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ABSTRACT This paper proposes the Shrike Optimization Algorithm (SHOA) as a swarm intelligence
optimization algorithm. Many creatures, who live in groups and survive for the next generation, randomly
search for food; they follow the best one in the swarm, a phenomenon known as swarm intelligence.
While swarm-based algorithms mimic the behaviors of creatures, they struggle to find optimal solutions
in multi-modal problem competitions. The swarming behaviors of shrike birds in nature serve as the main
inspiration for the proposed algorithm. The shrike birds migrate from their territory in order to survive.
However, the SHOA replicates the survival strategies of shrike birds to facilitate their living, adaptation, and
breeding. Two parts of optimization exploration and exploitation are designed by modeling shrike breeding
and searching for foods to feed nestlings until they get ready to fly and live independently. This paper is
a mathematical model for the SHOA to perform optimization. The SHOA benchmarked 19 well-known
mathematical test functions, 10 from CEC-2019 and 12 from CEC-2022’s most recent test functions, for a
total of 41 competitive mathematical test functions and four real-world engineering problems with different
conditions, both constrained and unconstrained. The statistical results obtained from the Wilcoxon ranking
sum and Fridman test show that SHOAhas a significant statistical superiority in handling the test benchmarks
compared to competitor algorithms in multi-modal problems. The results for engineering optimization
problems show the SHOA outperforms other nature-inspired algorithms in many cases.

INDEX TERMS Shrike, optimization, constrained optimization, swarm intelligence, multi-modal, meta-
heuristic, population-based optimization, engineering problem.

I. INTRODUCTION
Optimization techniques have become important in the last
few decades. Optimization is finding the best optimal or
semi-optimal solution by achieving a specific objective
without violating constraints. In some cases, no objective
functions exist, but a feasible solution depending on con-
straints is an optimal solution, called a feasibility problem.
Many complex and rough-solvable problems in engineer-
ing, science, medicine, statistics, and computer science have
been solved by optimization algorithms within a short time.
Mathematical calculation and programs have been used to
solve such a problem, but recently, for solving complex
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problems, some meta-heuristic optimization algorithms have
been used to find acceptable solutions. Many optimiza-
tion algorithms are nature-inspired algorithms designed by
mimicking creatures from nature; many of those algorithms
depend on swarms’ social behavior and are called swarm-
based algorithms.

Optimization algorithms have been classified as single-
based and population-based. Single-based optimization
searches for an optimum solution using a single solution
like simulated Annealing (SA) [1], Hill Climbing (HC) [2],
Variable Neighborhood Search (VNS) [3], and Tabu Search
(TS) [4], while the population-based optimization algorithms
use a group of solutions as a population and search around
the number of the neighbors of the solutions in the search
space, it should have good exploration and exploitation
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techniques to not trap in the local optima, population-based
like Genetic Algorithm (GA) [5], Differential Evaluation
(DE) [6], Genetic Programming (GP) [7], and swarm-based
algorithms.

Swarm-based algorithms are stochastic because they work
on the Swarm Intelligence (SI) of the creature’s behavior.
Ant Colony Optimization (ACO) [8] is an old algorithm that
studies the collective behavior of ants searching for food
sources. It simply translates the fact that every ant has its own
decision for foraging on a specific path, each ant signs the
path by pheromone when it transits to the food source, and it
will add pheromone again when returning to the nest, so other
ants will take a path with higher pheromone and leave their
path, then the shortest path will be accomplished by leaving
the low pheromone path and use the higher-level pheromones
path. Ant System (AS) [9],and [10] applied to solve var-
ious combinatorial optimization problems. The application
of AS includes the Traveling Salesman Problem (TSP), the
Quadratic Assignment Problem (QAP), and the Job-shop
Scheduling Problem (JSP), it shows the ability to solve those
problems, also applied in the classification field [11], and
cloud computing [12]. Recently Ant Nesting Algorithm was
proposed [13] searching to build nests and deposit foods.
Particle Swarm Optimization (PSO) [14] mimics the inspi-

