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ABSTRACT With the popularity of edge computing devices and increasing complexity of convolutional
neural network (CNN) models, the need for model compression and acceleration has become increasingly
urgent. As an effective model compression technique, CANDECOMP/PARAFAC (CP) decomposition relies
heavily on the preset rank for its compression effectiveness. However, no direct algorithm is currently
available for determining the optimal tensor rank. Therefore, a novel method for CP rank selection
based on deep reinforcement learning is proposed. This method utilizes the DecG single-player game
framework based on the Deep Deterministic Policy Gradient (DDPG) algorithm to achieve automation and
intelligence in rank selection. In this process, a pre-trained model is introduced, which fuses and reshapes
several historical tensors as network inputs. Additionally, a hybrid greedy strategy based on singular value
decomposition (SVD) was designed in the exploration phase to enhance the efficiency of finding ideal
rank selection results. This method can automatically determine the rank according to the weight tensor
characteristics of the convolution layer and optimize the compression efficiency and performance of the
model. In addition, a compression efficiency index is developed to visually demonstrate the performance of
the various compression methods. Finally, on the CIFAR-10 and CIFAR-100 datasets, CP decomposition
experiments are conducted on various convolutional neural network models, and the decomposed models
undergo iterative fine-tuning for retraining. The experimental results show that the rank values determined
by the DecG method achieve significant optimization and enhancement in the compression efficiency of the
models compared to other methods, exhibiting strong robustness.

INDEX TERMS Convolutional neural network, deep deterministic policy gradient, model compression,
low-rank decomposition, CP rank selection.

I. INTRODUCTION
The development of CNNs has shown excellent perfor-
mance in solving computer vision problems such as image
classification and recognition [1], [2], [3], and the number
of parameters has increased from approximately 60,000 in
the early LeNet-5 network [4] to hundreds of millions.
For example, the VGG19 model has been widely used
owing to its excellent performance in various computer
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vision tasks, and the number of parameters reaches approx-
imately 144 million [5]. The number of parameters has
become extremely large, leading to the consumption of
a significant amount of time and space during training
and inference processes [6]. The use of edge computing
platforms tends to integrate advanced technologies, such as
artificial intelligence, to enhance real-time data processing
and decision-making at the edge of the network. However,
as edge devices often have limited resources, reducing the
model size and computational complexity while ensuring
model performance has become a critical issue for deploying
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large neural networks on edge computing platforms [7].
Low-rank decomposition can not only reduce the storage
requirements for parameters but also decrease the amount
of computation by decomposing high-dimensional parameter
vectors into sparse low-dimensional vectors. Model compres-
sion and acceleration can be achieved using the low-rank
decomposition [8].

Low-rank decomposition methods can be roughly divided
into three categories: two-component decomposition, three-
component decomposition, and four-component decom-
position [9]. The core difference among these three
decomposition methods lies in the number of decompositions
applied to the weight tensor. Specifically, as the number of
decompositions of the weight tensor increases, it can reveal
the intrinsic structure and characteristics of the data more
comprehensively. Therefore, for model compression, the CP
decomposition, a commonly used four-component tensor
decomposition method in mathematics, can be used [10],
in comparison with other low-rank decomposition methods,
the advantage of CP decomposition is that the four matrices
obtained from the fourth-order tensor decomposition have
the same latent variable dimension, which can reduce the
number of parameters that need to be adjusted. In addition,
CP decomposition exhibits a certain degree of robustness to
noise and outliers. In some cases, even in the presence of
noise or outliers, CP decomposition can still achieve good
decomposition results and model performance. Therefore,
in this study, CP decomposition was selected as the method
for compressing the model.

However, solving the tensor rank is an NP-hard prob-
lem [11]. Therefore, in CP decomposition, the desired tensor
rank is a predefined parameter, implying that it should be
specified before decomposition. If the rank is set too high,
overfitting and increased computational complexity may
occur. If the rank is set too low, the data structure in the
tensor may not be captured adequately. Currently, there are
numerous CP rank selection methods aimed at overcoming
the challenge of manually and time-consumingly specifying
the CP rank. However, they are suboptimal solutions and
can easily fall into local optimal solutions in some specific
situations, exhibiting poor robustness.

To address the issue of the poor robustness of existing
CP rank selection methods, this study proposes a DecG
framework based on DDPG to obtain a CP rank selection
strategy that can achieve better compression effects for CNN
models and reduce resource costs. This framework employs a
hybrid greedy strategy based on singular value decomposition
and redefines the environmental state using it as the network
input information. Ingeniously converting the complex rank
selection problem into a single-player game, it utilizes a
self-constructed training set to pre-train the agent’s network
model and leverages advanced optimization algorithms to
automatically explore the rank with the highest compression
benefit in each convolutional layer.

The remainder of this paper is organized as follows.
In Section II, the low rank decomposition and classical

FIGURE 1. Diagram of three decomposition methods. (a)singular value
decomposition. (b)Tucker decomposition in the third-order tensor case.
(c)CP decomposition in the third-order tensor case.

