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ABSTRACT One important aspect of radar systems is the transmit waveform, which plays a key role
in defining system’s detection capability and target resolution. Waveforms with good autocorrelations
and increased bandwidth are preferred for this purpose. However, waveforms with large bandwidths may
cause spectral interference with neighboring channels. As a result, it is crucial to establish frequency
stopbands within the spectrum of transmit waveform to mitigate potential interference. While it’s easy to
independently designwaveformswith either good autocorrelation or specific frequency stopbands, designing
radar waveforms that excel in both aspects simultaneously is a difficult task. In this paper, we address
this challenge by optimizing radar waveform with dual objectives: minimizing autocorrelation sidelobes
to enhance system performance and managing spectral characteristics to expand bandwidth while avoiding
interferencewith other frequency bands.Wefirst transform the dual-objective function into a single-objective
function encompassing both correlation and stopband properties. We propose a novel algorithm to solve
this problem and rigorously demonstrate its convergence through mathematical proof, providing a robust
foundation for practical implementation. We evaluate the algorithm’s performance in challenging scenarios
and demonstrate its effectiveness compared to recent approaches in the literature.

INDEX TERMS Waveform design, dual-objective optimization, autocorrelation sidelobes, spectral shaping,
stopbands, frequency nulling.

I. INTRODUCTION
Waveform design plays a crucial role in various fields,
including radar and communication systems. The fundamen-
tal objective in waveform design is to create waveforms
with favorable properties while adhering to specific con-
straints [1]. For instance, waveform design can be employed
to generate waveforms with a high-quality autocorrelation
function (ACF) [2], [3], [4], minimize cross-correlation [5],
[6], shape the ambiguity function of the waveform [7],
[8], synthesize beampatterns [9], [10], optimize frequency
diverse arrays (FDAs) [11], [12], and control spectral
characteristics [13], [14]. Recently, there has been a focus
on generating radar waveforms with two objectives. The
first objective is minimizing the ACF’s sidelobes to improve
system performance. This objective can be met by mini-
mizing the integrated sidelobe level (ISL) or minimizing
the peak sidelobe level (PSL) [15]. The second objective
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is managing spectral characteristics to expand waveform
bandwidth while preventing interference with other occupied
bands. This objective can be achieved by suppressing
or minimizing waveform energy in interfering frequency
bands [13]. Solving this dual-objective optimization problem
is highly challenging due to the intricate trade-off between
the necessity for impulse-like autocorrelation, leading to a flat
spectrum, and the requirement for a radar waveform with one
or more stopbands.

A. RELATED WORK
There are many studies in the literature that tackle this
dual-objective optimization problem. In [16], the classical
stopband cyclic algorithm new (SCAN) and weighted
SCAN (WeSCAN) were proposed for designing unimodular
sequences with desirable characteristics in terms of low
spectral power within specific frequency bands and low cor-
relation sidelobes. The SCAN algorithm utilizes fast Fourier
transform (FFT) operations, enabling efficient handling of
extended sequence designs. On the other hand, the WeSCAN
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algorithm offers greater flexibility in controlling the trade-off
between frequency stopband and correlation sidelobe sup-
pression. In [17], the challenge of waveform design, under
the constraints of spectral shape and unit modulus, was
formulated as a nonlinear constrained optimization problem.
To address this challenge, the study utilized auxiliary variable
neurons and Lagrange neurons within the framework of the
Lagrange programming neural network. In [18], an FFT-
based conjugate gradient algorithm (FCGA) for designing
periodic or aperiodic waveformswith low autocorrelation and
frequency stopband properties was proposed. The connection
between the power spectrum density and the autocorrelation
function was leveraged to formulate the problem as an
unconstrained minimization problem of the sequence phases.
Moreover, Taylor series expansion was utilized to deduce
the search step size of the FCGA. In [19], a method for
generating unimodular sequences that exhibit a low PSL
and adjustable stopband attenuation was proposed. The
optimization problem was transformed into a convex one
using alternating minimization and exact penalty approach
(AM-EPA) techniques. Subsequently, this convex problem
was solved using CVX, a package for specifying and solving
convex programs [20]. Furthermore, a theoretical lower
bound for the PSL minimization problem is established,
considering spectral and unimodular constraints. In [21],
a fast and efficient algorithm was introduced to design
unimodular waveforms with low autocorrelation sidelobes
and desired spectral stopbands. The proposed algorithm is
based on the Limited Memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) optimization method, which is termed
L-BFGS-based Sequence Design (LBSD).