ration of SI of birds, and fish while the author considered
birds, simple techniques were used that birds follow the flock
fly direction, the best food source obtained so far, and the
best food sources that the swarm found, simply it uses rules
to find the best solution in the search space, and it is applied
in many fields of design [15], image processing [16] which
successfully improves solutions. The Society and Civiliza-
tion algorithm [17] is the adaption of societies simulated for
optimization problem-solving. Artificial Bee Colony (ABC)
works on honey bees finding food sources in [18] and [19],
it works on how explored bees find food sources and share
information with employed bees, the onlooker bees exploit
food sources more to find better sources and keep the best
food source, ABC outperformsmany optimization algorithms
for some optimization problems of global optimization [20]
and [21], feature selection [22], neural network fields [23],
vehicle routing [24]. Fitness Dependent Optimizer (FDO)
also working on bees foraging behavior is proposed for opti-
mization problems [25]. Bacterial Foraging behavior (BFO)
the bacterial foraging behavior has been a source for develop-
ment [26], applied for electrical power filter problems [27],
and designed fuzzy control for the system [28]. In Fire-
fly Algorithm (FA), the flashing light and attractiveness of
fireflies were formulated as FA algorithm, used to solve
multi-modal problems [29], design structure [30], and many
other applications. The moth-flame Optimization (MFO)
Algorithm [31] was developed by studying moths’ navigation
in nature and how they move around lights. Solving problems
with clustering suffers from exploration the MFO is added
to handle the clustering problem [32]. Recently some new
population-based metaheuristic algorithms have been pro-
posed by researchers like new artificial protozoa optimizer

(APO) inspired by biology [33], the Horned Lizard Optimiza-
tion Algorithm (HLOA) used the defensive strategies of the
horned lizard reptile [34], the BlackWinged Kite birds’ skills
in the fields of hunting and migrating are modeled as Black
WingedKite Algorithm (BKA) [35], the HikingOptimization
Algorithm (HOA), which hikers travel uphill, and HOA seeks
to find the local or global optimal solution to optimization
issues [36] In the exploration, the authors mention trigono-
metric functions that are used to search space globally to
cover all space and avoid local optima. Although search
space coverage uses sin and cosine to guarantee searching for
all solutions, while in the exploitation, refinement and local
search on founded solutions will be done to improve accuracy
and convergence to the global optimum [37].
Nature-inspired algorithms have demonstrated exceptional

performance in optimization problems, particularly multi-
modal problems. Soccer inspired metaheuristic-based sports
concepts, they became popular because they developed meth-
ods and concepts [38]. The Squirrel Search Algorithm (SSA)
is an optimizer that emulates the dynamic hunting behavior of
southern flying squirrels [39], theMarine Predator Algorithm
(MPA) is a metaheuristic algorithm designed to emulate the
hunting behavior exhibited by marine predators [40]. A new
algorithm is proposed in [41] as a peacock algorithm that
mimics the mating and hunting behaviors of peacock birds.
The Cheetah (C) algorithm is inspired by the cheetah’s for-
aging strategy [42]. Mountain Gazelle Optimizer (MGO)
is an algorithm that takes inspiration from the social life
of mountain gazelles [43]. Since the reviewed methods ini-
tially were proposed, the researchers have worked to review,
enhance or implement them in many domains and for vari-
ous challenges [44], [45], [46], [47], [48], [49], [50], [51],
and [52].

This paper proposes a swarm-based SHOA refers to a bird-
inspired class, to increase the number of solved multi-modal
and complex problems because none of the optimization
algorithms can solve all problems. Depending on the nature
of the problem, a specific algorithm must be applied to find
the best solution. Intensification and diversification are the
essential components of meta-heuristic algorithms. The main
contributions of this study are:
1. The proposed SHOA is designed for multi-modal prob-

lems by finding many local optima and keeping them
to produce global optima because multi-modal problems
havemany local optima andmany optimization algorithms
lack the ability to find the global optima.

2. In the SHOAmathematical proposal produced, depending
on the shrike bird’s physical simulations of a parent bird’s
dominance in a specific life stage, the roles of female
and male birds were separated depending on reality and
lifestyle.