CP rank selection methods are reviewed. In Section III,
we introduce a CP rank selection method based on the
DecG framework. The evaluation criteria and experimental
results obtained using different rank estimation methods are
presented in Section IV. Finally, Section V summarizes the
study and presents future challenges.

II. RELATED WORK
Among the low-rank decomposition methods, singular value
decomposition (SVD), Tucker decomposition (TD), and CP
decomposition are three typical methods (see Fig. 1).
SVD can decompose any matrix into a singular value

matrix and two characteristic matrices, as shown in the
formula below:

T = U6V T (1)

where 6 is a singular value matrix, which is a diagonal
matrix. Matrices U and V represent the eigenvectors of
matrix T in different directions. The magnitude of the
singular values reflects the importance of the eigenvectors in
the corresponding directions, whichmeans that thematrix can
be approximately described by the first n singular values with
larger magnitudes and their corresponding eigenvectors.

Initially, Denil et al. [12] proposed a two-component
decomposition method based on SVD to compress models.
However, the size of one of the tensor dimensions after
two-component decomposition is still relatively large, which
limits the improvement in compression effects to a certain
extent. To solve this problem, Denton et al. [13] proposed
the use of SVD for three-component decomposition to
reconstruct the weights of the fully connected layer. With
further research, more improvedmethods based on SVD [14],
[15], [16] have emerged, which have been successfully
applied to the compression of the entire CNN.

Meanwhile, Kim et al. [17] proposed the use of Tucker
decomposition to compress all the convolutional layers and
fully connected layers, further decomposing one of the
tensors after the two-component decomposition to obtain
convolutions of w×1, 1×h, and 1×1. Tucker decomposition
is a high-order version of Principal Component Analysis
(PCA), which decomposes a tensor into the product of a core
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tensor and corresponding matrices in each dimension. Taking
a third-order tensor T ∈ RI×J×K as an example, the Tucker
decomposition is expressed as follows:

T ≈ G×1A×2B×3C (2)

where the symbol ×k , k = 1, 2, 3 represents the product
of a tensor and a matrix, which is also known as the modal
product. As can be seen from the formula, the Tucker
decomposition is not limited to the dimensions of the
tensor and can be used as a two-component decomposition,
three-component decomposition [18], or four-component
decomposition [19].

CP decomposition is a special case of the Tucker decom-
position [20], which is usually a four-component decomposi-
tion. The CP decomposition process involves decomposing a
higher-order tensor into the sum of multiple rank-one tensors.
For example, the third-order tensor data T ∈ RI×J×K can be
decomposed into:

T ≈
R∑
r=1

ur ◦ vr ◦ wr (3)

where ◦ represents the outer product of the tensor, ur ∈ RI ,
vr ∈ RJ , and wr ∈ RK are all vectors, called factor
vectors of CP decomposition, when r = 1, . . . ,R, ur , vr , and
wr can respectively form the corresponding factor matrices
U ∈ RI×R, V ∈ RJ×R, and W ∈ RK×R, so it can also be
written:

Tijk ≈
R∑
r=1

UirVjrWkr

for i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . ,K (4)

Furthermore, for the third-order tensor T , in low-rank tensor
approximation, the minimum rank of the tensor data is
obtained by minimizing data fitting, and the approximation
problem is described as an optimization problem as follows:

min
R

1
2

∥∥∥∥∥T −
R∑
r=1

ur ◦ vr ◦ wr

∥∥∥∥∥
2

F

(5)

where ∥·∥2F denotes the Frobenius norm.
In CNNs, O ∈ RX×Y×S is used as the input tensor and

mapped to the output tensor P ∈ R(X−d+1)×(Y−d+1)×T ,
which is formulated as follows:

P(x, y, t) =
x+δ∑
i=x−δ

y+δ∑
j=y−δ

S∑
s=1

A(i−x + δ, j−y+ δ, s, t)O(i, j, s) (6)

where δ is (d − 1)
/
2, and the four-dimensional tensor

A ∈ Rd×d×S×T represents the convolutional weights.
d × d corresponds to the dimensions of the kernel space,
S corresponds to the different input channels, and T

corresponds to the different output channels. The rank-R CP
decomposition of tensorA can be derived from (4) as follows:

A (i, j, s, t) =
R∑
r=1

Ax (i−x + δ, r)

Ay (i−y+ δ, r)As (s, r)At (t, r) (7)

where Ax ∈ Rd×R, Ay ∈ Rd×R, As ∈ RS×R, and At ∈
RT×R are the factor matrices. By substituting (7) into (6),
the convolution approximate evaluation expression in (6) is
obtained as follows:

P (x, y, t) =
R∑
r=1

At (t, r)

(
x+δ∑
i=x−δ

Ax (i−x + δ, r) y+δ∑
j=y−δ

Ay (j−y+ δ, r)

(
S∑
s=1

As (s, r)O (i, j, s)

) (8)

Therefore, input tensor O can be transformed into output
tensor P through a sequence of four convolutions with
smaller kernels:

Os (i, j, s) =
S∑
s=1

As (s, r)O (i, j, s)

Osy (i, y, r) =
y+δ∑
j=y−δ

Ay (j−y+ δ, r)Os (i, j, r)

Osyx (x, y, r) =
x+δ∑
i=x−δ

Ax (i−x + δ, r)Osy (i, y, r)

P (x, y, t) =
R∑
r=1

At (t, r)Osyx (x, y, r) (9)

Therefore, the original convolutional layer can be approx-
imated using four decomposition layers. For CNN con-
volutional layers, CP decomposition is a highly effective
compression method [21], [22].
Regarding the solution to (5), unlike the matrix rank, the

currently known deterministic methods can only determine
the upper bound for the tensor rank. For example, for a
general third-order tensor X ∈ RI×J×K , rank follows the
following constraint:

rank(X ) ≤ min{IJ , IK , JK } (10)

Currently, more people are using mathematical and
artificial intelligence methods to select a CP rank with
better robustness. Fully Bayesian CP Factorization (FBCP)
[23] developed an efficient deterministic Bayesian inference
algorithm and constructed a hierarchical probabilistic model
for predicting the tensor rank. Bayesian Robust Tensor
Factorization (BRTF) [24] adopts a fully Bayesian gener-
ative model for automatic CP rank estimation. Variational
Bayesian Matrix Factorization (VBMF) [25] decomposes
the original matrix into the product of a series of sub-
matrices, thereby reducing the rank of the original matrix.
By optimizing the parameters in this decomposition process,
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FIGURE 2. Illustration of the process of CP decomposition for CNN models.

the VBMF algorithm can gradually approximate the optimal
rank of the original matrix, and can be used to solve the CP
rank problem. However, current methods still face challenges
such as insufficient robustness, which, to some extent, limits
the maximization of model compression benefits.

To further determine the optimal rank and achieve a more
efficient model compression performance, Zhou et al. [26]
proposed a method for estimating the CP tensor rank
from noisy measurements based on a CNN by adding
pre-decomposition for feature acquisition and inputting
rank-one components into the CNN. This method requires
a predefined rank bound to enable the convolutional neural
network to extract features effectively, thereby achieving
accurate prediction of CP rank. The rank bound used for
pre-decomposition must still be manually selected. Because
the rich space of matrix multiplication can be formalized as a
low-rank decomposition of a specific three-dimensional (3D)
tensor for optimization and adjustment, Fawzi et al. [27] used
Deep Reinforcement Learning (DRL) to identify and analyze
patterns and features in tensor data and used learned agents
to predict effective decompositions, which can be extended
to deal with related original mathematical problems, such as
solving the CP rank. Combining the above ideas, this study
proposed a new method for CP rank selection based on the
DDPG algorithm and designs a DecG single-player game
framework to achieve automation and intelligence in rank
selection.

III. CP RANK LEARNING METHOD
To compress models by applying CP decomposition to
CNN convolutional layers, DRL can be used to search
for the correct and effective CP ranks. DRL can handle
various complex combinatorial problems and has strong
generalization capabilities [28]. The DDPG algorithm [29]
was designed for environments with continuous action
spaces, making it suitable for the precise adjustment required
for CP rank selection. Therefore, this study designed a
single-player game framework called DecompositionGame
(DecG) based on the DDPG algorithm for CP rank selection.
Subsequently, the obtained CP ranks were used for model
compression (see Fig. 2).

During each round of the game loop, the remaining
tensor information is first captured and processed precisely.
Subsequently, the processed tensor is used as the input state
C for the neural network (state C represents the current
environmental situation faced by the agent). This state is
then passed to a pre-trained agent for computation to obtain
the corresponding output. Next, the output information is
carefully processed and validated to ensure compliance
with the rules of the game mechanism, thereby generating
the game action a (action a is the decision made by
the agent based on the current state C and the learned
strategy). Action a is executed in the game environment,
and the corresponding reward values are awarded based on
the execution results. These reward values are stored as
experiences in an experience buffer and utilized to update and
optimize the neural network.

As the game proceeded, the remaining tensors are grad-
ually decomposed until the end of the game. Through this
process, the CP ranks required for the CNN model can be
calculated accurately. Subsequently, the obtained CP ranks
are applied to CP decomposition of the CNNmodel. After the
decomposition is completed, iterative fine-tuning techniques
are utilized to restore and optimize network performance.

