6. It indicates that RDE_Wonly
achieved marginal improvement over RDE, and the values
were also extracted at a given reservation ratio of 0.7 and
summarized in Table 2. The overall improvement of RDE_W
over RDE strategy in the multiple-target way was around
3.16% in terms of increased R2, and 3.37% in terms of
reduced MAE. Among the six machine learning algorithms,
SVM exhibited the best performance in both single-target and
multiple-target ways.

To further check the BVD and the collective contribu-
tion of individual samples within the dataset, the ranking
score was used to group samples, and the residuals and
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FIGURE 4. Comparison of R2 and MAE for 4 mechanical properties,
6 algorithms, R2 and MAE Q-Q plots of RDE vs RDE_W. The following
shapes represent the corresponding machine learning algorithms:
upward triangle, DT; circle, NN; square, SVM; pentagram RF; diamond
LASSO and hexagon for XGB.

TABLE 2. Comparison of RDE_W and RDE strategies in the multiple-target
way for the prediction of three mechanical properties in PUE dataset.

leverage for these grouped samples were analyzed and are
shown in Figure 5. It can be seen that at the data reser-
vation ratio between 0.2 to 0.4, both R2 and MAE may
show deleterious changes as more data was removed. This
range is empirically regarded as the loss of representatives,
similar to the determination of the variance of the projected
points in PCA analysis [39]. When more data is reserved, R2

slightly decreases and MAE slightly increases, these minor
changes are derived from multiple reasons. The first one

FIGURE 5. Build the benchmark dataset from the raw PUE dataset using
YM, TS and EB multiple-target constraints, the R2 and MAE as a function
of data reservation ratio, in the comparison of RDE (blue) and RDE_W
(red) strategies.

is the stiffness-extensibility trade-off, where YM and EB
over different PUE samples exhibit different trends, it is
physically impractical to simultaneously improve them. The
second one is the polyurethane elastomers span between plas-
ticity and elasticity according to their application scenarios,
they do not have a conserved centroid, so for the distri-
bution of these properties. Therefore, an efficient strategy
to remove ‘‘outliers’’ to achieve conserved correlations for
either single-target or multiple-target interests in the build-
ing of high-quality benchmark dataset, such as the RDE_W
proposed here, is valuable for tackling particle problems.

To validate the advantage of RDE_W over RDE in terms
of reliability, two well-known datasets from material sci-
ence were collected for no-reference tests. One was initially
used as regression predictive models for the Mohs hardness
of naturally occurring ceramic materials (MH, MPa) with
622 samples [40], using atomic and electronic features from
mineral compositions and crystal systems. The other dataset,
annotated for the prediction of experimental band gap (BG,
eV) [41], contains 2483 samples. The distributions for these
two datasets are shown in Figure S7 and their statistical
metrics were summarized in Table S2.

Following the framework used above, the iterative removal
of outliers and the performance of predictive models built
by six algorithms were presented in Figure S8 and S9,
on theMH andBGdatasets respectively. These two validation
tests deliver consistent trend as those in PUE and concrete
datasets. For the BG dataset, regression model built using RF
algorithm is close to that from the original report [41], which
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FIGURE 6. Comparison of R2 and MAE - 2 individual targets, 6 algorithms,
R2 and MAE Q-Q plots of RDE vs RDE_W. The following shapes represent
the corresponding machine learning algorithms: an upward triangle
represents DT, a circle represents NN, a square represents SVM,
a pentagram represents RF, a diamond represents LASSO and a hexagon
represents XGB.

reported R2 and MAE values of 0.81 and 0.44, respectively.
By slightly removing 30% of outliers, R2 can increase to
0.93, and MAE can decrease to 0.25. It indicates the removal
of outliers is worthwhile for building robust predictive mod-
els. The comparison between RDE_W and RDE to maintain
high robustness while reserve raw data as many as possible,
was presented in Figure 6. The overall improvement of R2

and MAE range from 20% to 40%, which aligns with the
single-target prediction from the concrete dataset. These two
tests again, validate the advantages of RDE_W over RDE
to get high quality benchmark datasets through the iterative
removal of outliers.

IV. CONCLUSION
In summary, we have released a newly collected dataset
contains 643 polyurethane elastomers, with mechanical prop-
erties including Young’s modulus, tensile strength, and
elongation at break from tensile tests, all associated with their
composition and processing details. A new strategy named as
RDE_Wwas introduced to construct benchmark dataset with
relatively conserved relationships and a higher percentage of
raw data reserved. Its performance was validated on three
variant datasets for the compressive strength of concretes,
the hardness for natural ceramic materials and the band gap.
When compared with previously reported RDE strategy, the
RDE_W strategy achieved an impressive improvement in
regressionmodeling for both single-target andmultiple-target
scenarios. It indicates that the consideration of both standard-
ized residues and leverage values is a better way to balance
Bias-Variance Dilemma in dataset with complex correlations.
The new strategy can be adopted to alleviate the scarcity of
benchmark datasets, which is a top concern in data curation
prior to the deployment of statistical analysis and machine
learning studies.
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DATA AND CODE AVAILABILITY
The newly released PUE dataset containing 643 samples is
available at https://www.scidb.cn/en/detail?dataSetId=faebb
a580a2e49efba6aa1eda9259c85, and the concrete dataset
containing 1030 samples can be downloaded at https://www.
kaggle.com/datasets/niteshyadav3103/concrete-compressive-
strength. Python code for RDE andRDE_Ware also available
at supplementary files with corresponding names.
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