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ABSTRACT Video object tracking in real-world scenarios is one of the challenging problems of computer
vision. The issue is compounded in the presence of varying illumination conditions, dynamic entities of the
background, and bad weather conditions. In this research, a particle filter based new video object tracking
scheme is developed with the proposed notions of target remodeling and reinitialization. During the tracking
phase, the target is remodeled in each frame to take care of the changing scene dynamics over frames. The
target is remodeled by fused feature distributions chosen from the created bank of fused feature distributions
having discriminating potential to differentiate the target and the background in a given frame. The fused
feature bank is created by fusing two features from the set consisting of Color, LBP, and HOG features. The
features are fused probabilistically where the weights are determined based on the discriminating ability
of a given feature. In order to achieve high tracking accuracy, the deviation of the tracker is evaluated in
each frame using the notion of time motion history while reinitialization of the tracker position takes place
when the deviation is above a preselected threshold. Besides, the proposed algorithm has been implemented
successfully on a Raspberry Pi based hardware setup and thus becomes a potential candidate for real time
implementation. The proposed scheme is successfully tested on videos from DAVIS 2016, LASIESTA, OTB
100, and CDnet 2014 databases and in most of the cases the tracking accuracy is found to be higher than
those of the existing algorithms.

INDEX TERMS Particle filter, feature fusion, feature switching, target remodeling, target mean state
reinitialization.

I. INTRODUCTION
Tracking of moving objects in a video sequence is one of
the challenging problems in machine vision applications.
The challenges are compounded due to the nonlinear motion
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of the object along with various scene complexities which
arise because of illumination variation, clutter background,
camouflage, occlusion, and dynamic background.

In a probabilistic framework, an object in each frame of a
video sequence is modeled by its state distributions. Hence,
the object motion in a video sequence is equivalent to the
spread and the diffusion of these state distributions over time
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frames [1], [2]. So, tracking the moving object trajectory
is tantamount to finding the solution to the evolution of
these state distributions over the frame sequence [1], [2],
[3], [4], [5]. Since these state distributions are non-Gaussian
in nature, the spread and diffusion occurring because of the
object’s motion are also nonlinear. With such challenges in a
complex scene, the particle filter, which relies on the Monte
Carlo chain framework and Bayesian probability, provides an
excellent solution to this motion model of state distributions
in discrete state space [5], [6].

Based on different issues of the scene complexity, different
methods of tracking such as feature-based tracking [7],
[8], [9], [10], model-based tracking [11], [12], [13], [14],
[15], [16], [17], region-based tracking [18], and deformable
template-based tracking [19], [20], [21] have been proposed.
It is found from the literature that illumination variation and
occlusion are the two crucial issues of the scene during object
tracking [7], [8], [9], [10], [22], [23], [24], [25]. In case of
occlusion, incomplete feature extraction of the target object
at the occluded region leads to unstable tracking, whereas a
sudden change of intensity in the scene due to illumination
variation results in distortions in feature distribution thus
resulting in an improper target model. An efficient attention
networks (EAN) based visual tracking algorithim is proposed
by Gu et al. [23]. The EANmodule comprises a fused feature
algorithim module (FFAM) where multi-level features are
fused to enhance the discriminative attribute of the target
model. Further, Gu et al. [22] have extended their work to
handle target scale changes, occlusion and fast movement
where a fused feature based new model is used to integrate
the features of parallel branches to improve tracking accuracy.
Amulti-level feature enhancement unit together with a global
channel attention network is proposed by Gu et al. [25] to
strengthen the target model. Yuan et al. [24] proposed a video
object tracking scheme for thermal infrared target tracking.
Hence, researchers have been motivated to handle these two
key issues of the scene by adapting the notion of fusion of
multiple potential features to model the target in a particle
filter framework. By and large, in different particle filter
based scheme, the target model of initial frame is used over
subsequent frames for object tracking. But it is to be noted
that, the scene conditions change in the video due to various
factors and hence use of the same target model althrough
the tracking process may not be the appropriate model over
the entire video. To take care of change in scene dynamics,
we remodel the target object at each frame with appropriate
fused features selected from the feature bank.

The concept of feature fusion in the particle filter
framework has been adopted by some researchers to address
the specific issues of the scene [7], [8], [9]. The issue of 3D-
Human motion tracking is carried out by modeling the target
with a fusion of contour and edge features [26]. Tracking in
a cluttered environment is achieved by the fusion of shape
and texture features [27]. In case of multiple object tracking,
Younsi et al. [28] have fused multiple features such as shape,

intensity, texture, and motion to model the target for effective
tracking. Despite achieving good tracking capability, there
are challenges to develop schemes for tracking the object
under different complex dynamics of the scene. We have
specifically considered sceneswith illumination variation and
dynamic entities in the background. These dynamic entities
are due to bad weather conditions, background with snowfall,
dynamic shadows, and splashing of water etc. The above
mentioned research works focussed on enhancing the target
model, but the initial target model is used in subsequent
frames for tracking. In our approach, we have remodeled the
target in subsequent frames with the selected fused feature
distributions from the created fused feature bank to take care
of the changing scene dynamics. Further, while remodeling,
it is constrained that the remodel of the target does not deviate
substantially from the original target model. Due to the above
mentioned situations, even after efficient object modeling, the
tracker may deviate beyond the acceptable limit of the mean
position. This error could be cumulative in subsequent frames
resulting in complete failure. In order to improve the tracking
accuracy in such cases, reinitialization of the mean position
of the tracker is proposed based on the notion of time motion
history of the target.

In this paper, we propose a novel tracking scheme to track
the video object in complex environments arising due to
the above mentioned conditions. By and large, the target
is modeled initially with appropriate features and the same
model is used in subsequent frames for tracking. But due
to the changing scene dynamics over the scene, the same
model may not be appropriate for subsequent frames and
may result in tracking errors. This tracking error of a given
frame propagates and increases further resulting in complete
failure of tracking the object. This motivated us to develop a
particle filter based tracking scheme where remodeling of the
target is carried out in every frame by fusion of appropriate
features to achieve effective modeling of the target in the
given frame. This is achieved by creating a fused feature
bank and choosing an appropriate fused feature distribution
by the proposed notion of switching of features. The fused
features having discriminating attributes to differentiate the
object and background in a given frame are chosen from
the feature bank. Besides, while remodeling, it is taken care
that the remodeling of the target at a given frame should
not deviate much from the original target model. This is
achieved by proposing an adaptive thresholding strategy for
comparing the current model with that of the original target
model. This notion improved the tracking accuracy but failed
in some complex environments. To improve further, a new
notion of a reinitialization of the mean tracker position is
proposed to prohibit the tracker to deviate substantially from
the object. This reinitialization of the mean tracker position is
achieved using the joint notion of the time motion history of
the frames and the discriminating feature of the fused feature
distribution. The combined notion of remodeling of the target
and reinitialization is found to track the target object under
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different complex scenarios. The salient contributions of the
proposed work is summarised as follows.