A. STATE ACQUISITION
In the process of obtaining the decomposition factor vector
of the tensors and obtaining the CP rank using agents in the
DecG framework, the shape of the fourth-order convolutional
weight Q ∈ RI×J×K×L to be decomposed is first used as the
shape of the original tensorM0,M0 is a randomly generated
tensor based on the shape of the convolutional weight that
will be decomposed. As the game progresses, the remaining
tensor after step θ is Mθ , and the process can be derived
from (3) as follows:

Mθ =Mθ−1 − uθ ◦ vθ ◦ wθ ◦ xθ
θ = 1, . . . ,R (11)

where R represents the rank of the tensor M0. Therefore,
when θ = R, MR = 0, the DecG process ends,
yieldingM0 =

∑R
θ=1 uθ ◦ vθ ◦ wθ ◦ xθ , Each set of vectors
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Algorithm 1 Get the State C
Require: the remaining tensorMθ

Ensure: the state C
1: frame = Reshape (Mθ )
2: if the current remaining tensor isM0 then
3: frames = [ frame ] * 4 // List copy operation
4: else
5: frames.append ( frame )
6: frames.pop ( 0 ) // Perform an operation to remove the

first element from frames
7: end if
8: C = expand_dims ( frames ) //Add one dimension to the

zeroth dimension
9: return the state C

(uθ , vθ ,wθ , xθ )θ=1,...R represents an action a in each step of
the DecG.

In the DecG process, the remaining tensor Mθ is not
directly used as input data for the neural network. To further
enhance the prediction accuracy and generalization capability
of the model for the residual network, we discarded the
method of directly utilizing a single historical remaining
tensor as the state C for input into the neural network for
prediction purposes. Instead, we adopt a reshaping operation
to fuse the four historical remaining tensors, creating a tight
association among them. This provides more comprehensive
and accurate information support for subsequent prediction,
increasing the generalization and smoothness of the neural
network output, as described in Algorithm 1.

In Algorithm 1, a dimensionality reduction operation is
first performed to reduce the dimensions of the current
remaining tensor from four to two. Subsequently, a judgment
is made to determine whether the current tensor is the original
tensor M0. If it is determined to be the original tensor,
a list repetition operation is applied to the reduced-dimension
tensor to expand its dimensions to three. Next, whenever the
remaining tensor changes, a stack operation is performed
to update the data in real-time and ensure that the zeroth
dimension of the current tensor always maintains four
elements. Finally, to maintain consistency with the input
shape of the neural network, an additional dimension is added
to ensure the accuracy of the data format and to prepare it
for subsequent neural network processing. This approach can
enhance the data quality and improve the training effects of
the model.

B. PRE-TRAINING
The processed data from Section III-A are inputted as state
C into the neural network. The DDPG algorithm updates the
network through deterministic policies by utilizing an actor-
critic approach. In this approach, the actor policy network
µ (C|ϑµ) controls the agent to obtain the next action a based
on the state C, whereas the critic value network Q

(
C, a|ϑQ

)
does not directly control the agent. Instead, it evaluates the

FIGURE 3. Diagram of dataset generation process.

value of action a after the agent obtains it based on state
C. ϑµ and ϑQ represent the weights of these two networks.
Before officially starting the game, we conducted pre-training
operations on the actor network to enhance its performance
and overcome the problem of insufficient data.

The environments encountered by reinforcement learning
are often unknown and dynamic, and typically require a large
amount of sample data to train the model. Pre-trained models
can be trained on large-scale labeled data, thereby improving
the generalization ability and efficiency of the model. Pre-
trained models have potential advantages in reinforcement
learning [30], [31], [32].

Therefore, to enable the algorithm to quickly identify the
optimization direction during the initial stage of training,
reduce the risk of falling into local optima, and thereby
improve the convergence speed and performance, in this
study, we have curated 300,000 sets of data for each
unique weight tensor size, constituting a pre-training dataset.
Consistent with other experimental methodologies, this
dataset was processed utilizing the AMD EPYC 9754 CPU
in conjunction with the IDIA Tesla T4 GPU. With a total
batch size set at 1,024, 1,000 iterations were configured for
the actor network within the agent, enabling the network
model to promptly discern the optimal direction during the
training procedure and accelerate the convergence process
(see Fig. 3).

To construct the dataset, this study followed the derivation
steps outlined in (11), gradually obtaining M0 from Mθ .
First, the CP rank value for each dataset is determined.
To ensure data diversity, a randomizationmethod is employed
to generate random vectors based on the desired shapes
of the factor vectors. Subsequently, these random vectors
are used to obtain the corresponding tensors through the
outer product operation. The remaining tensor for the current
iteration was derived by adding the currently obtained tensor
to the previous tensor. All the remaining tensors are then
subjected to dimensionality reduction and stored in a list
in a two-dimensional format. Subsequently, starting from
the last data item in the list, stack operations are gradually
performed forward according to Algorithm 1, constructing
four-dimensional tensor input features. These input features,
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Algorithm 2Mixed Greed Strategy
Require: exploration factors delta1 and delta2, state C
Ensure: the action a
1: epsilon1 = [1., .1]
2: epsilon2 = [1., .1]
3: while not game_over do
4: if np.random.random() < epsilon1[0] then
5: if np.random.random() < epsilon2[0] then
6: a = Random(C)
7: else
8: a = SVD(C)
9: end if
10: Epsilon2[0]-=delta2
11: else
12: a = model.predict(C)
13: end if
14: epsilon1[0]-=delta1
15: end while
16: return the action a

along with random vectors serving as labels, collectively
comprise the complete dataset.

