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ABSTRACT Machine learning-based sports activity recognition has captured a lot of interest in recent years.
Automatic activity recognition not only reduces cost and time but is very helpful in analyzing health-sensitive
data acquired using smart wearable technology. Gym activity recognition by incorporating smart wearable
technology comes within the scope of this topic. This paper present a system for classifying gym activities
using feature engineering techniques applied to time series data. The collected time series data consists
of an athlete’s body movement using an internal 3-axis accelerometer build into the zephyr bio-harness
3 device. The data were gathered by implementing a six-week fitness routine trying to target six muscle
groups, preceded by one day of rest and recovery each week. The raw time-series data of the accelerometer is
transformed to extract new features from it for identifying gym activities. The feature engineering techniques
applied in this research are not limited to gym activity recognition but can be extended to any domain
involving time-series data. The collected data was just three features, which are the reading of the tri-axial
accelerometer signal as vertical, lateral, and sagittal axes. In order to formulate new features, basic concepts
of statistics and mathematics were applied to the data. furthermore, we trained six GridSearchCV-based
classifiers on the extracted features and tested their performance in four different types of experiments.

INDEX TERMS Internet-of-Things (IoT), feature engineering, gym activity recognition, machine learning,
smart workout.

I. INTRODUCTION there has been a lot of interest in human activity recognition

The human beings are capable of completing activities on
multiple levels, including mental, emotional, and physical.
Any action that improves or maintains a practitioner’s health
and fitness is considered a physical exercise. The exercises
are divided into three categories: flexibility exercises, aerobic
exercises, and anaerobic workouts. A gym is a technologi-
cally advanced indoor sports facility that is outfitted with a
variety of apparatus that is used by bodybuilders, strength
trainers, weight lifters, and practitioners. In recent years,
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(HAR). Human activity detection is commonly performed
based on smartphone sensor data i.e. accelerometer and
gyroscope. These human activity recognition techniques
are applicable in the health monitoring of athletes, remote
patient monitoring, elderly care, telemedicine services, and
smart environments [2], [3]. This paper considers a very
specific case of HAR in health and fitness domain and
focuses on gym exercise recognition (GER). Unlike general
HAR, gym exercise recognition requires highly precise
monitoring to capture and correlate intricate details of
complex body movements that may be common to multiple
exercises.
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In machine learning, a feature plays an important role
between data and models. Machine learning-based prediction
models use scientific models on data to derive insights by
taking features as input. The process of extracting new
transformed features from raw data that are applicable to
the machine learning model is known as feature engineering.
Feature engineering is a crucial process because the right
features can ease the difficulty of machine learning models,
and enable them to generate results of higher quality. Well-
feature engineering and data cleaning consumes the majority
of the time in a machine-learning model. Yet, feature
engineering is rarely discussed on its own [4].

In machine learning, feature engineering is the core activity
that is performed to construct suitable features to make data
ready for classification purposes for better prediction. Feature
engineering uses transformation methods like arithmetic,
and statistics on a set of features to generate new features.
Such transformations in feature engineering help scale a
feature that is easier to learn. In other words, feature
engineering transforms the feature space and improves the
predictive performance of a given dataset [5]. Human Activity
recognition includes data segmentation, feature extraction,
feature selection, and classifier training phases. Feature
extraction is the major phase among all the phases mentioned
above as it affects the accuracy of the classifier. Feature
extraction from the smart sensors data is a challenging task
due to the variable orientation of smartphones, placement and
subject [6].

This research concentrates on gym exercise recognition by
applying feature-engineering techniques to the accelerometer
data. Feature engineering is the process of transforming time
series data into features that better represent the underlying
problem to the predictive models, thereby improving their
performance. The ultimate goal is to make gym trainers’
lives as easy as possible by implementing automation using
current breakthroughs in the Internet of Things (IoT) and
associated technologies. The great majority of human activity
research focuses on only a few daily tasks. These activities
are considerably different from the exercises performed in a
gym using gym equipment. As a result, we created our own
dataset.