3. The SHOA, applying randomization will diverge the
algorithm from the current solution, which is considered
a local optimum, and redirect the algorithm to search the
space globally to increase diversity, while finding a solu-
tion during the local search by choosing the best solution
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so far will converge the algorithm to an optimal solution,
increasing convergence.
The remainder of this article is structured as follows:

(Part II) represents the literature viewed, and important points
are discussed, (Part III) presents inspiration from shrike
birds and a mathematical model for the proposed SHOA
(Part IV) results and discussion on comparative benchmarks
and some competitive functions, and (Part V) SHOA applied
real-world cases, studies as engineering problems and the
performance compared with other optimization algorithms,
finally (Part VI) conclude the work of this study and show
direction for coming studies.

A. LITERATURE REVIEW
Metaheuristic optimization algorithms are nature-inspired
algorithms, they study techniques and rules of the creature’s
inspiration and convert them to algorithm steps to solve
problems. Recently developed algorithms are studied and
classified, in this study some of the classes are prepared
and noted to classify algorithms rather than categories men-
tioned by researchers. Nature-inspired algorithms are refined
to classes with some examples shown in Figure 1. Some of
the recently proposed algorithms with classes are:

1. Animal-inspired classes are sub-grouped into the bird,
mammal, fish, insect, inspired, some examples are;
Eurasian Oystercatcher Optimizer (EOO) [53], White
Shark Optimizer (WSO) [54], Fox Optimizer (FOX)
[55], Orca Optimization Algorithm (OOA) [56], Walrus
Optimization Algorithm (WaOA) [57], Aphid-Ant Mutu-
alism (AAM) [58], Fire Hawk Optimizer (FHO) [59],
Honey Badger Algorithm (HBA) [60], Tunicate Swarm
Algorithm (TSA) [61], Pufferfish Optimization Algorithm
(POA) [62], Marine Predator Algorithm (MPA), Horned
Lizard Optimization Algorithm (HLOA).

2. Plant, Microorganism, Physics, Human Activity, Mathe-
matics, Algorithm-Specific and miscellaneous classes, all
classes are shown in Figure 1, some examples of recently
proposed algorithms are:
a) Water Wheel Plant Algorithm (WWPA) [63]
b) Artificial Protozoa Optimizer (APO)
c) Black Hole Mechanics Optimization (BHMO) [64]
d) Chef-Based Optimization Algorithm (CBOA) [65]
e) Gradient-Based Optimizer (GBO) [66]
f) One-to-One-Based Optimizer [67]
g) PID-based Search Algorithm (PSA) [68]
h) Ali Baba and the Forty Thieves Optimization

(AFT) [69]

B. MULTIMODAL OPTIMIZATION AND PARAMETER
TUNING
Multimodal optimization problems (MMOPs) necessitate the
simultaneous search for several optimum solutions. Assert
that the algorithm needs to broaden its population diversity to
identifymore global optima, and enhance its refinement capa-
bilities to boost the accuracy of the discovered solutions [70].

The group of multimodal approaches using the methods of
speciation and crowding-niching. Whereas speciation sep-
arates the population into individuals of the same species,
crowding-niching splits the population into niches occupied
by various species. Several multimodal techniques, including
the Fitness Sharing (FS) technique, consider sharing models
and similarity functions [71].

The researchers have implemented several niching strate-
gies to divide the population into distinct niches, each respon-
sible for conducting searches on one or more peaks [70].
Real-world design challenges known as constrained numer-
ical optimization problems (CNOPs) require a feasible,
ultimate optimized solution, and restrictions act as road-
blocks to potential solutions. When it comes to addressing
conventional unconstrained numerical optimization problems
(UNOPs), nature-inspired meta-heuristics are popular. Effec-
tive algorithms require population diversity to accomplish
design space exploration, but they reduce diversity through
optimization to leverage the space’s global optimum [72].
Handling the niche centre distinction (NCD) problem as
an optimization problem. Performance measures assess suc-
cess, accuracy, feasibility [72].Many contexts, including data
mining, power systems, pattern recognition, and vehicle rout-
ing issues, have used MMO algorithms. Several researchers
have proposed multi-objective evolutionary optimization
strategies for solving MMOPs using bi-objective problems.
In addition to the steps used in Evolutionary Algorithms
(EAs), MMO algorithms employ additional strategies to con-
verge on numerous solutions. Authors suggested EAs use
one of two prevalent niching techniques: species-based DE
(SDE) or crowding-based DE (CDE) [70]. Researchers have
used a stable mutation approach to create new individuals,
the SoftMax function to determine individual probabilities,
and an archive technique to retain stagnant individuals [73].
In [74], the authors solve MMOPs using Distributed Indi-