C. HYBRID GREEDY STRATEGY
To obtain the action a, we improve the action selection
strategy in the DDPG algorithm by combining the original
random action with the deterministic strategy based on SVD
and implementing a hybrid greedy strategy to enhance the
convergence speed and performance of the algorithm.

In the traditional DDPG algorithm, the action selection is
initially random. As the training progresses, the algorithm
gradually trusts the action output of the network and increases
their frequency of use. However, this study introduces a
combination of a deterministic strategy based on SVD and a
random strategy as an exploration strategy in the exploitation
and exploration processes. The SVD process can be derived
from (1), where the magnitude of the singular values reflects
the importance of the corresponding feature vectors in each
direction. From this, the maximum factor matrix can be
obtained and used as an exploration strategy, as follows:

N = max {T } (12)

By incorporating this exploration strategy into the actor
policy, the resulting strategy is obtained as follows:

µ′ (C) = µ
(
C|ϑµ

)
+ ζ + N (13)

where ζ represents the random strategy, as detailed in
Algorithm 2.

As a powerful matrix decomposition technique, SVD can
extract key features from data. Here, SVD is used to analyze
historical action data, thereby obtaining a deterministic
strategy that enables the algorithm to select actions based on
the intrinsic structure of the data, rather than relying solely
on randomness or network outputs. This strategy retains
randomness during the initial stages of training to explore

more possibilities, gradually relies on the results of SVD
analysis as training progresses, and finally trusts the network,
resulting in more precise and efficient action selection.

After obtaining results based on the exploitation and explo-
ration strategies, they are subjected to validity verification
to ensure that the actual output state is consistent with the
expected output. If the verification is successful, the result is
placed in the game environment for further learning. If the
verification fails, an exception is immediately discarded to
facilitate quick problem identification, ensuring the rigor and
accuracy of the learning process.

Next, the game session is initiated, and based on the data
information of state C, it is accurately transformed into the
remaining tensor Mθ−1. Subsequently, this tensor and the
action a are substituted into (11) to obtain a new remaining
tensor Mθ . For the remaining tensor Mθ , the score g after
executing the action is calculated according to the established
reward mechanism. To ensure the efficiency and rationality
of the game process, a limit is placed on the maximum
number of steps θ to prevent the game from proceeding
indefinitely because of the excessive pursuit of penalty
reduction. Therefore, after each increment in the number
of steps, the reward and penalty mechanisms will impose
an additional penalty of −ϕ (θ), where ϕ (θ) increases with
the increase in θ . In the case of successful decomposition,
a conditional incremental update is applied to the final ten
steps, introducing a decay rate to reduce the magnitude of the
increase. This value is calculated only upon the conclusion of
the current game, thereby incentivizing the game to minimize
the number of steps and select the CP rank when choosing
favorable actions. In addition, a limit {min,max} is set,
and if the range of elements in the remaining tensor Mθ

exceeds this limit, the game will immediately terminate and
be judged as a failure, thus avoiding an infinite loop caused
by continuously performing unfavorable actions.

Finally, the round experience is stored in a buffer, and the
network is trained through random sampling. Based on the
previous operations, the next state C′ can be calculated from
the obtained remaining tensorMθ , and the set

(
C, a, g,C′, f

)
is stored as memory. When required, samples are collected to
obtain the actual target value as follows:

q
(
g,C′, f

)
= g+ γ (1− f)Q′

(
C′, µ′

(
C′|ϑµ′

)
|ϑQ′

)
(14)

where γ represents the discount factor, f represents the
progress of the game (with 1 indicating success and
0 indicating failure), Q′ and µ′ correspond to the target
networks of the critic value network and actor policy
network, respectively. The critic value network is updated by
performing gradient descent on the loss function Loss with
respect to the parameter ϑ , as shown in (15):

Loss =
1
|B|

∑(
q
(
g,C′, f

)
− Q

(
C, a|ϑQ

))2
(15)

In batch processing, there are |B| samples exist. The actor
policy network updates its strategy using sampled gradients
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as follows:

∇ϑµD ≈
1
|B|

∑
∇aQ

(
C, a|ϑQ

) ∣∣a=µ(C) ∇ϑµµ
(
C|ϑµ

)
(16)

Moreover, stability is particularly crucial in tensor decom-
position tasks, as decisions made at each step affect
subsequent steps, and any unstable updates may lead to
the failure of the entire decomposition process. Therefore,
to reduce fluctuations during the training process, make the
learning process more stable, and ensure smooth changes in
the parameters of the policy network, this study adopts a soft
update method, where the target network synchronizes with
the current network using the following rule after a specific
number of steps:

ϑQ′
← τϑQ

+ (1− τ) ϑQ′

ϑµ′
← τϑµ

+ (1− τ) ϑµ′ (17)

Here, τ is a hyperparameter representing the degree of
hardness or softness of net-work synchronization. When τ =

1, it is a hard update, and when 0 < τ < 1, it is a soft update,
we hereby set it to 0.01.