The contribution of this paper is three folds and discussed
as follows.

o We utilized smart wearable devices equipped with an
accelerometer to capture time-series data related to
exercises performed in a gym setting in real-time.

o Despite having only limited set of features extracted
from the raw accelerometer data (such as acceleration in
three axes: vertical, lateral, and sagittal), we transformed
this raw time-series data into a set of 106 distinct features
that can be used for analysis and modeling. This rich set
of features extracted from limited time-series sensor data
has enhanced the accuracy and effectiveness of our Gym
Exercise Recognition (GER) system.

o Traditional classification methods such as Random
Forest, Decision Tree, and Support Vector Machine
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cannot be directly applied to time series data due to
its sequential and temporal nature. Our research has
tried to establish a benchmark for adapting traditional
classification algorithms to time series data, thereby
expanding the range of methods available for analysis
and potentially improving predictive performance.
Further to this introduction, remaining paper has the
following structure. The Background section presents a
review of the literature on gym exercise recognition research.
The Material and Methods section presents details of the
collected dataset and the transformation process using feature
engineering. Our experimental design decisions, which were
made based on the various options available for recognizing
gym exercises in our collected dataset, are presented in
Experimentation section. The Results section provides the
experimental validation of the gym exercise recognition
system on the transformed data followed by a Conclusion
section.

Il. BACKGROUND

The goal of this research is to try and recognize gym exercises
using data from wearable sensors and feature engineering
on time series data. The following research on gym activity
identification and feature transformation is important to
discuss in order to put our findings in perspective.

A. FEATURE ENGINEERING OF ACCELEROMETER DATA
Data segmentation, feature extraction, feature selection, and
classifier training phases are all involved in human activity
recognition. Feature extraction is the major phase among
all the phases mentioned above as it affects the accuracy
of the classifier. The related research is reported in [3], [4],
[5], [6], [7], [8], and [9]. A feature engineering framework
named Learning Feature Engineering (LFE) is proposed
in [5] that can build new features based on learning patterns
between feature transformations, feature characteristics, and
class distributions. The feature representation module in LFE
is Quantile Sketch Array (QSA), which can produce fixed-
size arrays, preserving essential characteristics of features
at a low computational cost for a variety of classification
problems. In 2017, Quiroz et al. [3] compared the accuracy
achieved with features extracted for activity recognition
on a feature-engineered dataset. They analyzed accuracy
over gravity signals, Jerk signals, and angular velocity.
Their feature engineering work is beneficial for both data
extracted from smartphones and human activity recognition.
The research presented in [6] provides a feature extraction
and reduction model based on EPS and LDA for the smart
sensor dataset. The prime target was to extract quality features
from raw sensing data. The suggested model is useful for
noise reduction and feature extraction from accelerometer
and gyroscope data. For the purpose of evaluating the model’s
performance on publicly accessible datasets, a supervised
classification model is included. The model outperformed
previous feature extraction techniques in terms of cost and
performance.
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B. GYM EXERCISE RECOGNITION

Recofit [10], is a wearable sensor-based system that presented
a system for recognizing and counting the repetitions of
gym exercises using data from a wristband with a 3-axis
accelerometer and gyroscope. A free weight monitoring
system (FEMO) is proposed in [11] the system can recognize
gym activity and count the number of repetitions. IMU-based
solution [12] acquired athlete’s movements during exercises
using a Bluetooth-based device and performed classification,
segmentation on groups of exercises, and counted exercises
repetitions. A smart watch-based system MiLift [13] tracks
gym exercises and categorizes gym exercisers into different
classes walking, running, exercising, and resting.

The research presented in [14] uses the built-in accelerom-
eters of smartphones to collect data on physical activity with
the goal of determining the beginning, end, and length of
repetition from continuous acceleration. Both a constrained
and an unconstrained setting is used in the experiments.
While the unconstrained workouts don’t call for specific gym
equipment, the activities in the limited setting were carried
out in a gym using weight machines. These workouts don’t
require any special equipment and may be done anywhere,
including outside, in a park, and in a gym. The research
reported in [15], addresses the issue of rating the effectiveness
of weightlifting exercises and offering feedback on them.
In order to define the quality of execution, they investigated
3 aspects of gym exercise recognition. These aspects are
correct execution, execution mistakes, and user feedback.
The data collection process consists of five variations of
the exercise. In each variation, one set of 10 repetitions is
performed. Among these variations, one of the variations is
related to the specified execution while the other is mistakes.
Four inertial measurement units (IMU) sensors consisting of
three-axis acceleration, gyroscope, and magnetometer data
are placed in the athlete’s glove, armband, lumbar belt, and
dumbbell.