While numerous waveform design algorithms have been
proposed in the literature to address this dual optimization
challenge, most of them struggle to deliver satisfactory
results due to the inherent trade-off between the two
objectives. For instance, prioritizing the ACF of the generated
waveform often results in relatively high residual energy in
the stopbands, potentially causing interference with other
channels operating within these frequency bands. Conversely,
emphasizing the level of the stopbands in the generated
waveform results in a low-quality ACF with high sidelobe
levels. Furthermore, most of the existing waveform design
studies do not provide mathematical proof of convergence.

B. CONTRIBUTION
In this paper, we address the challenge of the dual-objective
optimization of radar waveforms for jointly minimizing the
autocorrelation sidelobes and the spectral stopbands level.
The contribution of this paper is summarized as follows

1) Algorithm Development: We develop a novel wave-
form design algorithm, named Joint Minimization
of Autocorrelation Sidelobes and Spectral Interfer-
ence (JMASSI), to address the dual optimization
problem. Our approach involves first converting the
dual-objective optimization problem into a single-
objective one. Subsequently, we transform the resulting

quartic problem into a quadratic form, thereby ensuring
the convergence of the cost function.

2) Convergence Proof: We provide a rigorous mathe-
matical proof demonstrating the convergence of the
JMASSI algorithm. This proof guarantees monotonic
convergence to a solution that effectively minimizes
autocorrelation sidelobes and spectral stopband levels.

3) Performance Evaluation: We assess the performance
of the JMASSI algorithm in challenging scenarios
and compare its effectiveness with recent algorithms
from the literature. Our results demonstrate that
JMASSI successfully suppresses waveform energy
within interfering frequency bands while maintaining
a high-quality ACF.

C. NOTATION
In the forthcoming sections, we adhere to the following
notation conventions: Bold lowercase letters represent vec-
tors, while bold uppercase letters represent matrices. The
symbols | · | and ∥ · ∥ denote the absolute value and
the Euclidean norm, respectively. Furthermore, (·)∗, (·)T ,
and (·)H signify the complex conjugate, transpose, and
Hermitian (conjugate transpose) operations, respectively. The
real part and imaginary part are denoted by Re{·} and Im{·},
respectively. Additionally, circshift(A, k) denotes the k-th
circular shift of the columns of the matrix A.

II. OPTIMIZED OBJECTIVE FUNCTION
Let vector x = [x1, x2, . . . , xN ]T ∈ CN represent a radar
waveform with N samples. The periodic ACF of the radar
waveform can be defined as:

Cx(r) = xHJrx, (1)

where r represents the time-lag and Jr is the circular shift
matrix given by:

Jr = circshift(IN , r), (2)

and IN is the identity matrix. The quality of the waveform
ACF is assessed through the measurement of the ISL, which
quantifies the overall energy contained in the sidelobes of the
ACF as:

EISL =
N−1∑
r=1

∣∣∣xHJrx∣∣∣2. (3)

For the radar spectral constraint, we assume that the
k-th licensed radiator operates on a frequency band Bk =
[fk1 , fk2 ], where fk1 and fk2 are the lower and upper normalized
frequencies. The total energy transmitted in the spectral range
Bk can be expressed as:

Ek =
∫ fk2

fk1

|X (f )|2df

=

N−1∑
n=0

N−1∑
m=0

x∗m

[∫ fk2

fk1

ej2π f (m−n)df

]
xn, (4)
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where X (f ) is the discrete-time Fourier transform (DTFT) of
x given by:

X (f ) =
N−1∑
n=0

x(n)e−j2π fn.