Through the above game process, we can obtain the
number of steps required to decompose the convolutional
weights at each layer of the CNN model, enabling us
to obtain the desired CP rank. Subsequently, we apply
the obtained CP rank to the trained CNN model and
perform CP decomposition using the CP-alternating least
squares (CP-ALS) method [20]. After the decomposition is
completed, we obtain a compressedmodel. Then, a traditional
iterative fine-tuning technique is utilized, involving a second
round of training by adjusting parameters such as the
learning rate and batch size. This enables the network to
continuously adapt to the requirements of new tasks, restoring
and optimizing its performance. Eventually, the compression
of the CNN model is achieved.

IV. EXPERIMENTAL RESULTS
To solve (5), there are multiple methods for estimating
the CP rank nowadays [33], [34], only a few are widely
adopted, owing to the limitations of various methods. These
methods can be classified into two categories. One is to use
the ‘‘average rank’’ derived from N

/
3 or N

/
4 as the

rank for direct CP decomposition, where N represents the
maximum value in the shape of the convolution weights.
The other category includes the VBMF algorithm and its
improved methods. In the literature [35] and [36], VBMF
and its improved methods were used to estimate the CP
rank, converting the tensor decomposition problem into a
SVD problem for matrices. VBMF weighs the singular
values obtained from SVD and solves a quartic equation to
determine the importance of each singular value, helping to
separate signals from noise and thus determine the rank for
CP decomposition. In this study, we employed three afore-
mentioned methods, namely N

/
3, N

/
4, and the VBMF

FIGURE 4. The CP rank values of each convolutional layer in the
ResNet20 model, which is trained on CIFAR-10 and CIFAR-100 datasets,
calculated using the DecG single-player game framework.

algorithm, and the ranks determined by each of these methods
were subsequently applied in the CP-ALS method to perform
CP decomposition. The DecG framework underwent iterative
training for 300,000 epochs using the AMD EPYC-9754
CPU and the NVIDIAGeForce RTX-4090GPU, withmodels
being saved every 50,000 epochs. Upon completion of
training, the results obtained from the DecG framework (see
Fig. 4) were thoroughly compared with those from three
other methods. Following the completion of decomposition
for each method, fine-tuning was iteratively conducted on
each model to comprehensively evaluate the performance of
the different CP rank selection methods in the experiments,
thereby providing a detailed comparison and explanation of
the experimental results.

To verify the effectiveness of the method proposed in this
paper, commonly used models are selected to be validated on
the CIFAR-10 and CIFAR-100 datasets. The deep learning
framework pytorch was adopted, and NVIDIA GeForce RTX
4090 was used to complete the experimental process. For
the comparison experiments, we selected several widely
used networks as baselines, including ResNet20, ResNet56,
ResNet110 [37], and LeNet.

A. EVALUATION CRITERIA
In this study, a novel metric is proposed to comprehensively
evaluate the performance of different compression methods.
When selecting a compression approach, two critical factors,
accuracy and model size, are considered to identify the
optimal compression strategy. The Compression Efficiency
(CE) is defined as the ratio between the Compression Ratio
(CR) and the degree of Accuracy Decline (AD) relative to the
original model. Here, the Compression Ratio represents the
ratio of the size of the original model to that of the compressed
model, calculated using the formula as follows:

CR = Sbefore
/
Safter (18)

where S represents the amount of storage space occupied
by the CNN model. A higher CR indicates more thorough
compression of the model.

The Accuracy Decline refers to the extent of the accuracy
reduction in the compressed model compared with the
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FIGURE 5. The changes in accuracy during the iterative fine-tuning process for the original network models and those decomposed using various
rank selection methods on the ResNet20, ResNet56, ResNet110, and LeNet networks. (a)on the CIFAR-10 dataset. (b)on the CIFAR-100 dataset.

original model, calculated using the formula as follows:

AD = Accuracybefore − Accuracyafter (19)

The calculation formula for the Compression Efficiency can
be derived from CR and AD as follows:

CE = CR
/
AD (20)

By calculating the Compression Efficiency, the performances
of the different compression methods can be directly
compared. A higher CE value indicates a more effective
model compression whereas maintaining a certain level of
accuracy.

Regarding compression, we comprehensively compare
different compression methods through Floating Point Oper-
ations (Flops), number of parameters, Multiply–Accumulate
Operations (MAdd), and final compression ratio. Among
them, Flops can be used to measure the computational
complexity of a model and are often used indirectly as a
standard to assess the speed of neural network models. For
convolutional layers, the calculation formula for Flops is as
follows:

Flops = 2 · H ·W · Cin · K2
· Cout (21)

where H and W represent the height and width of the
output tensor respectively, Cin is the number of channels
in the input tensor of the CNN convolutional layer, Cout is
the number of channels in the output tensor of the CNN
convolutional layer, and K is the size of the convolutional
kernel. The multiplication by 2 is due to the fact that the
number of addition operations is the same as the number
of multiplication operations in a convolutional operation.
The number of parameters refers to the total number of
parameters that need to be learned in the model, which can
be used to measure the complexity of a model and reflect the
amount of memory required by the model. MAdd involves
one multiplication operation and one addition operation, and

there is usually a two-fold relationship between MAdd and
Flops.