A smart wearable-based exercise and intensity recognition
system is proposed in [16]. They attempt to recognize
the intensity of six upper body strength training exercises.
A network of five body-mounted accelerometers is used to
record the acceleration and a smartphone acts as a hub for
data reception and processing. The sensor’s placement varies
by chest, upper arms, and wrists. The automated tracking
and analyzing of weight training exercises work reported
by [17] aiming for accurate and fast-tracking of exercises.
They targeted seven dumbbell exercises with ten participants.
A prototype hardware consisting of accelerometers and
gyroscopes is used to perform exercises using a dumbbell.
Automatic gym exercise recognition and quantification have
been attempted in [12]. The study examines data from
wrist-worn wearable IMUs and makes an effort to categorize
and count exercises with a focus on nine gym routines.

The research that was just described has a lot to do with
weight training in a gym setting. A large body of literature
on the detection and analysis of sports-related activities and
fitness activities is present in [18], [19], [20], [21], [22],
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[23], [24], [25], [26], and [27]. These paper are based on a
systematic review of the literature on machine learning for
sports activity recognition using different devices. Likewise,
there are several excellent surveys on the primary topic of
activity recognition [28], [29], [30].

lll. MATERIAL AND METHODS

The gym related data acquisition is a challenging task in
human activity recognition research. The first difficulty
is in finding the most appropriate participants, preparing
them, and keeping them intact during the whole data
collection phase. The cost of sensors and privacy con-
cerns are some common issues. We collected gym-related
data in our research reported in [31] and [32] using the
commercially available device zephyr bioharness [33]. The
information gathered is largely about bodybuilding and
weight training methods. These exercises are regularly
utilized by free-weight practitioners and have well-known
descriptions. This section illustrates the entire data-collecting
and transformation process in a gym setting.

A. THE DATA COLLECTION PROCESS

The smart wearable-based data collection process involves
forty-four gym exercises arranged into six muscle groups.
The  Government College University, Faisalabad,
Pakistan’s [34] Ethical Review Committee approved the data
collecting process. The data is collected in 2019 and the data
related to individual athlete can be identified by the authors.
The athletes were selected with ages between 26 to 39 years
and weights between 74 to 105kg. Each athlete was given a
weekly workout routine targeting all the muscle groups of
the athlete’s body. In the proposed weekly workout routine,
three sets of all the exercises related to a single muscle
group are performed each day. Six workouts are scheduled
for six consecutive days of the week, with the seventh
day functioning as a rest day. The data acquisition process
spanned six weeks as per the workout plan provided to the
athletes. The athlete performed a total of forty-four exercises
in a week. The workouts were divided into six groups based
on the targeted muscle group. Arms, back, chest, shoulder,
legs, and core-body are the muscle groups involved. The first
five muscle groups necessitate the use of gym equipment.
The core-body muscle group is associated with activities
that do not require gym equipment and can be performed
anywhere. Core-body workouts can help you increase your
stamina, flexibility, and balance. Each workout corresponds
to a different day of the week and must be completed in a
single session by executing three sets of each exercise. A set
is a sequence of repetitions of an exercise. The length of each
exercise and set is determined by the level of fitness of the
athlete. Selected exercises are common and well-known.

A Zephyr Bio Harness 3 (BH3) [33] device is used to
capture bodily movement data. The devices are equipped
with 3-axis accelerometers that measure acceleration in
all three spatial dimensions, namely vertical, lateral, and
sagittal. The accelerometer on the gadget can identify the
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Class distribution by Muscle Group
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FIGURE 1. Exercise-wise instance count based on the muscle group.

athlete’s orientation, which can be useful for recognizing
gym exercises. During each workout session, the device
was fastened to an athlete’s chest to collect real-time body
movement data. A mobile application is used to collect
workout data. The information includes the athlete’s name,
exercise name, start and end times, set numbers, and the
exercise apparatus utilized. This workout data was later
appended to the raw BH3 signal data to complete the dataset.

The body posture data was recorded using the BioHarness
device’s accelerometer. While the workout data was captured
using the mobile application. The Body posture data are
accelerometer readings along the vertical, lateral, and sagittal
axis at a given timestamp. The body movement data is
received at 100Hz frequency, that is 100 samples per second.
This data consists of 4 features, the features are timestamp,
vertical, lateral, and sagittal axis. The workout data consists
of mainly six attributes: start and end timestamp of an
exercise, user, workout id, workout number, and exercise
name. Because labeled data is required for training and
testing supervised learning-based classification models, each
transformed instance is tagged with the exercise completed
based on workout data collected from the mobile app. The
exercise name is the variable we want to predict.