• At a given frame, fused feature distribution having
discriminating attribute is used to model the target. For
efficient target modeling at each frame, a bank of fused
feature distributions is created and the most befitting one
is selected for modeling.

• An adaptive threshold strategy is proposed to maintain
the proximity of the target model of a given frame with
that of the original target model.

• A novel strategy is proposed to reinitialize the mean
state of the particle filter or in other words the mean
tracker position using jointly the time motion history of
the object and the discriminative attribute of the fused
feature distribution.

• The proposed scheme is successfully implemented in
Raspberry Pi based hardware systems.

Different benchmarked data sets such as CDnet 2014 [29],
OTB 100 [30], LASIESTA [31] and, DAVIS 2016 [32] data
sets are used to test the efficacy of the proposed algorithm.
In all the above cases, the proposed algorithm tracked the
objects with tracking accuracy which is either comparable or
better than those of the existing ones.

The rest of the paper is organized as follows. Related works
are presented in Sec. II. Section III presents the proposed
tracking framework.The details about the target modeling
using discriminating feature fusion is presented in Sec. IV.
Reinitialization of the target location is presented in Sec. V
and the remodeling of the target in each frame is dealt in
Sec. VI. Tracking using particle filter is presented in Sec. VII.
Details about Hardware implementation is presented in Sec.
VIII whereas, the experimental conditions and data sets are
presented in Sec. IX. Sec. X deals with the different results
obtained and the corresponding discussions. The conclusions
along with the future scope of work are presented in Sec. XI.

II. RELATED WORK
In particle filter based video object tracking schemes, target
object modeling plays a crucial role for accurate tracking
of the object in different frames of video. Different particle
filter based video trackers have used different features to
achieve effective tracking. It is found from the literature that
single feature based object models such as color feature [33],
[34], [35], edge feature [36], motion feature [37], [38],
[39], appearance feature [40], [41] and entropy feature [42],
[43] could handle one or two typical issues of the scene
during tracking and have achieved good tracking accuracy
for initial frames of the video. But, these trackers with single
feature based object modeling fail to track the object after
some frames due to the occurance of scene complexities in
subsequent frames.

The issues of occlusion and illumination variation are
handled simultaneously by the notion of feature fusion in
modeling the target object. The problem of occlusion is
taken care by Bhatt et al. [44], [45] where they have used

the fusion of color and Edge-Oriented-Histogram (EOH)
feature for accurate tracking. Additionally, the appearance
and motion information of the object are used [46] to
adaptively estimate the number of particles in each frame
for accurate object tracking. In this scheme, a normalized
correlation filter is integrated to the sparsity based tracker
to improve the performance of tracking. The problem of
people counting is addressed by García et al. [47], where
the motion and height information are used to model the
object in their proposed extended condensation algorithim.
This algorithim is designed to solve the problem of occlusion
without counting other objects like shopping trolleys. Talha
and Stolkin [48] have proposed a particle filter based tracking
scheme specifically for camouflaged targets by fusing the
thermal and visible spectra camera data. The weights in
the feature fusion process are determined based on the
discriminating attribute in each frame. Besides, color and
texture are also fused to model the target [35] in the Genetic
algorithim based particle filter where Genetic algorithim is
used for resampling. This helps in reducing the number of
particles of particle filter while achieving improved tracking
accuracy. In order to improve the tracking accuracy under
occlusion and sudden illumination changes, Wang et al. [42]
have fused the color and local entropy feature for target
modeling. Specifically, the issue of occlusion is taken care
by anti-occlusion particle filter proposed by Huan et al. [8]
where the color and LBP features are fused with respective
coefficients that are determined based on the difference
between the object features and background.

The problem of object tracking under illumination varia-
tion of the scene is also taken care by Lu et al. [49] by their
proposed object contour tracking based particle filter scheme.
In this work, object rough location is realized by fusion of
color histogram and Harries corner features. This scheme
is very effective in object location and contour tracking.
Further, Xu and Zhao [50] have proposed a particle filter
based tracking algorithim which is based on the notion of
adaptive fusion of color histogram and EOH. Using the
notion of integral image frame, the authors have attempted
to reduce the computational burden and enhance the tracking
accuracy under illumination variation and partial occlusion
condition. Besides, color and texture features are also fused
by Ding et al. [51] and Panda and Nanda [6] for target
modeling in the particle filter framework to enhance the
tracking accuracy under illumination variation. It is found
from literature that most of the particle filter based tracking
schemes use a single target model throughout the tracking
process. Hence, in this research target object is remodeled in
each frame to take care of varying scene dynamics.

III. PROPOSED TRACKING FRAMEWORK
The block diagrammatic representation of the proposed
scheme is shown in Fig. 1. As observed from Fig. 1, it has
two important phases; (i) Initialization phase, and (ii) Target
remodeling and tracking phase. The target remodeling and
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tracking phase again consists of the diffusion of particles,
the remodeling and tracking phase. Further, as observed
from Fig. 1, the target remodeling phase includes the
reinitialization of the mean state of the particle or in
other words reinitializing the tracked location of the object
in a given frame. After initializing the target model and
the particles, the target is tracked in subsequent frames.
Remodeling of the target is carried out in each of the
subsequent frames and reinitialization of the tracked location
takes place as and when necessary. Thus, tracking of the
object is achieved in all the frames.

FIGURE 1. Block diagrammatic representation of the proposed scheme
for object tracking.

A. INITIALIZATION PHASE
In beginning, two initial frames which are considered to be
two reference frames are used to generate a particle which is
replicated to generate N number of particles. These particles
are considered in the particle filter based tracking scheme
and correspond to possible tracker locations. In order to track
the object in the third frame i.e. the first target frame, the
particles pass through the dynamic model as shown in Fig. 2
to obtain the estimated locations in the target frame. Each
particle in the target frame is weighted and the weight is
computed by comparing it with the target model which is
modeled by fused discriminant features. It is to be noted
that the original target object is also modeled with different
sets of distributions of discriminant fused features. All these

FIGURE 2. Block diagrammatic representation of Initialization phase of
the proposed scheme.

fused feature distributions based models are stored in the
fused feature bank. In our case, we have considered three
discriminant features and hence developed three sets of fused
feature distributions as the three differentmodels of the target.

B. PROPOSED RE-MODELING AND TRACKING PHASE
Since the scene is expected to change from frame to frame,
the scene dynamics need to be taken care of in each frame for
effective modeling of the target.

1) REMODELING OF THE TARGET
Initially, for the target object, discriminating features are
selected based on the target area of the template and the
background area of the extended template. With the available
discriminating features, two features are fused to generate
fused feature distribution. In the process, a set of fused feature
distributions is generated to create the fused feature bank as
shown in Fig. 2. It may be noted that, different sets of fused
feature distributions may be required for modeling the target
in each frame. This is achieved based on the proposed notion
of switching of fused feature distributions as shown in Fig. 3.