B. ACCURACY COMPARISON
The experiment selected the CIFAR-10 and CIFAR-100
datasets and employed three ResNet networks with varying
numbers of convolutional layers along with a LenNet
network that only has two convolutional layers. In addition,
CP decomposition was implemented using the N

/
3, N

/
4,

and VBMF algorithms. During the experiment, a learning
rate adjustment strategy was adopted. The ResNet networks
utilized a learning rate of 0.1 for the first 100 iterations,
whereas the LeNet network employed a learning rate of
0.001 in the early stages of training. Subsequently, the
learning rate was reduced to 10% of its previous value every
50 iterations (see Fig. 5, Table 1, and Table 2).
In Fig. 5(a), through the analysis of the ResNet20 and

LeNet cases on CIFAR-10, we observe that during the
first 100 iterations, the convergence speed of the models
undergoing CP decomposition during the fine-tuning phase
is significantly lower than that of the original models.
However, when we apply the same method to deeper network
architectures such as ResNet56 and ResNet110, the situation
is entirely different, as shown in the figure. In these more
complex models, CP decomposition significantly accelerates
convergence speed, demonstrating its advantage in handling
large-scale networks. By applying the DecG method to
determine the rank values, during the process of introducing
the CP decomposition, we find that the decomposed model
exhibited significantly faster convergence speed compared
to other methods. As evident from Fig. 5(b), the same
trend is observed on the CIFAR-100 dataset. The ResNet
network exhibits a significantly faster convergence speed as
the number of layers increases, whereas the LeNet network,
despite considerable fluctuations in its model performance,
still demonstrates a relatively rapid convergence speed.
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TABLE 1. A comparison of the final converged accuracy rates between the original network models and the decomposed models after iterative
fine-tuning on the CIFAR-10 dataset.

TABLE 2. A comparison of the final converged accuracy rates between the original network models and the decomposed models after iterative
fine-tuning on the CIFAR-100 dataset.

Moreover, the rank values obtained through the DecGmethod
enable the decomposed model to maintain a significant
advantage compared to other methods. In most cases, the
initial accuracy of the four network models after decomposi-
tion is higher than before decomposition. CP decomposition
preserves some of the reasoning capabilities of the original
model, improving the initial performance of the model. These
experimental results indicate that the application effects of
CP decomposition vary across different network architectures
and under varying rank settings, and furthermore, it is more
suitable for deep CNN models. For CNN models with
varying degrees of complexity, detailed adjustments and
optimizations must be made for specific tasks and network
structures.

In Table 1 and Table 2, after the CP-decomposed models
converge through iterative fine-tuning, we compare the
accuracy of each model. The experimental results reveal that,
when assessing the accuracy of ResNet20 on the CIFAR-10
and CIFAR-100 classification datasets, although our CP rank
selection method achieves a decrease in accuracy of 2.6%
and 2.9% respectively compared to the original model, it still
outperforms other methods. Specifically, when compared
to the N

/
3, N

/
4, and VBMF methods, our accuracy

is improved by 3.8%, 5.5%, and 6.8% on the CIFAR-10
dataset, and by 10.5%, 14.7%, and 20.9% on the CIFAR-100
dataset.For LeNet, our algorithm only exhibits a decrease
in accuracy of 2.4% and 1.6% compared to the original
model. In deeper network architectures such as ResNet56 and

ResNet110, our method continues to demonstrate superior
performance, not only maintaining a leading position in
effectiveness but also exhibiting excellent robustness, with
accuracy rates surpassing the other three methods. For
instance, on the CIFAR-10 dataset using ResNet110, our
method outperforms the other methods by 1.7%, 3.5%, and
2.9%, while for CIFAR-100, the improvements are 4.3%,
6.4%, and 7.5%. Simultaneously, as the network architecture
gradually deepens, the accuracy decline of the VBMF
method gradually diminishes. It can be observed that, when
performing recognition on the CIFAR-10 dataset using the
ResNet110 network architecture, the VBMF method even
surpasses the N

/
4 method.

In summary, although CP decomposition may lead to a
slight decrease in accuracy in some scenarios, the method
proposed in this study demonstrates superior performance
in terms of maintaining accuracy compared with other
methods. Notably, whereas VBMF may be more suitable
for CP rank selection in more complex CNN models,
our method generally improves the accuracy and exhibits
superior robustness. These results provide valuable guidance
for further optimizing the application of CP decomposition in
convolutional neural networks.

C. MODEL COMPRESSION EXPERIMENT
This study evaluates the compression performance of differ-
ent methods on multiple network architectures. As shown
in Table 3 and Table 4, on ResNet20, although the

97382 VOLUME 12, 2024



S. Zhang et al.: Rank Selection Method of CP Decomposition Based on DDPG Algorithm

TABLE 3. Experimental comparison results of model compression on the CIFAR-10 dataset.