The collected time series dataset comprised of 8,396,799
samples, each consist of 7 attributes, four attributes from the
accelerometer and three attributes are mapped from mobile
application for labelling. The class label distribution for the
time series data is depicted in Figure 1 for each exercise
performed as per their muscle group. As the gym exercises
are continuous, so it can be observed from the figure that the
time for each exercise performed varies. This won’t affect the
overall activity recognition as we have a significant amount
of data samples.
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B. DATASET DESCRIPTION
The dataset is in two categories as listed below.

1) Body Posture Data.

2) Workout Data.

For a particular exercise, let’s observe how the signal
values in each of the vertical, lateral, and sagittal dimensions
vary with time. A subset of 1000 samples is considered for
visual inspection of the signal. This sample is equivalent to
10 secs of the exercise as the frequency of data collection
was 100 Hz. Figure 2 presents a visual inspection of chest
press and decline press exercises. As you can notice, the
signal shows periodic behavior for the decline press exercise
while it has very less but different movement for the chest
press exercise. The activity-wise distribution of the signal
data along the vertical, lateral, and sagittal axes is shown in
Figure 3 to examine if there is any evident pattern based on
the range and distribution of the values. It has been shown
that there is a significant amount of data overlap between
activities such as bicep curl dumbbell and dumbbell extension
on all the axis. Tricep dips, tricep kickbacks, and preacher curl
appear to have distinctive values along the vertical, lateral,
and sagittal axis.

C. DATA TRANSFORMATION

As you can see in Figure 2 from the raw accelerometer
data the prediction of the gym activity depends upon only
three variables vertical, lateral, and sagittal, these variables
are time-series based. Conventional classification algorithms
cannot be used directly for such data. Instead, we must
first use feature engineering techniques to convert the raw
time-series data. The process of converting raw signal data
and developing new features from it is known as feature
engineering. The data that has been modified can be used
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by the Gym Activity Recognition module. This section
presents strategies for transforming raw time-series data and
extracting new features from it. The strategies presented in
this article are not confined to the prediction of gym activity
but can be applied to any domain requiring time-series data.
The architecture of the proposed system for gym exercise
recognition is presented in Figure 4. In order to transform
the raw time-series data windowing technique is used as
presented in Figure 5. This illustrates how the raw signal
data is collected and turned into new features. This method
aggregates the 400 raw samples that are contained in each
of the four-second windows of data with a step size of
one second or 100 samples to produce new features. The
window’s most frequent exercise is chosen to serve as the
class label for the elements that have been modified.

D. FEATURE ENGINEERING

In this section, we are going to transform three accelerometer
variables i.e vertical, lateral, and sagittal axis of our dataset
to design new features. As we know, in classification we
need to split data into train and test datasets, typically we
can do splitting based on random sampling on whole data
but in our scenario, we are going to split the dataset before
transformation on setno attribute as it makes more sense. The
attribute setno is important as each user performs three sets of
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an exercise in a day. So we have two sets as training data and
one set as test data. This is just like splitting 2/3 data samples
in the training set and 1/3 samples in the test set in a more
sophisticated manner.

Feature engineering is applied in three stages on each
four-second window based on transformed data as discussed
in the previous section and shown in Figure 5. Each window
contains 400 samples of the vertical, lateral, and sagittal axis
which is equal to 1200 samples in a window. Each window is
processed to create one record of new features. The stages of
features engineering are described below in sub-sections.

1) STATISTICAL MEASURES

In statistical measure based feature engineering we applied

statistical measures listed below on each window of trans-

formed dataset and build new features. The statistical

measures are listed below.
1)
2)
3)
4)
5)
6)
7
8)

Mean.

Standard deviation.

Average absolute deviation.
Minimum value.

Maximum value.

Difference of max and min values.
Median.

Median absolute deviation.
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9)
10)
11)
12)
13)
14)
15)
16)

A total of 16 statistical measures were applied to construct
a new dataset comprising 44 features. The first fourteen
measures were applied individually to each of the three axes
(vertical, lateral, and sagittal), resulting in forty two features.
The remaining two measures ARA and SMA each generated
one additional feature.

The majority of these statistical measures are obvious
and widely known. The function that takes a 1-D array and
discovers all local maxima by straightforward comparison of
surrounding values produces the peaks for each axis inside a

Interquartile range.

Number of values above mean.
Number of peaks.

Skewness.

Kurtosis.

Energy.

Average Resultant Acceleration (ARA).
Signal magnitude area (SMA).
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signal. Two statistics that shed light on the distribution’s form
are skewness and kurtosis. The mean of the sum of squares
of the data in a window along each axis is used to calculate
the energy of a signal along that axis. The average of the
square roots of the values in each of the three axes squared
and combined together is used to get the average resultant
acceleration over the window. The total absolute values of the
three axes averaged over a window are used to calculate signal
magnitude area.