2) REINITIALIZATION PHASE
Besides depending on the scene dynamics, it may so happen
that the tracker may deviate from the target to a great
extent and thereafter may completely fail to track the object.
To bring back the tracker to the actual position, the mean
position of the tracker may be reinitialized. This is achieved
by integrating the timed motion history (tMHI ) of each frame
with that the discriminating attributes of the features. It is
assumed that the target movement is predominant in the
scene. If the number ofmotion pixels in the tracker is less than
a threshold, then it is considered as the deviation of the tracker
from the object and hence the tracker position needs to be
reinitialized. Since the tracker position is themean state of the
particles, the mean state of the particles is reinitialized as and
when necessary. This is also reflected in the block diagram
of Fig. 3. As seen from Fig. 3, for the first target frame, the
mean state is computed and checked together with the tMHI
[52], [53] whether reinitialization is required or not during
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the remodeling phase. The tracker location is determined and
the target is remodeled with the notion of switching of feature
distribution.

FIGURE 3. Block diagram of Re-modeling and Tracking phase of the
proposed scheme.

3) DIFFUSION OF PARTICLES
The particles from the first target frame are passed through
the state dynamic model for state transition as shown in
Fig. 3. After state transition, the weights of the particles
are computed, and the mean state of the particles is found
out for the second target frame. To maintain the effective
number of particles for the state transition of the next time
step, resampling is carried out. The process consisting of
remodeling, reinitialization, and the transition of the particle
by the state dynamic system is repeated till all the frames are
exhausted or in a real time set up this process is repeated
to continuously track the target object of a real world
scenario.

IV. TARGET MODELING USING DISCRIMINATING
FEATURE FUSION
A. FEATURE SELECTION
Target modeling is one of the key aspects of tracking of the
object. For efficient tracking of the object in the scene, the
target should be differentiated from the background area in
each frame. Hence, attempts have been made to model the
target with features that will differentiate the target from the
rest of the scene in a given frame. Therefore, initially features

that possess the discriminating attribute are selected. The
discriminating features are selected as follows. Fig. 4 shows
the object with the template that encompasses the complete
object and a very small portion of the background. But,
the extended template is completely filled with background
areas. Let f1 be the first feature considered for both the
template and the extended template. The feature is extracted
from the template and extended template region. Thereafter
the histogram of the featured object and the featured
background are found that correspond to the foreground and
background model respectively. It is to be noted that the
template predominantly covers the object. Let hof 1 denotes

FIGURE 4. A frame f (m × n) with object, template and extended template
regions. The shaded area is the background area included in the
extended templated.

the histogram of the template region with the object and hbf 1
denotes the histogram of the background area in the extended
template region. If the above foreground and background
distributions have a similarity of a high degree, then the
chosen feature has the potential to model both background
and foreground as well. Since we need to choose a feature
that has the attribute to discriminate between background and
foreground, we need to choose a feature whose corresponding
background and foreground distributions are having less
degree of similarity. The similarity measure between the two
feature histograms hof 1 and hbf 1 corresponding to f1 feature
is determined by Bhattacharyya’s similarity measure [54]
which is given by,

d =
√
1 − ρ[ho, hb], (1)

where d is the Bhattacharyya distance and ρ[ho, hb] is the
Bhattacharyya coefficient which is computed as;

ρ[ho, hb] =

m∑
u=1

√
(huo, h

u
b), (2)

where u represents the bins of the histogram and m is the
maximum number of bins. ρ[ho, hb] is an indicator of the
similarity between the two distributions. Besides, huo and h

u
b

denote the uth bin of the object and background histogram
respectively. When the two distributions are same, the value
of ρ[ho, hb] is unity and the value of ρ[ho, hb] is zero when
the two distributions are orthogonal to each other. Let us
denote γ to be the dissimilar coefficient between the object
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and background distributions for a given feature ′f ′ where,

γf = 1 − ρf [ho, hb]. (3)

If γf is greater than a threshold thd , then the object
and background distributions are dissimilar and hence
the selected feature f has the potential of discriminating
foreground and background. Following the above process,
the discriminating features are selected for a given object
position in the scene. In this work, three features namely,
RGB color, LBP, and HOG are considered and the corre-
sponding dissimilar coefficients are determined. The highest
coefficient corresponds to the high degree of dissimilarity
followed by others. In this process the discriminating ability
of a given feature is ascertained and thereafter feature fusion
takes place.

B. FEATURE FUSION
In order to improve the accuracy of target modeling, multiple
discriminating features are fused probabilistically and the
fused distribution is considered as the model of the target.
In this work, we have chosen two discriminating features
to be fused to obtain the fused distribution. In the template
and extended template of Fig. 4, the two most discriminant
features out of the three are selected. Let f1 and f2 denote
the two discriminating features chosen over the object and
let the corresponding histogram distributions are hf1 and hf2
respectively. These two distributions are shown in Fig. 5(a)
and Fig. 5(b) respectively. As seen from these figures, the
distributions corresponding to the two discriminating features
are different. These two distributions are probabilistically
fused to result in the fused distribution which is used to
model the target and is shown in Fig. 5(c). The two histogram
distributions are binwise fused. The two distributions are
fused probabilistically as,

hfd = wd1hf1 + wd2hf2 , (4)

where hfd denotes the fused distribution corresponding to the
discriminant attributes. wd1 and wd2 denote the weights for
the distributions of feature f1 and feature f2. These weights
are determined as follows.

wd1 =
γf1

γf1 + γf2
, (5)

and

wd2 =
γf2

γf1 + γf2
, (6)

where γf1 and γf2 denote the dissimilar coefficients of feature
f1 and f2 respectively.
Out of three features i.e., LBP, mean RGB color, and

HOG, three sets of fused distributions are found. The fusion
is carried out in both the template area and the extended
template area. Out of three such fused distributions, the one
that has the most discriminant attribute of discriminating the
background and foreground is chosen for modeling the target.

FIGURE 5. Probabilistic fusion of two distributions (a) histogram for 1st

feature, (b) histogram for 2nd feature, (c) Fused feature histogram
resulting from binwise fusion of 1st and 2nd feature.

V. REINITIALIZATION OF TARGET LOCATION
The target is tracked in every frame and this tracking is
achieved by determining the mean state of the particles
passed through the dynamic model. It may happen that the
estimated mean state of a given frame may deviate from
the expected one, which in turn deviates the tracker from
the target position. If this deviation is not corrected after a
certain degree then the percentage of deviation may increase
and eventually the tracker may completely fail to track the
object. This phenomenon is shown in Fig. 6. As seen from
Fig. 6, the expected mean state encompasses the object
entirely and hence has tracked the object accurately whereas
the estimated mean state as shown with dotted lines covers
only a portion of the target and hence tracker is deviated
from the expected one. If this deviation is not corrected
then eventually the tracker may fail completely to track the
object. In order to ameliorate this situation, we introduce the
concept of reinitialization of the mean state of the estimated
particles of a frame if the tracker position has deviated beyond
a threshold. This is achieved based on the following two
notions; (i) Integrating the timed motion history information
of the frame, (ii) Searching the neighborhood of the current
tracker location to improve the accuracy of the tracking.