Define an N × N matrix Gk whose (m, n)th element is given
by:

Gk (m, n) =


fk2 − fk1 , if m = n
ej2π fk2 (m−n) − ej2π fk1 (m−n)

j2π(m− n)
, otherwise

(5)

Then, the total energy Ek in (4) can be expressed as:

Ek = xHGkx. (6)

Thus, the total energy in all stopbands is given by:

ESTOP =
K∑
k=1

xHGkx, (7)

where K is the total number of the designated stopbands.
It is worth mentioning that (6) represents the total energy
transmitted within the spectral range Bk and is computed
using the DTFT as in (4). This ensures the minimization of
the entire spectral energy of the stopband, rather than solely
minimizing discrete points within the stopband, which is the
case with other approaches that employ the discrete Fourier
transform (DFT) for computing stopband spectral energy.

To address the dual objective of minimizing the energy in
the sidelobes of the ACF (EISL in (3)) and across designated
stopbands (ESTOP in (7)), we employ linear weights for both
subproblems, merging them into a unified single-objective
optimization problem, as follows:

f (x) = (1− α)EISL + αESTOP, (8)

where α ∈ [0, 1] is the weighting factor, which reg-
ulates the trade-off between the two subproblems in the
optimization process. It is worth mentioning that many
studies in the literature incorporated spectral characteristics
into the constraints of the optimization problem. However,
incorporating the spectral energy into the constraints will
force the algorithm to strictly achieve the spectral energy
threshold before reducing the ISL, which usually leads to
higher ISL. In addition, the spectral energy constraint will be
forced in every iteration of the algorithm, leading to increased
computational complexity. On the other hand, having fewer
constraints increases the problem’s feasible area, resulting in
a much better solution [22]. Furthermore, the weighted sum
of the ISL and stopband spectral energy allows us to prioritize
one of them depending on the application.

The optimization problem under the energy constraint (EC)
can be formulated as:

P =

{
min
x

f (x)

s.t. ∥x∥22 = 1
(9)

Unlike most of the proposed algorithms in the literature
that consider the unimodular constraint, we incorporate the
energy constraint, which offers more degrees of freedom
compared to the unimodular constraint. Since our primary
focus is on the quality of the designed waveform, we leverage
the energy constraint to exploit these additional degrees of
freedom, ultimately enhancing the waveform’s quality.

III. PROPOSED JMASSI ALGORITHM
The objective function in (8) can be expressed as:

f (x) = ᾱ

N−1∑
r=1

(
xHJrx

) (
xHJrx

)H
+ α

K∑
k=1

xHGkx

= ᾱ

N−1∑
r=1

xH JrxxHJHr︸ ︷︷ ︸
:= Cr (x)

x+ α

K∑
k=1

xHGkx

= ᾱ

N−1∑
r=1

xHCr (x)x+ α

K∑
k=1

xHGkx

= xHT(x)x, (10)

where ᾱ = 1− α, and T(x) = ᾱ
∑N−1

r=1 Cr (x)+ α
∑K

k=1Gk .
Therefore, the optimization problemP in (9) can be re-written
as:

Q =

{
min
x

xHT(x)x

s.t. ∥x∥22 = 1
(11)

The problemQ outlined in (11) is a complex-valued problem.
To simplify this problem, it is more convenient to transform
it into a real-valued one. The real-valued problem of (11) can
be given as:

Q̄ =

{
min
s

sTR(x)s

s.t. sT s = 1
(12)

where s and R(x) are defined as follows:

s =
[
Re{x}
Im{x}

]
, R(x) =

[
Re{T(x)} −Im{T(x)}
Im{T(x)} Re{T(x)}

]
. (13)