We’ll be using this new dataset in the sections that follow,
gradually adding more features to it, and ultimately using it
to train machine learning models.

2) FAST-FOURIER TRANSFORM

A time domain signal is converted into a frequency domain
signal using the Fourier transform function. The function
takes a temporal signal as input and outputs the signal’s
frequency representation. In the real world, every signal
is a temporal signal made up of several sinusoids with
various frequencies. The signal is not changed by the Fourier
transform. Though some characteristics and elements of the
signal may be completely studied in the frequency domain,
it merely offers a fresh perspective for examining your time
signal.

In the previous section we only dealt with the time domain
and computed forty four features. Here, we applied FFT on
the computed features and with FFT forty four additional
features were computed. This resulted in a total of 88 features.
This development marks Stage 3 of our feature engineering
process.

3) CAPTURING INDICES

In any machine learning challenge, the major objective of the
feature engineering step is to give the model as much data as
you can. It learns more effectively when you give it additional
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knowledge. The underlying data’s index values have been
chosen as prospective features and are listed for each axis
below.

1) Index of max value in the time domain

2) Index of min value in the time domain

3) Absolute difference between the above two indices

4) Index of max value in the frequency domain

5) Index of min value in the frequency domain

6) Absolute difference between the above two indices

These six measures were applied on the previously
computed attributes, resulting in eighteen new features. Now,
at the end of stage 3, we have generated 18 more features in
our dataset.

E. TRANSFORMED DATA: ENGINEERED FEATURES

Based on the feature engineering process as discussed in the
previous section, we derived 106 features from the initial
3 features of the raw accelerometer data. In addition to
these derived features, there are four more features mapped
from the mobile application. The feature-engineered dataset
ultimately consisted of 83,964 samples, each comprising
110 attributes.

IV. EXPERIMENTATION

It’s time to test how effectively these recently crafted features
predict gym exercises. The transformed data is used for
experiments related to gym exercise recognition. This section
describes the classification algorithms and the methodology
of experiments on gym exercise recognition.

A. METHODOLOGY OF THE EXPERIMENTS
Gym exercise recognition entails locating a specific activity
that is part of a set of exercises. In the transformed data set,
exercise represents a class, this means we have a total of
44 classes. The setno attribute is used to partition the modified
training and test data so that each athlete’s data is represented
equally in both the training and test sets. According to the
athlete and muscle group stated below, we have set up four
types of experiments.

1) Experiment 1: Muscle group dependent and Athlete

independent

2) Experiment 2: Muscle group and Athlete dependent

3) Experiment 3: Muscle group and Athlete independent

4) Experiment 4: Muscle group independent and Athlete

dependent

In our first experiment, the transformed data for each
muscle group consists of exercise data from all the athletes
including exercises related to that muscle group. The muscle
group-dependent exercise models contain data from all the
athletes and we have a total of 6 models one for each muscle
group. In the second trial, each athlete receives his or her
own data that includes exercises specifically for each of
the six muscle groups. As a result, we have data on each
athlete and each muscle group. So, there are six models in
all for a single athlete. Both of these investigations build
gym activity recognition models based on specific exercises
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and muscle regions. In experiments 1 and 2, each model is
programmed to identify all exercises for a particular muscle
group. Experiments 3 and 4 are muscle group independent,
which contains data from all exercises ignoring the muscle
group. Experiment 3 is based on data from all exercises and
all the athletes, so we have only one dataset with 44 classes.
One model will be trained to identify every activity, regardless
of the athlete or muscle area. We have a dataset for every
exercise in experiment 4 based on each athlete. One model
will be trained to recognize each activity performed by an
athlete. In experiments 3 and 4, both models are trained to
recognize every exercise on the entire dataset. The Google
Colab [35] platform is utilized to conduct the experiments.
All four experiments are executed using classification models
discussed in the next section.