The timed motion history of a given frame is computed
as follows. The motion history image (MHI ) expresses the
motion flow by using the intensity of every pixel in a temporal
manner. A motion history of image at time ′t ′ for the pixel
(x, y) is denoted asMHIt which is computed as,

MHIt (x, y) =

{
t, if |Dt (x, y)| > σ

MHIt−1(x, y), otherwise.
(7)
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where Dt (x, y) contains the difference of images and σ is
the difference threshold. Timed motion history image (tMHI )
[52], [53] is an extension of MHI . In this notion, the motion
history image (MHI ) is generalized by directly encoding
the actual time in a floating point format, which is called a
timed-motion history image (tMHI ). A history of temporal
changes is stored at each pixel location which decays over
time. The tMHI is not updated by the frame number but by the
time stamp of the video sequence. The tMHI can be computed
as,

tMHIσ (x, y) =

{
τ, if current silhouette at (x, y)
0, else if tMHIσ (x, y) < τ − δ,

(8)

where τ is the current time stamp and δ is the decay
parameter that determines the maximum motion length. The
time motion history indicates the number of moving pixels in
the template. In the reinitialization phase, for every tracker

FIGURE 6. True mean state of the target and the estimated mean state
with deviation in a given target frame.

position, possible tracker positions in the neighborhood are
searched and thereafter the percentage of moving pixels
encompassed by each neighborhood tracker is determined
with the help of the tMHI of that frame. If xi is the pixel
having motion in a tracker of widthW and height H and if,

1
W × H

(
W×H∑
i=1

kxi

)
< tht (9)

then the tracker needs to be repositioned and hence the mean
state needs to be reinitialized. In the above equation, kxi is
unity when xi is a motion pixel and zero otherwise. In order
to reinitialize the tracker, the different possible positions of
the tracker in the neighborhood in all directions are searched
as shown in Fig. 7. In each of the neighborhood tracker
position, the number of moving pixels is determined with
the help of the timed motion history of the frame. If the
percentage of the moving pixels of the target for a given
tracker position is greater than that of a preselected threshold
tht , then it is assumed that the tracker covers the target
substantially. As a thumb rule, we have assumed that if
the tracker covers more than 50 percent of the target then
reinitialization is not necessary and hence tht is chosen as
0.5. Therefore, the tracker having the maximum number of

FIGURE 7. Neighborhood search space of the target frame when the
estimated target location has motion information less than a threshold
value. The motion information is obtained from the corresponding tMHI
frame.

moving pixels is chosen from a neighborhood search. The
mean state corresponding to this position becomes the new
mean state of particles and hence becomes the new tracker
position. This overcomes the problem of divergence of the
tracker.

VI. REMODELING OF THE TARGET IN EACH FRAME
The scene condition changes in every frame and hence any
single feature or a set of two features selected to model the
target for the entire frame sequence may not be appropriate
for tracking the object accurately over different frames of
the video. The tracking accuracy of the tracker greatly
depends upon the accurate modeling of the target in a given
frame. Therefore, remodeling of the target is necessary in
every frame. To have effective tracking of the object, fused
feature distributions are found out which discriminate the
foreground and background to the maximum possible extent.
The most discriminating fused feature distribution is found
by the notion of switching among the set of fused feature
distributions. The fused feature distributions are found out
and if a particular fused feature distribution is not able to
achieve the required level of discrimination, then switching
of the fused feature distribution happens to select the most
discriminating fused features. In order to overcome the
remodeling error that might happen due to the propagation of
tracking error of the previous frame, it is desirable to have
a high similarity of the remodeled target with that of the
original target model. This ensures that the target model does
not deviate from the original model and will supplement the
tracking accuracy. The block diagrammatic representation of
the entire process of remodeling the target is presented in
Fig. 8. As seen from Fig. 8, there are three phases in the
remodeling of the target. They are; (i) Modeling of the target
region and the extended target region with fused features,
(ii) Adaptation of the threshold of similarity, (iii) Decision
for switching of features to remodel the target.

A. MODELING OF THE TARGET REGION AND THE
EXTENDED TARGET REGION WITH FUSED FEATURES
First, for a given frame, the template with the object is
chosen and an extended region of the template having a
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FIGURE 8. Remodeling of the target with the notion of switching of fused
feature.

FIGURE 9. Block diagrammatic representation of the process of target
modeling by fused feature distribution.

background is chosen as shown in Fig. 4. The features
that have the attribute of discriminating the object from
the background are selected. Out of these discriminating
features, the two most discriminating features are chosen
and fused probabilistically as presented in Sec. III-B. These
two discriminating features are fused separately both in
the target region and background regions as explained in
Fig. 9. The fused distribution of the target region needs
to be dissimilar with that of the background region so
that the tracker will be able to differentiate the object and
background.

FIGURE 10. Adaptation of the threshold of similarity between target
model of a given frame with that of the original target model.

B. ADAPTATION OF THE THRESHOLD OF SIMILARITY
The original target model may not be the appropriate model
for all the frames because of the change in the scene
conditions. Therefore, modeling of the target at each frame
would be more appropriate to reduce the modeling error and
improve the tracking accuracy. This is called as remodeling
of the target. To model the target of a given frame effectively,
the mean estimated tracking location is considered and the
target is modeled by the fused feature distribution that has the
most discriminating attribute to discriminate the background
and foreground regions. But the estimated tracker position
might be the deviated tracker position as compared to the
expected tracker location. Therefore, the object template is
expected to have some portion of the target and the rest as
background. The rest portion of the target may be present
in the extended template region. In such a scenario, if the
discriminant fused feature distributions are chosen to model
the target, the modeling may not be appropriate and hence
modeling error will be reflected. This modeling error is
expected to increase the tracking error, which may further
increase the modeling error in the subsequent frames. This
process eventually may lead to tracking failure. To overcome
this problem, a discriminant fused feature based target model
of a given frame is compared with the original target model.
If there is less degree of similarity, then the chosen model
will incur large modeling errors. Hence a different set of
fused distributions needs to be chosen from the fused feature
bank which will enhance the degree of similarity with that
of the original target model. This is carried out by the notion
of switching of features. This high degree of similarity will
reduce the modeling error. Since the scene dynamics change
from frame to frame, the threshold of similarity also needs to
be adapted. Initially, a threshold ′Th′ is chosen for similarity
and is updated. As seen from Fig. 10, the similarity between
the foreground and the extended background distributions at
t th time instant is determined by Bhattacharyya’s coefficient
ρ1t . If the ρ1t is greater than the chosen threshold T1, this
indicates that the chosen model results in more similarity
between foreground and background. Hence with the use of
this model, the tracker will have the tendency to deviate more
towards the background region than the foreground region.
This will deviate the tracker from the true mean state and
hence incur more tracking errors. In such a scenario, even
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though the discriminating ability of the model is less, the
target modeling should be accurate and hence should have
a high degree of similarity with the original target. To ensure
this, the threshold ′Th′ should be increased to ascertain the
high degree of similarity with the original target. This will
reduce the target modeling error and in turn the tracking error.
Similarly, when the similarity ρ1t is less than the threshold
T1, the model has a discriminating ability and hence a lower
value of threshold ′Th′ for similarity with that of the original
target will suffice for effectivemodeling. Hence, the proposed
adaptation strategy for this is as follow;

Th =

{
Tht−1 + ηρ1t , if ρ1t > T1
Tht−1 − ηρ1t , if ρ1t < T1.