viduals forMultiple Peaks (DIMP) usedwithDE, by applying
age to each individual, DIMP allows every individual to
function as a dispersed unit to monitor a peak, avoiding the
challenges associated with population division and preserve
enough variation to find new peaks throughout their lifetime.

Differential evolution (DE) is an efficient yet straightfor-
ward approach extensively researched for both MMOPs and
single optimum optimization problems [74].

The authors in [75], applied the two-phase stream clus-
tering algorithm based on fitness proportionate sharing to
produce data for MMOP. The authors then developed a novel
dynamic clustering algorithm to extract the cluster structure
automatically from scratch and approximate the density dis-
tribution of the data stream using a recursive lower bound of
the Gaussian kernel function. Applying the Cluster-Chaotic-
Optimization (CCO) approach for a specific optimization
issue, extending its capabilities to discover, register, and
retain many optima effectively [71].

Because parameter tuning is a hyper-optimization prob-
lem, it is particularly difficult when tweaking optimization
techniques. Currently, it is unclear how to tune parameters
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FIGURE 1. Classification of metaheuristic optimization algorithm.

effectively and how to control parameters properly for any
given algorithm, and a given set of problems. Although a
good tuning tool apply, the tuned parameters may not per-
form well for other problems, or for different types with
unknown optimality [76]. Parameter tuning may be done in
a variety of ways, such as hyper-optimization, which applies
the ideal parameter setting n∗ after the algorithm has been
tuned for the given issue M. A parallel or loop structure for
tuning and problem-solving will be used repeatedly as an
additional method for parameter tuning [76]. The approach
known as self-adaptive multi-population (SAMP) involves
the dynamic addition and delete of populations according
to their variety. The free population, the initial population
in this approach, is a single randomly initiated population.
After evolution, the authors declared a solution to have con-
verged if the gap between them decreases below a specific
threshold. If all current populations have converged, new
populations will be randomly introduced. SAMPmaintains at
least one free population at all times to prevent the algorithm
from becoming stuck in local optima [77]. The researchers
also researched random partitioning, a potential population
partitioning approach that divides a single population into
several smaller sub-populations at random using seed-based
partitioning with fixed seeds and random partitioning with a
primary population [77]. The significance of initialization is

crucial for the accuracy and rate of convergence of certain
algorithms. Researchers should utilize various initializa-
tion techniques for different situations, as starting solutions
may impact the effectiveness of the optimization algorithm.
Uniform distributions are not the optimal initialization strat-
egy for all functions [78]. Robust Optimization Over Time
(ROOT) is a discipline that focuses on investigating and
advancing algorithms, incorporating the principles of both
adaptive and robust optimization [79]. The No Free Lunch
(NFL) theorem states that there are no metaheuristic algo-
rithms or optimization strategies available to handle the issue
optimally. While metaheuristic optimization approaches can
be helpful in solving some issues, they can also be inef-
fective in solving other difficulties. There is still room for
improvement in the field of metaheuristic optimization algo-
rithms, and several academics are working to build new
metaheuristic algorithms [80]. Applying diversity measures
improves the understanding and efficiency of algorithms.
Researchers suggest replacement and exclusion operator
strategies. By randomly reinitializing the population with a
less-fit solution, the inclusion operator in multi-population
swarm algorithms preserves population variety. There is a
replacement operator that creates new, and randomly gen-
erated solutions to replace the ones that already exist. The
majority of diversity-increasing methods help an algorithm’s

98410 VOLUME 12, 2024



H. K. Abdulkarim, T. A. Rashid: In Search of Excellence: SHOA as a Competitive Shrike Optimization Algorithm

fundamental structure to be modified [81]. Researchers have
found the use of the enhanced search method with vari-
ous swarm algorithms that use Cauchy, Levy, and uniform
distributions [82].