TABLE 4. Experimental comparison results of model compression on the CIFAR-100 dataset.

VBMF algorithm achieves significant compression with a
compression ratio of up to 7.09 on the CIFAR-10 dataset,
according to the analysis in Section III-B, the significant
decrease in accuracy leads to a relatively low compression
benefit of only 0.754. However, given the complexity of the
CIFAR-100 dataset, the decomposition of the model would
lead to a more significant drop in accuracy. In the case of
the Resnet20 model, when the compression ratio is 6.98, the
compression efficiency is only 0.293. In contrast, although
our proposedmethod has a slightly smaller compression ratio,

it achieves higher compression efficiency while maintaining
a high accuracy, reaching 1.283 and 1.138 for the two datasets
respectively.

Furthermore, in network architectures such as ResNet56,
ResNet110, and LeNet, we employed the DecG method for
rank selection and found that this method performed better
in terms of compression efficiency for these networks, with
minimal influence from the dataset. This validates the versa-
tility and efficacy of our proposed approach, which is capable
of achieving efficient compression whereas preserving
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a stable model performance across diverse network
architectures.

After comprehensively comparing the compression results
of various methods across different network architectures,
we observed an increasingly significant upward trend in both
the compression ratio and compression benefit as the number
of layers in the network model increased (i.e., as the model
complexity increased). Specifically, in simpler networks such
as LeNet, the compression effect of CP decomposition is
not ideal, with an average compression benefit of merely
0.176 and 0.222 across two datasets, after a comprehensive
evaluation of four compression strategies. In contrast, the
average compression benefit of ResNet20 increased to
0.949 and 0.547, demonstrating a certain potential despite
room for further optimization. During a thorough analysis
of more intricate network architectures such as ResNet56
and ResNet110, we observed that the compression benefit
of CP decomposition was significantly enhanced. Notably,
in the case of ResNet56, as the number of parameters and
model layers increased, the average compression benefit of
themodel after CP decomposition reached a remarkable value
of 1.613 and 0.775, demonstrating exceptional performance.
However, it is worth noting that despite the deeper network
layers of ResNet110, its average compression efficiency on
the CIFAR-10 dataset slightly decreased to 1.424. Further-
more, it still outperformed ResNet56 on the CIFAR-100
dataset, achieving a result of 0.913. This difference may
stem from the insufficient robustness of the other three
rank selection methods when faced with deeper network
architectures.

Against this backdrop, the rank selection method based on
reinforcement learning proposed in this study demonstrated
a remarkable performance. Compared with other methods,
this approach not only achieves the highest compression
benefit but also exhibits a higher growth trend in compression
benefit as the number of network layers increases. This
demonstrated the excellent robustness and wide applicability
of the proposed method. Additionally, as clearly shown in
the table, after CP decomposition, the number of parameters,
floating-point operations, and multiply-add operations in
various networks decreased, further validating the potential
of CP decomposition to accelerate model inference.

V. CONCLUSION
In the work presented in this paper, a novel method for
CP rank selection based on deep reinforcement learning
is proposed. This method fully leverages the advantages
of the DDPG algorithm and achieves automation and
intelligence in model rank selection through the design of
the DecG single-player game framework. In the process of
continuous exploitation and exploration, this study introduces
a pre-trained model and designs a deterministic policy based
on singular value decomposition, significantly improving
the efficiency of the model in finding ideal rank selection
results. This method can accurately target any convolutional
layer and automatically determine the appropriate rank

based on the characteristics of its weight tensor, thereby
optimizing the compression benefit and performance of the
model. To validate the effectiveness of the proposed method,
multiple CNN models were selected from the CIFAR-10
dataset and were subjected to extensive testing. Compared
with current mainstream methods, this method demonstrated
notable advantages across various performance metrics. This
offers a novel approach to the compression and acceleration
of the convolutional neural networks.

Notably, the CP-decomposed models have undergone
initial experimental validation on PC terminals, achiev-
ing significant reductions in storage requirements and
multiplication-addition operations for various CNN models.
However, they have not yet been deployed and tested
on actual edge computing devices. Therefore, the next
research direction will primarily focus on integrating this CP
decomposition method with edge computing devices, such
as Field Programmable Gate Arrays (FPGAs), to achieve
efficient resource utilization. We aim to harness the parallel
processing capabilities and the flexibility of configurable
multipliers inherent in FPGAs by developing a CNN model
accelerator grounded in CP decomposition. This accelerator
will parallelize the decomposed convolutional computations,
possibly implementing a pipelined architecture that resolves
conflicts and dependencies among tasks, and optimizing data
access patterns, to facilitate the efficient deployment and
utilization of CP-decomposed CNN models on edge devices.
A current challenge lies in the altered kernel dimensions post-
decomposition, necessitating careful consideration in the
design of convolutional computing units to ensure efficient
computations.
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