(10)

where η is the control parameter and ρ1t is the similarity
between the fused distribution in the target region and
extended template background region. T1 is the threshold to
determine the dissimilarity between the target region and the
background region of the extended template.

C. DECISION FOR SWITCHING OF FUSED FEATURE
DISTRIBUTION TO REMODEL THE TARGET
It may so happen that due to various external factors such as
illumination variation over the scene, the fused feature distri-
bution chosen to discriminate the background and object may
not be the appropriate features for target modeling. In order
to improve model accuracy, different fused distributions may
be used to model the target. Therefore, the chosen fused
feature distribution of the target modeling in a given frame
is compared with corresponding fused feature distributions
from the feature bank having discriminating attributes. These
distributions of the feature bank are different models of the
original target corresponding to different features. Let Dfs1 ,
Dfs2 , and Dfs3 denote the three fused distributions of the
feature bank corresponding to three sets of discriminating
features of (f1, f2), (f2, f3), and (f1, f3). The distributions
are arranged in descending order of discriminating attribute
i.e.; Dfs1 > Dfs2 > Dfs3 . As seen from the 3rdblock of
Fig. 11, the chosen fused distribution Dft is compared with
the corresponding target model from the feature bankDfsi and
the Bhattacharyya similarity is denoted as ρ2t . If ρ2t > Tht ,
then the discriminating feature selected for the t th frame
is accepted and the target is remodeled with the selected
fused feature. But, if ρ2t < Tht , this implies that the
chosen fused distribution corresponding to the discriminating
features is not appropriate for modeling and hence switches
to a different set of discriminating features as shown in the
12th block of Fig. 11. The fused distribution of the next
set of fused feature distribution is denoted by Dftnew and
Dftnew is compared with the corresponding fused distributions
of the feature bank and this similarity is denoted as ρ2tnew .
If ρ2tnew > Tht , then the similarity value ρ2tnew is compared
with the earlier similarity value of ρ2t . If ρ2tnew is greater than
ρ2t then the switched feature distribution is considered for
modeling and if ρ2tnew is less than ρ2t then it implies that

FIGURE 11. Remodeling of the target with appropriate fused features
from the feature bank.

the switched fused distribution is not suitable for modeling.
Thereafter it is checked in the 16th block that whether all
the fused distributions of the feature bank are exhausted.
If it is not exhausted, switching takes place for the next
fused distribution, and the process is repeated till we find
a distribution whose similarity is greater than the threshold
Tht for modeling the target. In this process, the appropriate
fused distribution is selected for remodeling the target at the
t th frame.

VII. TRACKING USING PARTICLE FILTER
The proposed particle filter based algorithm tracks the object
in every frame using the notion of remodeling of the target
at every frame and reinitialization of the tracker position as
and when necessary. This is intended to track the posterior
distribution of the object state. Initially, the object or the
target is modeled by considering a rectangular template of
width Hx and height Hy. This is represented by a particle
s = {x, y, vx , vy,Hx ,Hy} where (x, y) are the coordinates of
the location. vx and vy are the motion vectors in the x and
y direction and Hx and Hy are the width and height of the
rectangle respectively.

In initial frames, the object is encompassed by the tracker
manually. Two features are chosen at a time from the set of
Color, LBP, and HOG features, and the corresponding fused
feature distribution is found out. Thus, three sets of fused
feature distributions are determined to form the fused feature
bank. For the first frame, a fused feature that has the potential
to model both the target and the background is considered
to model the target. A sample is drawn with a probability
from the likelihood region of the target. Similarly, another
sample is drawn from the second frame with a probability.
Using both the samples a particle is generated and this
particle is replicated N times to have a set of particles to be
used for tracking. These particles are propagated through the
following dynamic state model.

St = ASt−1 +Wt . (11)

where St and St−1 denote the set of particles at time step t , and
t−1 respectively, andA denotes the state transitionmatrix.Wt
denotes the Gaussian noise process at time t . In the tracking
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phase, the fused feature distribution that can discriminate the
foreground and background is considered. Hence, these sets
of particles are modeled by the fused feature distributions
having the most discriminating ability to differentiate the
target and background. Each of the model distributions of
these particles p(n) is compared with the initial target model
Dfs based on the similarity measure which is determined by
the following Bhattacharyya coefficient [54];

d (n) =

√
1 − ρ[p(n),Dfs ], (12)

where d (n) is the Bhattacharyya distance for nth particle and
ρ[p(n),Dfs ] is the Bhattacharyya coefficient of nth particle
with that of the initial target model which is computed as;

ρ[p(n),Dfs ] =

m∑
u=1

√
(Dufs , p

(n)u ), (13)

where u represents the bins of the histogram and m is the
maximum number of bins. Each of the particles is assigned
with a weight depending on the similarity measure, the more
the similarity measures, the larger the weight, and vice versa.
The mean state of these particles is the tracked position of the
object in that frame which is given by;

E[St ] =

N∑
n=1

π (n)S(n)t , (14)

where n is the number of particles. S(n)t is the nth sample
particle weighted with corresponding sampling probability
π (n). Thereafter mean estimated particle is checked for
reinitialization as presented in Sec. 4. Thereafter, remodeling
of the target in the current frame is achieved as presented in
Sec. 5. After reinitialization and remodeling, the particles are
again propagated through the dynamic model of (11) to the
next frame for tracking the object. This process is repeated
till all the frames for tracking are exhausted.

VIII. HARDWARE IMPLEMENTATION
The proposed scheme is intended to be implemented in real
world scenario. Hence, the hardware implementation for real
time setup needs to be evaluated. In this regard, a Raspberry
Pi based hardware setup is developed as shown in Fig. 12 and
the different components of the system are shown in Fig. 13.
The specifications of the system are provided in Table 1. Input
frames from different data sets are presented to the hardware
in offline mode. Each frame is presented and the algorithm
is executed in hardware and the tracked object is displayed
on the monitor as shown in Fig. 12. Thus the frames are
stored in the memory of the hardware and are input to the
algorithm one by one. The tracked results are found to be
similar to those obtained by simulation except the time taken
by the hardware system is higher than that of simulation.
As observed from Table 6, the minimum average time of
execution per frame in hardware is 1.7 sec in case of Kite-
surf data sets with a tracker size of (40 × 20) pixels. Further
it is observed that the average tracking time is dependent on

Algorithm 1 Particle Filter Algorithm
Input 1: Video frame sequences with moving object.
Initialize Target model and a set of particles ′s′.

Output: Tracked Object frames.