The problem Q̄ in (12) has been shown to be an NP-hard
optimization problem [23]. However, the problem Q̄ in (12)
can be reduced to a quadratic problem if x is fixed in R(x).
Therefore, it is possible to formulate an iterative approach to
transform the quartic problem into a quadratic one, ensuring
the convergence of the cost function. Let T(n) and R(n)
denote the values of T(x) and R(x) at the n-th iteration,
respectively. The value of T(n) can be computed as follows:

T(n) =


ᾱ

N−1∑
r=1

Jrx(n)xH(n)J
H
r + α

K∑
k=1

Gk , n = 2k + 1

ᾱ

N−1∑
r=1

JHr x(n)x
H
(n)Jr + α

K∑
k=1

GH
k , n = 2k

(14)
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Then, the iterative version of the problem (12) can be written
as:

Q̄(n) =

{
min
s

sT R̄(n−1)s

s.t. sT s(n−1) = 1
(15)

where R̄(n) = R(n)+λI. The term λI is added toR(n) to ensure
that R̄(n) is a positive definite matrix, thereby maintaining the
problem Q̄(n) as a strictly convex problem. Including this term
does not significantly influence the cost function, provided
that x adheres to the EC. The value of λ can be set to any
small arbitrary positive number (λ > 0) [22] that ensures the
problem remains strictly convex and that the matrix R̄(n) is
positive definite.

Utilizing the optimality conditions for problem (15),
we obtain [22]:[

R̄(n−1) s(n−1)
sT(n−1) 0

] [
s(n)
v

]
=

[
0
1

]
, (16)

where v is the Lagrangian multiplier of the equality
constraints. By applying the Karush-Kuhn-Tucker (KKT)
condition [22] and employing block elimination, it can be
demonstrated that the stage solution of (15) can be given by:

s(n) = R̄−1(n−1)s(n−1)
(
sT(n−1)R̄

−1
(n−1)s(n−1)

)−1
(17)

and the complex-valued solution x(n) can be constructed from
s(n) using 13. After certain iterations or when the solution x(n)
meets the EC, the algorithm produces the final solution x.

A. COMPUTATIONAL COMPLEXITY
The computational complexity of the JMASSI algorithm can
be estimated based on the computational cost of solving (16)
in each iteration. If the matrix inversion method described
in [24] is employed to compute s(n) in equation (17),
the computational complexity per iteration of the JMASSI
algorithm can be approximated as O(L2.373), where L = 2N
is the length of the vector s(n).

B. CONVERGENCE PROOF
The definition of T(n) in (14) differs depending on whether
the iteration index is odd or even. We prove that this
selection leads to a monotonically decreasing cost function
and guarantees convergence, as described next.
Lemma 1: Let s(n) and s(n−1) be the solutions of Q̄(n) and

Q̄(n−1), respectively. Define the function g(s(n)) as:

g(s(n)) = sT(n)R(n)s(n) + λsT(n)s(n)
= f (x(n))+ λxH(n)x(n)

Then, there exists a finite λ > 0 such that:

g(s(n−1)) ≥ g(s(n))

i.e., the sequence {g(s(n))}∞n=0 is non-increasing and con-
verges to a finite value g⋆.
Proof: Let x(n) and x(n−1) represent the solutions of Q(n)
and Q(n−1), respectively. Subsequently, applying the KKT

conditions on the odd iteration of Q̄(n), yields:

2
N−1∑
r=1

Ars(n−1)sT(n−1)A
T
r s(n) + 2Bs(n)

+ 2λs(n) + vs(n−1) = 0 (18a)

sT(n)s(n−1) = 1, (18b)

where

Ar=
√

ᾱ

[
Re{Jr } −Im{Jr }
Im{Jr } Re{Jr }

]
, B=

[
Re{G} −Im{G}
Im{G} Re{G}

]
,

and G = α
∑K

k=1Gk . The equations in (18) can be rewritten
as:

2
N−1∑
r=1

AryyTAT
r z+ 2Bz+ 2λz+ vy = 0 (19a)

zT y = 1, (19b)

where y = s(n−1) and z = s(n). Define d = y/β − z where
β = yT y and d ̸= 0. Since sT(n)s(n−1) = zT y = 1, then
dT y = 0. Therefore, multiplying (19a) by dT yields:

N−1∑
r=1

dTAryyTAT
r z+ dTBz+ λdT z = 0. (20)

Taking the transpose of (20) and noting that B = BT ,
we obtain:

N−1∑
r=1

zTAryyTAT
r d+ zTBd+ λzTd = 0. (21)

Without loss of generality, let β = 1, then y = z + d. Thus,
we have:

g(s(n−1)) =
N−1∑
r=1

yTAryyTAT
r y+ yTBy+ λyT y. (22)

By substituting y = z+ d in (22), we get:

g(s(n−1)) =
N−1∑
r=1

(z+ d)TAryyTAT
r (z+ d)

+ (z+ d)TB(z+ d)+ λ(z+ d)T (z+ d). (23)

Expanding (23) and subsequently rearranging the resulting
terms yields:

g(s(n−1)) =
N−1∑
r=1

zTAryyTAT
r z+ zTBz+ λzT z︸ ︷︷ ︸

:= ge(s(n)) (corresponds to the even iteration)

+

N−1∑
r=1

dTAryyTAT
r z+ dTBz+ λdT z︸ ︷︷ ︸

= 0 (from (20))

+

N−1∑
r=1

zTAryyTAT
r d+ zTBd+ λzTd︸ ︷︷ ︸

= 0 (from (21))
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+

N−1∑
r=1

dTAryyTAT
r d+ dTBd+ λdTd︸ ︷︷ ︸
:= h(d,y)

. (24)

Therefore,

g(s(n−1)) = ge(s(n))+ h(d, y). (25)

For the even iteration, we have

ge(s(n)) =
N−1∑
r=1

(
zTAry

) (
yTAT

r z
)
+ zTBz+ λzT z. (26)

By rearranging (26), we obtain:

ge(s(n)) =
N−1∑
r=1

(
yTAT

r z
) (

zTAry
)
+ zTBz+ λzT z. (27)

By substituting (27) in (25) and noting that y = z + d,
we obtain:

g(s(n−1)) =
N−1∑
r=1

zTAT
r zz

TArz+ zTBz+ λzT z︸ ︷︷ ︸
g(s(n))

+ dT
(
N−1∑
r=1

AryyTAT
r +

N−1∑
r=1

AT
r zz

TAr

)
d︸ ︷︷ ︸

≥0

+ dTBd+ λdTd︸ ︷︷ ︸
≥0

+dTWz+ zTWd, (28)

whereW =
∑N−1

r=1 AT
r zz

TAr . If we set

λ ≥
−dTWz− zTWd

dTd
,

then λdTd+ dTWz+ zTWd ≥ 0. Since dTd > 0 and ∥z∥ is
bounded, then:

−dTWz− zTWd
dTd

is also bounded and λ is a finite value. Therefore,

g(s(n−1)) ≥ g(s(n)).

Since g(s(n)) ≥ 0 for all n then g(s(n)) is bounded and
converges to a finite value g⋆. □

The procedural details of waveform design utilizing the
JMASSI Algorithm are described in Algorithm 1.

IV. NUMERICAL RESULTS
In this section, we employ computer simulations to demon-
strate the potential of JMASSI algorithm in various scenarios.
The performance is compared with two recent algorithms,
namely, AM-EPA [19] and LBSD [21]. Our primary focus is
evaluating the quality of the designed waveform based on two
performance metrics: the level of autocorrelation sidelobes
and the level of stopbands in the waveform spectrum.
It is important to note that the presence of stopbands in

Algorithm 1 JMASSI
1: Initial setup of N , fk1 , fk2 , α, λ, ϵ
2: Randomly initialize x(0)
3: Compute Gk , ∀k ∈ {1, · · · ,K }
4: for r in {(1,N − 1)} do
5: Compute Jr as in (2)
6: end for
7: n← 1
8: repeat
9: if n is odd then
10: T(n)← ᾱ