B. GRID SEARCH CROSS-VALIDATION

There is no method to predict how well a classification
model will perform without knowing the value of the
hyper-parameters. In order to determine the optimal values,
we should ideally try every potential value, which would
take time by manual approach. The method of automatically
tweaking the hyper-parameter to find the best values for a
particular model is known as grid search cross-validation
(GridSearchCV). GridSearchCV is a widely recognized
technique for hyper-parameter tuning that systematically
explores a predefined set of hyper-parameters and evaluates
their performance using cross-validation. By leveraging this
approach, we aimed to identify the optimal combination of
hyper-parameters that balances model complexity and gen-
eralizability. GridSearchCV method strives to mitigate both
under-fitting and over-fitting risks by applying combination
of hyper-parameters. The use of cross-validation ensured that
performance is assessed on multiple subsets of the data,
thus providing a more accurate estimate of its generalization
capabilities.

C. CLASSIFICATION MODELS BASED ON GRIDSEARCHCV
For the gym exercise prediction, we trained the models
described below on the transformed train data and then used
GridSearchCV to assess how well they performed on the test
data. Below is a list of classification models.

1) Decision Tree Classifier (DTC).

2) Gradient Boosted Decision Tree classifier (GB-DT).

3) Linear Support Vector Classifier (L-SVC).

4) Kernel Support Vector Classifier (K-SVC).

5) Logistic Regression (LogReg).

6) Random Forest Classifier (RFC).

V. RESULTS

The outcomes of all the experiments described in the
preceding part are presented and examined in this section.
All of the experiments are evaluated using the accuracy,
precision, recall, and F-measure evaluation criteria. The goal
is to recognize the gym exercise that is being performed by
the athlete, we have a total of 44 exercises divided into six
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TABLE 1. Experiment 1: muscle group dependent accuracy of the classifiers.

. . . Best Best
Sr | Muscle Group Classification Algorithm Accuracy (%) Accuracy | Classifier
LogReg L-SvC K-SVC DTC RFC GB-DT
1 Arms 79.70 81.15 83.28 70.03 80.92 81.57 83.28 K-SVC
2 Back 86.49 86.07 91.06 82.04 89.31 88.90 91.06 K-SVC
3 Chest 91.99 91.62 92.23 90.32 92.23 92.27 92.27 GB-DT
4 Legs 80.09 82.55 84.26 80.24 85.98 87.97 87.97 GB-DT
5 Shoulders 69.47 69.59 75.85 64.17 72.70 74.92 75.85 K-SVC
6 CoreBody 91.59 93.35 93.56 88.95 95.18 94.90 95.18 RFC
Core-body Muscle Group Arms Muscle Group
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FIGURE 6. Experiment 1: Normalized confusion matrix of core-body and arms muscle group.

muscle groups. Four types of experiments are set up based
on muscle group and athlete. These four experiments are
tested in two groups. There are two muscle group-dependent
experiments and two are muscle group independent. Each of
these two groups is further evaluated on the basis of athlete
Independence and dependence to analyze the impact of the
person performing the exercise as each person may have
slight variation while performing an exercise. The following
subsections detail the findings from each experiment.

A. EXPERIMENT 1: MUSCLE GROUP DEPENDENT,
ATHLETE INDEPENDENT
A different model is trained and tested on the transformed
data in this experiment for each muscle group. Each exercise
dataset includes information from all of the athletes as well as
the class variable’s exercise of a single muscle group. In total,
we have six datasets for this experiment, one for each muscle
group. The accuracy for each classifier and muscle group is
depicted in Table 1.

The classification performance based on transformed data
for gym exercise recognition on all the muscle groups is good.
The random forest classifier performed well on corebody
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workouts with accuracy above 95.18%. The overall results
of gradient boosted decision tree and Kernel SVC with RBF
kernel are outstandingly high on all the muscle groups as
compared to other algorithms. We achieved an accuracy
of above 91% on coreboy, chest, and back, 87.97% on
legs, and 83.28% on arms muscle groups. The results of
the shoulders muscle group are comparatively low. While
few exercises related to shoulders involve less movement
of the chest and more movement of arms, still we are
able to recognize these exercises with 75.84%. The overall
classification performance on only three attributes based on
the transformed dataset is outstandingly good on all the
muscle groups.