1 : Select a particle set St−1 at time t − 1, having initial
weights.

2 : Input the particles to the dynamic state model as per Eq.
11 to have N numbers of locations corresponding to particles
at time t .

3 : Compute the discriminative fused feature distributions
using Eq. 4 at every location of the set of particles.

4 : Use Bhattacharyya distance ′d ′ to compare the similarity
between the fused feature distribution of a given location
with that of the target model.

5 : Determine the weights of each particles as:

π
(n)
t =

1
√
2πσ

exp(−
d2

2σ2
), d is evaluated by Eq. 12.

6 : Estimate the mean state of the particles using Eq. 14 and
check the condition for reinitialization of the mean state.

7 : Reinitialize of the mean state if necessary, otherwise go
to step 8.

8 : Remodel the target at the mean state to be used for next
frame.

9 : Resample the particles to maintain fixed number of
particles N . Discard the particles with low weights and
replicate the particles of high weights.

10 : Steps 2 to 9 are repeated for all the available frames.

FIGURE 12. Raspberry Pi hardware along with the monitor for displaying
the tracking in each frame.

the size of the tracker. Since the minimum time is found to be
1.7 sec, it is intuitively appealing that with enhanced features
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FIGURE 13. The detail components of Raspberry Pi system used for
implementation of the proposed algorithim.

of the hardware, it will be a feasible candidate for real time
implementation.

TABLE 1. Hardware specification.

IX. EXPERIMENTAL CONDITION AND DATA SETS
In our experiment, the number of particles, N is chosen to
be 100. The value of the threshold T1 as mentioned in block
8 of Fig. 10 is chosen to be 0.94. We have considered a
total of seven different videos, four from the following three
data sets of LASIESTA [31], CDnet 2014 [29], and DAVIS
2016 [32], and three from OTB 100 [30]. Table 2 presents
different data sets with their respective attributes. The coding
developed for implementing the proposed algorithm is in ′C ′

programming language and the algorithm is processed in the
Ubuntu platform of a machine having specifications, Intel (R)
core (TM) i5 CPU, M480 @ 2.67GHz, with 4GB RAM.

TABLE 2. Data sets.

X. RESULTS AND DISCUSSION
Different results obtained for the seven different videos from
different data base including OTB 100 [30] are presented in
this section. However, the visual display of the tracking is
presented only for four frames of Horse-jump-low and walk
videos which are denoted as video 1 and video 2. However,
we have presented the tracking error and trajectory of tracking
for all four videos. Besides, for performance analysis of all
the seven videos, we have presented the Average Overlap
Scores (AOS), Success Scores (SS) and the Error Scores (ES).
Besides, the diffusion of distributions of the particles for test
video 1 are presented in Fig. 14 and Fig. 15. Additionally, the
effect of remodeling and feature switching on tracking error
is demonstrated in Fig. 17 for the walk video. Analogously,
the effect of reinitialization on the trajectory is demonstrated
for the Horse-jump-low video.

A. VISUAL PRESENTATION OF TRACKING
Though we have successfully tested the proposed scheme
on seven different challenging videos from four data sets,
tracking results in two videos are presented for validating
visually. Four frames in each of the videos are considered
to demonstrate the efficacy of the proposed method. Fig. 16
shows results on four selected frames of video 1, i.e
the Horse-jump-low video. In this video, 22 frames are
considered from 38th to 59th frames of video. Results for the
42nd , 47th, 55th, and 59th frames are presented in Fig. 16.
These frames are chosen specifically to show the deviation
of the tracker from the target object by different schemes and
the potentiality of the proposed scheme to track the object.
As observed from Fig. 16, the tracker in the Color model [34]
deviates in the 42nd frame and again completely failed in the
55th and 59th frames. But in case of the DC model [8] and
the EOH-HSV model [7], the tracker is found to deviate in
the 55th and 59th frames and thereafter deviated more. The
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FIGURE 14. Diffusion of object distribution. (a) Diffusion of distribution
in discrete domain, (b) The corresponding one in continuous domain.

tracker is found to deviate in the 59th frame for the FFUTP
model, our previously developed model [6]. But, the tracker
in case of the proposed scheme could encompass the object
well and thus could track the object even in complex scenes.
In this video, the scene condition changes with the gallop
of the horse and hence our proposed notion of remodeling
by feature switching and reinitialization of tracker position
could take care of the change in scene dynamics and track
the object with minimum tracking error. Further, for the
proposed algorithm there is no diverging trend of error in the
subsequent frames.

The second illustration is presented in Fig. 23 with four
frames from the second video i.e. walk video. As observed
from Fig. 23, the person walks with change in illumination
condition. As seen in Fig. 23, the tracker in the Color model
failed in the 147th frame and thereafter completely failed in
the 171th and 183rd frames. The tracker in the DC model
also showed a trend of deviation and completely deviated in
the 171th and 183rd frames. Further the tracker in the case
of EOH-HSV model deviated in the 171th and 183rd frame
while the tracker in the FFUTP model is out of the object
in 171th and 183rd frames. But, for the proposed model, the
tracker exhibited deviating trend in 171th frame but could
again track the object completely in 183rd frame. This is due
to the special attributes of the proposed scheme.

B. DIFFUSION OF TARGET DISTRIBUTION
In the particle filtering approach, the target is modeled by the
distribution of the particles. As the target moves over time,
the distribution is expected to diffuse in order to track the
object over different frames of the video. This phenomenon
is demonstrated in Fig. 14 and Fig. 15. For the sake of
illustration, the process of diffusion is demonstrated for video
1. Both these figures together show for six time stamps and
as observed from these figures, the target distribution in one
time stamp diffuses to the subsequent one thus enabling the
tracker to track the object over different frames. In these
figures, one time stamp corresponds to one frame. It is to
be noted that the dominant peak of the distribution in one
time stamp corresponds to the tracked target position. The
particles move through the dynamic model resulting in the

FIGURE 15. Diffusion of object distribution. (a) Diffusion of distribution
in discrete domain, (b) The corresponding one in continuous domain.

diffusion of the target distribution from one frame to the other.
Fig. 14 shows the diffusion of the distribution for time stamps
1 to 3 and Fig. 15 shows the diffusion of the distribution
for time stamps 4 to 6. This indicates that the proposed
particle filter based scheme could track the object in different
frames.