∑N−1
r=1Jrx(n−1)x

H
(n−1)J

H
r + α

∑K
k=1Gk

11: else
12: T(n)← ᾱ

∑N−1
r=1J

H
r x(n−1)x

H
(n−1)Jr + α

∑K
k=1G

H
k

13: end if
14: Compute s(n−1) and R̄(n−1)

15: s(n) = R̄−1(n−1)s(n−1)
(
sT(n−1)R̄

−1
(n−1)s(n−1)

)−1
16: Compute x(n) from s(n)
17: n← n+ 1
18: until ∥x(n) − x(n−1)∥ ≤ ϵ

19: x← x(n)

the waveform spectrum can potentially result in increased
autocorrelation sidelobes, thereby affecting the quality of
the designed waveform. This degradation becomes more
pronounced as the size and the number of the stopbands
increase. Hence, we assess the effectiveness of our proposed
algorithm in reducing the autocorrelation sidelobes and the
stopband levels and balancing these conflicting objectives in
different scenarios. We conducted three scenarios to evaluate
the proposed algorithm performance under varying degrees
of complexity. In the first scenario, we evaluate the algorithm
in designing waveforms with a single stopband occupying
25% of the total band. This scenario served as a baseline to
gauge the algorithm’s performance under relatively simpler
conditions. Subsequently, we increased the challenge in
the second scenario by designing waveforms with a single
stopband occupying 50% of the total bandwidth. Finally,
in the third scenario, we further increased the challenge by
designing waveforms with three stopbands that collectively
occupied 50% of the total bandwidth. This scenario aimed to
evaluate the algorithm’s effectiveness in managing multiple
stopbands simultaneously.

Waveforms consisting of N = 256 samples are generated.
All algorithms start with the same random sequence. We set
λ = 10−5 for JMASSI and α = 0.9 for both LBSD
and JMASSI. To ensure consistency, we establish a unified
stopping criterion for LBSD and JMASSI algorithms, halting
the simulation when the Euclidean distance between the
designed waveforms in two successive iterations falls below a
specified threshold ϵ = 10−4. For AM-EPA, we set w = 0.9,
Umax = 0.8095, ϵx = 10−3, ϵrank = 10−8, φmax = 50. For
more details about these parameters, the reader is referred
to [19]. The results are presented against the normalized
frequency f /fs computed at 320 spectral points, where fs is
the sampling frequency.
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FIGURE 1. ACFs and power spectra of AM-EPA, LBSD, and JMASSI algorithms. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

Fig. 1 depicts the ACFs (top row) and power spectra
(second row) generated by AM-EPA, LBSD, and JMASSI
algorithms in the three scenarios. Fig. 1(a) depicts the
results of the first scenario, where we consider a single
stopband occupying 25% of the total band. The start and
end normalized frequencies of the stopband are 0 and 0.25,
respectively (i.e. the normalized interval of the stopband
is [0, 0.25]). As can be observed, the AM-EPA algorithm
exhibits the least favorable autocorrelation performance with
a sidelobe level of about −16 dB relative to the peak value.
Conversely, the LBSD algorithm demonstrates improved
autocorrelation, with some fluctuating sidelobes. In contrast,
the proposed JMASSI algorithm outperforms AM-EPA and
LBSD, showcasing superior autocorrelation with decaying
sidelobes. From the power spectra of these waveforms,
we can observe that the stopband levels of AM-EPA
and LBSD are about −30 dB and −20 dB, respectively.
In contrast, the proposed JMASSI exhibits a significantly
lower stopband level, surpassing the others with a remarkable
performance of less than −80 dB. This clear superiority
in stopband level highlights the exceptional quality and
effectiveness of the JMASSI method compared to alternative
approaches.