Figure 6 depicts two normalized confusion matrices for the
core-body and arms muscle group. The predictions for the
best classifier core-body are presented in Figure 6 on left.
In the core-body muscle group, the model outperformed with
minor miss-classification of leg-scissors for boat exercise and
vice versa. Despite the similarity in body posture between
both exercises, the arm movements differ slightly. The Plank
exercise achieved the best accuracy as it does not involve any
movement and athletes have to maintain the same position,
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FIGURE 7. Experiment 1: Relevancy for each workout group with the best classifier K-SVC.
TABLE 2. Experiment 2: muscle group and athlete dependent model accuracy of classifiers for each athlete.
Muscle . B . . s . .
Sr Group First Athlete’s Classification Accuracy (%) Second Athlete’s Classification Accuracy (%)
Best Best
LogReg | L-SVC | K-SVC | DTC RFC GB-DT Classifier LogReg | L-SVC | K-SVC | DTC RFC GB-DT Classifier
1 Arms 80.89 82.51 84.27 70.36 | 82.11 80.96 K-SvC 84.10 83.93 85.59 7476 | 82.88 83.14 K-SvC
2 Back 92.46 92.39 94.55 87.31 | 92.54 91.57 K-SvC 83.57 84.60 87.23 75.68 | 84.51 83.85 K-SvC
3 Chest 90.34 90.92 90.59 88.51 | 90.34 88.51 L-SVC 95.46 95.99 94.93 94.19 | 95.35 96.09 GD-DT
4 Legs 78.40 79.38 80.42 78.82 | 85.56 84.79 RFC 87.07 89.12 86.89 80.64 | 91.26 91.70 RFC
5 Shoulders 67.80 68.53 73.07 60.18 | 68.29 70.24 K-SvC 78.63 77.61 82.57 70.75 | 78.56 77.53 K-SvC
6 CoreBody 90.66 91.97 92.05 90.50 | 93.44 93.67 GD-DT 92.24 93.34 94.89 88.62 | 94.44 93.60 K-SVC

additionally, there are the highest numbers of instances of this
activity as depicted in Figure 1.

Figure 6 presents the normalized confusion matrix for the
arms muscle group, the accuracy of which is low as compared
to other muscle groups. The exercises cable extension, triceps
kick back and high pulley curl have the highest recognition
rate with minor misclassification. The triceps dips exercise is
the lowest recognition exercise with an accuracy of 0.57%,
the reason is that this exercise is done by Sitting on the edge
of a weight bench and gripping the edge next to the hips.
The movement involved in this exercise is repeatedly going
slightly up and down with weight on the arms. This movement
does not have much impact on the body posture as posture
remains the same in all repetitions.

The precision, recall, and F-score for the best-performing
classifier K-SVC according to each muscle group of exper-
iment 1 are depicted in Figure 7. In order to identify gym
activity, the transformation of just three accelerometer data
attributes for the GAR task is very important. The overall
performance of the muscle group-dependent and athlete-
independent models is satisfactory.

B. EXPERIMENT 2: ATHLETE AND MUSCLE GROUP
DEPENDENT

The experiments in this section are based on the individual
muscle group data collected from each participant. For every
athlete and muscle area, a different model is developed
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TABLE 3. Accuracy comparison of experiment 1 and experiment 2.

Sr l\élrlggr Classification Accuracy (%)
Experiment 2 Experiment 1
Athlete 1 | Athlete2 | Average | All Athletes
1 Arms 84.27 85.59 84.93 83.28
2 Back 94.55 87.23 90.89 91.06
3 Chest 90.92 96.09 93.51 92.27
4 Legs 85.56 91.26 88.41 87.97
5 Shoulders 73.07 82.57 77.82 75.84
6 | CoreBody 93.67 94.89 94.28 95.18

and put to the test. We are presenting findings for two
athletes to validate the performance of the athlete-dependent
model. So, in this experiment, we have six datasets organized
by muscle group for each athlete, and twelve datasets for
two athletes. The classification results on the transformed
data for both athletes are depicted in Table 2. The K-SVC
algorithm performed well on an athlete-dependent model and
achieved the best accuracy for most of the muscle groups and
both athletes at the same time. The legs workout is better
recognized by Random forest classifiers on both athletes.

A comparison of muscle group-dependent models based
on experiments 1 and 2, is presented in Table 3. It can
be concluded from the table that there are minor variations
of classification accuracy for each athlete in each muscle
group, while muscle group-wise results are similar for
each athlete. if we look at the average accuracy for
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FIGURE 8. Experiment 3: Relevancy for each workout group with the best classifier (K-SVC).

TABLE 4. Experiment 3: classification accuracy for each classifier.

Sr | Classifier Accuracy
1 Logistic Regression (LogReg) 71.54%
2 | Linear Support Vector Classifier (L-SVC) 70.68%
3 Kernel Support Vector Classifier (K-SVC) 76.59%
4 Decision Tree Classifier (DTC) 50.83%
5 Random Forest Classifier (RFC) 73.30%
6 Gradient Boosted Decision Tree classifier 75.14%

athlete-dependent models i.e experiment 2, it is almost the
same as athlete-independent models for each muscle group.
As the results for the athlete-dependent models are not
dominating the athlete-independent model, we can conclude
that athlete-independent models are better and will give more
ease in further implementations as it involves less dataset.