C. EFFECT OF FEATURE SWITCHING IN REMODELING AND
REINITIALIZATION OF THE MEAN STATE OF THE PARTICLE
In the proposed particle filter based scheme the target is
remodeled in every frame to take care of the change in scene
dynamics. This takes place through the proposed notion of
switching of fused feature distributions. Tracking error is
affected by feature switching, remodeling and reinitialization
and their effect on tracking error is shown in Fig. 17. For the
sake of illustration, the effect of remodeling for test video
2 is shown in Fig. 17. As observed from this figure, the
tracking error is reduced in each frame with remodeling.
But even with remodeling, the tracking error increases and
shows a diverging trend. In order to overcome this effect, the
notion of a reinitialization of the mean state of the particle is
combined with remodeling, and the error due to the combined
effect is shown by curve ′C ′ of Fig. 17. As observed,
the tracking error has reduced substantially and there is no
diverging trend. Hence, the tracker could track the object even
with the changing scene condition. Besides, the effect of the
proposed notion of reinitialization on the trajectory of the
tracker is shown in Fig. 18. This figure shows the original
trajectory of the object and the trajectory of the tracker by the
proposed model. This trajectory is obtained for the second
testing video. As observed from Fig. 18, the coordinate of
the tracker position for the 9th frame is (177, 71) which is
away from the original trajectory coordinate of (179, 66).
Reinitialization of the tracker position brings the tracker
position to (189, 65) which is close to the original trajectory
point of (187, 63). It is to be noted that without reinitial-
ization, the tracker position would have deviated more from
the original trajectory and eventually might have completely
deviated away from the trajectory. Similar observations are
also made for other frames and hence the estimated tracker
positions try to follow the original trajectory. Thus the
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FIGURE 16. Testing video-1 (frame-42, frame-47, frame-55, frame-59). The original frames and tracked
frames for different models and the proposed model.

reinitialization together with the remodeling helps the tracker
to track the object in different frames with varying scene
conditions.

D. TRACKING ERROR AND TRAJECTORY OF TRACKING
In order to analyze the results quantitatively in all the frames,
tracking errors of different frames for different videos are
plotted. The tracking error in a given frame is defined by the
Euclidean distance expressed as; ∥ mst − msg ∥, where mst
denotes the center coordinate of the tracker and msg denotes
the center coordinate of the ground truth. Besides error, the
trajectory of tracking is plotted together with the original
trajectory to show how close is the tracker’s trajectory with
that of the original trajectory. In the trajectory plot, the X
and Y coordinates of the tracker at different frames are
plotted to demonstrate tracking ability for the given scene.
The errors and trajectories are also plotted for different

models. Fig. 19 and Fig. 20 show the tracking error and
trajectory plots respectively for video 1. As observed from
Fig. 19, the error for the Color model diverges at the 55th

frame thus indicating the fact that the tracker has completely
failed to track the object. This is quite evident from the
frames presented in Fig. 16. Similar observations are also
made in the case of the trajectory as presented in Fig. 20.
As observed, in the case of the Color model, there is a
large deviation from the original trajectory and hence the
Color model failed to track the object. As observed from
Fig. 20, the trajectories for other models are deviating from
the original trajectory whereas the trajectory for the proposed
model follows the original trajectory even towards the last
frame of the video. These observations are also corroborated
by the error plot presented in Fig. 19. It is also seen from
the Fig. 19 that the errors for other models showed diverging
trend towards last part of tracking. Further, it may also be
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FIGURE 17. Effect of switching feature,remodeling and reinitialization
(A) Fused feature modeling without remodeling for other frames,
(B) Remodeling and feature switching, (C) Proposed method with
remodeling, feature switching and reinitialization.

FIGURE 18. Demonstration of deviation of the mean position necessiating
reinitialization (P1) and the mean position after reinitialization (P2).

FIGURE 19. Error plots corresponding to different models for frame
sequence of video-1.

observed that the tracking error for the proposed model is not
only minimum but also has a converging trend towards the

FIGURE 20. Trajectories of the mean tracker position obtained by
different models and the original trajectory for video-1.

last part of tracking.This is due to the fused feature switching
and reinitialization attributes of the proposed model. The
effect of reinitialization is reflected in Fig. 18. The errors
and trajectory plots for video 2 are presented in Fig. 21
and Fig. 22. As observed from Fig. 21, the error in the
Color model diverges whereas the error plots of the EOH-
HSV model and the proposed model are close to each other.
But the errors in case of the proposed model in most of
the frames are less than those of the EOH-HSV model.
Further, the result of the two models such as the DC model
and the FFUTP model show diverging trend after the 173rd

frame. These observations are also reflected in the trajectories
of different models shown in Fig. 22. As observed from
Fig. 22, the trajectories of the proposed model, and that of
EOH-HSV model are found to follow the original trajectory.
The trajectory of the Color model diverges after a few frames
whereas the trajectory of the DC model shows the diverging
trend. But the FFUTP model follows the original trajectory
for few frames and thereafter diverges. The proposed model
could follow the original trajectory throughout the tracking
process because of the combined effect of remodeling and
reinitialization. The average errors for different videos are
presented in the Table 3, where it is observed that average
errors for videos are minimum ones for the proposed
model.

The proposed algorithm is also tested for video 3 consisting
of snowfall data and errors and trajectory plots are shown in
Fig. 24 and Fig. 25 respectively. As observed from Fig. 24,
the DC model like the previous two examples diverged.
The error plots for the DC model and FFUTP model also
diverged after a few frames. But the EOH-HSV model which
exhibited appreciable tracking capability for the last two
examples failed to track the object. Hence, large errors with
the diverging trend are observed in the last few frames. But the
proposed model incurred less error with a converging trend.
These observations are also reflected in trajectory tracking as
shown in Fig. 25. It may be observed that the trajectory of the
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FIGURE 21. Error plots corresponding to different models for frame
sequence of video-2.

FIGURE 22. Trajectories of the mean tracker position obtained by
different models and the original trajectory for video-2.

proposed model is closely following the original trajectory.
Thus, the proposed model worked well in this bad weather
data set.

The fourth example considered is the Kite-surf video from
the DAVIS-2016 database and the error and the trajectory
plots are presented in Fig. 26 and Fig. 27 respectively. In this
case, also error plot of the EOH-HSV model is close to
our proposed model while the errors for the rest of the
models diverged after a few frames. This observation is
reflected in trajectory tracking shown in Fig. 27. It may
be observed that the trajectories of the proposed model
and the EOH-HSV model are close to that of the original
trajectory while the trajectories for the rest of the models
are away from the original trajectory. In both these data
sets the proposed model resulted in minimum average
errors. Thus in all the four examples, the proposed model
could track the object in all the videos with varying scene
conditions.