Fig. 1(b) depicts the results of the second scenario,
where we consider a single stopband occupying 50% of
the total band. The normalized interval of the stopband
is [−0.25, 0.25]. In addition, Fig. 1(c) depicts the results
of the third scenario, where we consider three stopbands
occupying 25%, 12.5%, and 12.5% of the total band. The
normalized intervals of the first, second, and third stopbands
are [−0.375,−0.125], [0, 0.125], and [0.25, 0.375], respec-
tively. Similar observations can be drawn from these figures,

FIGURE 2. Convergence of the proposed JMASSI algorithm.

where the proposed JMASSI algorithm outperforms both
AM-EPA and LBSD in terms of the autocorrelation sidelobes
level and the stopband level.

Fig. 2 shows that the cost function of the proposed JMASSI
algorithm is monotonically decreasing for all three scenarios
and that it converges after approximately 5 iterations.

To assess the convergence speed of the proposed JMASSI
algorithm compared to other algorithms, we performed
waveform design experiments in three different scenarios.
These experiments were conducted on a computer with an
Intel i7-8750H 2.20GHz CPU and 16 GB RAM using the
MATLAB® R2022a environment. We carried out 1000 trials
with independent random initial sequences of length N =
128 for each scenario, setting the stopping criteria to 10−3.
Due to the low speed of the AM-EPA method, we limited our
trials for this method to 10. The comparison metrics included
the number of iterations for convergence, the convergence
time, and the optimal value of the cost function. Table 1
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TABLE 1. Convergence speed and optimal value of the objective function.

FIGURE 3. Performance of JMASSI under different weighting factor α

values. (a) ACFs. (b) Power spectra.

summarizes the results averaged over the number of trials.
In terms of convergence time, the AM-EPA method was
the slowest, with convergence times extending to tens of
minutes in all scenarios. The LBSD method exhibited the
fastest convergence across all scenarios, with convergence
timesmeasured in fractions of a second. The JMASSImethod
demonstrated convergence times measured in a few seconds.
Regarding the optimal value of the objective function, the
proposed JMASSI method consistently achieved the lowest
average optimal value compared to the other methods across
all scenarios. Although the proposed method is not as fast
as the LBSD method, it provides superior performance in
terms of the optimal value of the cost functionwith reasonable
convergence times.

To demonstrate the performance of the proposed JMASSI
algorithm across different weighting factors α, we designed
waveforms with a single stopband, similar to the first
scenario, and varied the values of α. Fig. 3 shows the results
for α values of 0, 0.5, and 1. Fig. 3(a) presents the ACFs
of the designed waveforms, while Fig. 3(b) illustrates their

spectra. When α = 0, indicating a complete emphasis on
minimizing the ISL, the ACF of the designed waveform
exhibits an impulse-like shape with sidelobe level minimized
to approximately −100 dB. Correspondingly, the waveform
spectrum shows no presence of a stopband, as expected.
When α = 0.5, the autocorrelation sidelobes increased.
For instance, at lag cell 50, the sidelobe level measures
approximately−40 dB. Correspondingly, the spectrum of the
designed waveform exhibits a stopband with a level below
−60 dB. Lastly, when α = 1, indicating a complete emphasis
on minimizing the stopband level, the autocorrelation side-
lobes significantly increased. For instance, at lag cell 50, the
sidelobe level measures approximately −20 dB. In this case,
the spectrum of the designed waveform exhibits a stopband
with a level of approximately −100 dB. From Fig. 3, we can
observe the effectiveness of the proposed JMASSI algorithm
in balancing these conflicting objectives, i.e., minimizing
the autocorrelation sidelobes and the stopband level. The
weighting factor α enables prioritizing one of these objectives
depending on the specific application requirements.

V. CONCLUSION
In this paper, a novel algorithm that addresses the dual
optimization of ACF and spectral characteristics of radar
waveform is developed. The proposed JMASSI algorithm
enables the generation of radar waveforms characterized
by minimal stopband levels and autocorrelation sidelobe
levels. The proposed JMASSI algorithm can generate wave-
forms with multiple stopbands with a suppression gain of
approximately 50 dB over some recently proposed algorithms
while preserving superior ACF. The convergence of JMASSI
is rigorously demonstrated through mathematical proof,
providing a robust basis for practical application.
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