C. EXPERIMENT 3: MUSCLE GROUP AND ATHLETE
INDEPENDENT

A comprehensive dataset, including all athletes, muscle
groups, and activities, forms the basis of Experiment 3.
All 44 exercises are recognized by a single model that has
been trained. The accuracy for each classifier in the muscle
group and athlete-independent model is depicted in Table 4.
The best classifier for experiment 3 is again the K-SVC
with an accuracy of 76.59%. The results of experiment 3
are low as compared to the first two experiments. This
is due to the increased number of classes to predict.
In experiment 1 three are almost seven classes to predict and
in experiment 3 there are 44 classes. Figure 8 summarizes
the results of experiment 3 in the form of precision, recall,
and fscore for each activity based on the K-SVC classifier’s
accuracy.

D. EXPERIMENT 4: MUSCLE GROUP INDEPENDENT AND
ATHLETE DEPENDENT

Experiment 4 is based on athlete-wise data for all the
muscle groups and all exercises. A single model is trained to
recognize all the 44 exercises of the athlete. As the results
for two athletes are presented in experiment 2, again two
athletes results are presented in Table 5 for experiment 4.
The best classifier is still the K-SVC with an accuracy of
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TABLE 5. Experiment 4: classification accuracy for two athletes.

Sr | Classifier Accuracy (%)
Athlete 1 | Athlete2 | Average | Experiment 3

1 | LogReg 73.73 77.21 75.47 71.54
2 [ L-SVC 74.18 77.33 75.76 70.68
3 | K-SVC 76.71 81.35 79.03 76.59
4 | DTC 58.24 58.71 58.48 50.83
5 | RFC 74.09 79.26 76.68 73.30
6 GB-DT 74.24 77.78 76.01 75.14

TABLE 6. Muscle Group dependent accuracy comparison.

Accuracy on Accuracy on
Sr | Muscle Group Feature Engingered Data | Time Series (}i,ata [32]
1 Arms 83.28% 78%
2 Back 91.06% 88%
3 Chest 92.27% 91%
4 Legs 87.97% 82%
5 Shoulders 75.85% T4%
6 CoreBody 95.18% 90%

76.71% for athlete 1 and 81.35% for athlete 2. As we have
seen in the experiment 2, that the classification accuracy is
higher as compared to athlete 1, similar results are found in
this experiment. In comparison with the experiment 3, the
results of athlete dependent model are better as compared
to athlete independent model as we are dealing with higher
number of classes. The muscle group independent results are
better when evaluated on each athlete separately.

E. COMPARATIVE ANALYSIS

This subsection presents a comparative analysis between
the proposed feature engineering-based approach and a time
series-based approach on the experiment 1. The comparison
is conducted with reference to the research presented in [32]
on the same dataset in time series format.

The Table 6 presents the accuracy comparison for the
muscle group dependent, athlete independent model on both
time series and feature engineered data. The accuracy for the
arms muscle group improved from 78% on time series data
to 83% on feature engineered data. The highest improvement
in accuracy is around 6% recorded on the legs muscle
group. The accuracy of feature engineering based approach
improved among all the muscle groups.
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VIi. SUMMARY AND CONCLUSION

Gym exercise recognition systems can be used to monitor and
manage physical activities in the smart healthcare domain.
In this research, we transform raw time-series data to extract
new features and identify gym exercises. The collected
raw data comprising just three features, we engineered
new features from raw data and manage to extract a total
of 106 distinctive features. We trained six GridSearchCV
based classifiers on the transformed data and evaluate the
performance in four types of experimental setups. The
featured engineered data improved the overall accuracy over
time series data. The classifier K-SVC performs better in
most of the scenarios. Among the four types of experiments,
the results of experiments 1 and 2 are high with slight
variations. Our findings suggest that experiment 1, which is
an athlete-independent and muscle group-dependent model,
is better. This approach uses data from all athletes, resulting in
a consolidated dataset and reduced processing requirements.
The results for the muscle group independent experiments
3 and 4 are poor as it involves all the exercises. The feature
transformation techniques that we apply in this research
are not limited to the gym exercise recognition, but can be
extended to any domain involving time-series data including
but not limited to sports training and performance analysis,
rehabilitation and physical therapy and fitness and health
monitoring.
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