E. FURTHER QUANTITATIVE ANALYSIS AND RESULTS ON
OTB 100 DATA SETS
The efficacy of our proposed algorithim is demonstrated
by evaluating the following quantitative measures on the
four videos of different datasets and 3 videos from the
object tracking benchmark data sets (OTB100) [30]. For
the sake of illustration, two frames with trackers and the
corresponding original frames of (OTB100) dataset are shown
in Fig. 28. As observed from Fig. 28, the tracker does not
deviate from the target and hence tracks the target object
successfully. The center location errors on these (OTB100)
videos are determined by our proposed tracking algorithim
and are compared with the state-of-the-art algorithims. Let
AGTt denotes the annotated area (i.e the number of pixels)
of the object in the ground truth (GT ) while ATt denotes the
output area of the visual tracker at time step t . The error
score SErrt at time step t is defined as the distance between
the centers of the GT ′s area and the output area of the
tracker [55]. Considering the distance as Lp norm, SErrt can
be expressed as,

SErrt =
p
√

∥Center(AGTt ) − Center(ATt )∥p. (15)

In our evaluation, we have taken p value as 2. The center
location errors are averaged over number of frames with
positive templates (error less than a threshold) to find the
mean of the center location errors. Center location errors are
evaluated in terms of pixels and hence smaller error indicates
better tracking accuracy and vice versa. The center location
errors of the proposed algorithim on the (OTB100) data sets
are presented in Table 4 together with those of the state-of-
the-art algorithims [56]. The errors are in pixels and the best
results are presented in bold faces. As observed, for the Dog
video, the average error is 3.6 which is very close to the best
result of 3.5. In case of other two videos, the mean errors are
less than many state-of the-art algorithims. The quantitative
performance is also measured by Average Overlap Score
(AOS), Success score (SS) and the Error Score (ES) [55]. The
overlap score (OS) is defined as,

SOvt =
|AGTt ∩ ATt |

|AGTt ∪ ATt |
. (16)

It is to be noted that larger overlap score implies better
tracking accuracy and vice versa. In an ideal case the overlap
score should be unity. The success score is defined over the
entire sequence of T frames which is defined as,

SSucc =
Success
T

, (17)

where ′Success′ for a frame is defined as the output of the
visual tracker which is considered to be correct based on
the overlap score. A score is considered to be a ′Success′ if
it is greater than a predefined threshold. In our simulation,
we have considered threshold to be 0.5 i.e when half of the
object area is overlapped by the visual tracker’s output area.
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FIGURE 23. Testing video-2 (frame-129, frame-147, frame-171, frame-183). The original frames and tracked
frames for different models and the proposed model.

TABLE 3. Mean of the errors of the trackers for different models with variety of datasets.

Denoting this threshold as T Acc, the success score of (17) is
defined as,

SSuccTAcc =
|t : SAcct > T Acc|

T
. (18)

where ′t ′ denotes the time step. Ideally the success score
should be unity. But higher success score with respect
to the threshold T Acc indicates better tracking. Similarly,
to compute the error score the threshold T Err is fixed to be
20 pixels. The average error score is evaluated over those
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TABLE 4. The center location errors of the state-of-the-art Algorithims and our algorithim.

FIGURE 24. Error plots corresponding to different models for frame
sequence of video-3.

FIGURE 25. Trajectories of the mean tracker position obtained by
different models and the original trajectory for video-3.

T frames, where the error in every frame is less than the
threshold. The success for error threshold is defined as,

SSuccTErr =
|t : SErrt < T Err |

T
. (19)

The success score for the error threshold T Err is also to
be high for high tracking accuracy and vice versa. Ideally,
this success score for the error threshold should be unity.
These quantitative measures for our proposed algorithim for
all the videos including the three from (OTB100) data set are
evaluated and are presented in Table 5. It is observed from this
table that the success score is high for all the videos except

FIGURE 26. Error plots corresponding to different models for frame
sequence of video-4.

FIGURE 27. Trajectories of the mean tracker position obtained by
different models and the original trajectory for video-4.

TABLE 5. Performance analysis of the proposed method in different data
sets.

Woman video. Similarly, the error score is as low as zero
for three videos including the Dog video from OTB100 data
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FIGURE 28. Tracking result of OTB-100 dataset (a) 7th and (c) 64th frame of David3 dataset, (b) and (d)
represent corresponding tracking output, (e) 261th and (g) 289th frame of Woman dataset, (f) and (h)
represent corresponding tracking output, (i) 13th and (k) 64th frame of Dog dataset, (j) and (l) represent
corresponding tracking output.

set. The rest error scores are low except the Woman video.
Further, it is observed that the AOS score is high for all
the videos except the Woman video. Therefore, the proposed
algorithims performs well in almost all the videos.

FIGURE 29. Comparison between simulation results obtained and by
hardware implementation for Testing video-2 (frame-129, frame-183).

F. HARDWARE IMPLEMENTATION RESULT
We have tested all the examples in our Raspberry Pi processor
based hardware setup and it is observed that the results
obtained are the same as that of the simulation except higher
execution time. Therefore, for the sake of illustration, we have

FIGURE 30. Trajectories of the mean tracker position obtained by
proposed model and the original trajectory for video-2 in hardware
implementation.

presented the trajectory of the tracker of video 2 in Fig. 30.
The observations obtained for other models are similar to that
of the simulation, and hence we have presented the trajectory
of the proposed model which is found to follow the original
trajectory. Fig. 31 presents the results obtained by simulation
and it may be observed that the results of Fig. 30 and Fig. 31
are identical. The average time of execution for different
examples are presented in Table 6. As observed from Table 6,
the computational time with the hardware setup increases
with the increase in size of the tracker. But, it may also be
observed that with the increase in the size of the tracker,
the execution time in hardware implementation is almost
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TABLE 6. Average time of tracking per frame for the proposed method in different videos.

FIGURE 31. Trajectories of the mean tracker position obtained by
proposed model and the original trajectory for video-2 in simulation.

twice than that of simulation. This is due to the configuration
of the hardware setup. It may be inferred that with further
advanced features of the hardware the execution time may
further be reduced thus making it a possible candidate for
real time implementation. It is found that the results obtained
by hardware with different videos are same as those of
the simulation. Therefore, the performance metrics such as
Average Overlap Score (AOS) and Success Score (SS) of the
results obtained by hardware setup are same as those of the
simulation as presented in Table 5.

XI. CONCLUSION
In this research, a particle filter based video tracking scheme
is proposed to achieve high tracking accuracy in real world
scenarios with illumination variation, badweather conditions,
shadows, and dynamic entities of the background. The tracker
usually deviates and eventually fails after a few frames if
the initial target model remains the same for the entire
tracking phase. In order to overcome the tracking failure,
the target is remodeled in each frame of the video. To have
an effective model, the target is modeled by fused feature
distributions where the features are chosen based on the
discriminating ability of the feature to differentiate the target
and background. A fused feature distribution bank is created
and themost appropriate fused feature distribution is selected.
This modeling improved the tracking capability of the tracker
but the tracker is found to deviate under certain complex
scenes which may be due to the combined effect of the above
mentioned scene conditions.

In order to overcome this problem, the notion of a
reinitialization of the tracker position is proposed based on
the concept of the timemotion history of the object. It is found
that the combined effect of remodeling and reinitialization
could track the object in different complex scenarios with
improved tracking accuracy. To make the proposed scheme
a potential candidate for real time implementation, the
proposed scheme is successfully implemented in Raspberry
Pi based hardware system. The tracking accuracy is found
to be similar to that of simulation but the only difference
is that the computational time is more in hardware than
that of simulation. Hence, with further enhanced hardware
features, the scheme can be implemented in real time in a
real world scenario. The scheme is successfully tested with
different challenging videos from the OTB 100, DAVIS 2016,
LASIESTA, and CDnet 2014 data sets. In most of the cases,
the performance of the proposed scheme is found to be
superior to the existing schemes.
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