The effective application of swarm-based algorithms by
the scientific and business communities has demonstrated the
worth of these methods in practice. The benefits of SI-based
algorithms are the reasoning success of the algorithms men-
tioned before. Swarm-based optimization methods work with
groups as a population and have some randomness during
searching for a solution. Despite all optimization algorithms,
there is no universal algorithm used to solve all optimization
problems. Still, some algorithms outperform others in many
types of optimization problems. The researchers are working
to find an algorithm that outperforms other algorithms for
most of the problems or find new algorithms that can solve
unsolved problems.

II. SHRIKE BIRDS
A. SOURCES OF INSPIRATION FOR SHRIKES
The Laniidae family of passerine birds includes shrikes,
which are distinguished by their propensity to impale their
flesh on thorns after capturing insects, small birds, or ani-
mals. The shrikes are two genera with 34 species distributed
throughout the world. In North America, there is a member
of the Shrike family called Loggerhead Shrikes. Loggerhead
shrikes, also called butcherbirds and migrating shrikes, reach
a weight of roughly 48 grams [83], [84], and [85]. Within
the Laniidae family, this remarkable bird is rather huge, and
its large head may have contributed to its unique name.
Males and females have similar appearances; it is difficult to
distinguish between them. They have black, white, and grey
markings on their bodies and a black mask that covers their
eyes [86].

Over its range, the loggerhead’s appearance varies slightly
by region. Loggerheads eat mainly small vertebrates and
small mammals. They live, migrate, eat in population, and
use cooperative breeding [84]. Make nests on the trees; the
female will deposit between four and seven eggs in a clutch,
which she will then incubate for roughly sixteen days [86].
For a period of seventeen to twenty days, both parents are
responsible for taking care of the nestlings. After leaving the
nest, the young birds remain close to their parents for three
weeks, during which time they get food from both parents,
develop their flight, and at night return to be warmed by
the parents. For more information, return to reference [85].
The population of the shrike bird life cycle is simulated in the
Figure 2. There are three nests: A, P, and Q are the population
of birds’ nests; the nest AA parent will brood eggs at the nest
(AB); the nestlingwill grow up and become adults ready to fly
and later depend on themselves, the breeding and surviving of
the birds of nest A shown from (A to C).

B. SHRIKE OPTIMIZATION ALGORITHM
Depending on the nesting and reproductive behavior of the
shrike birds explained in the previous section, the shrikes

FIGURE 2. Shrike bird life cycle.

live in a population out of the urban area; the population has
many nests, and each nest starts with two birds as parents.
The breeding and surviving behaviors of the shrikes were
modeled by the Shrike Optimization Algorithm (SHOA).
In Figures (3 and 4) the pseudo-code SHOA is presented.
The pseudo-code clearly and simply describes the SHOA’s
execution process.

The SHOA start by initializing parameters, where N is the
size of nests in the population, B is the number of eggs con-
sidered nestlings in each nest, and α is constant considered a
natural factor affecting the bird. The search space of SHOA
starts with a population of N nests, where each nest starts with
two parent birds generated randomly. After the population is
generated and nests are ready, and B number of nestlings will
be generated. Population is represented as equation (1).

Population(N ) =



[
pim pif
nij nij

]
· · ·

[
pim pif
nij nij

]
...

. . .
...[

pim pif
nij nij

]
· · ·

[
pim pif
nij nij

]
 (1)

where a population like a pool hasN nests, each element in the
population represents a nest, each nesti has many solutions
parent and nestling considered as a solution of the algorithm,
where i = (1,2, . . .N), and parents are randomly generated
using equation (2).

pi = LB+ rand(UB− LB) (2)

In the initialization process, after two birds are generated as
parents for each nest, the fittest will be selected as dominance
Mparent is male parent, and other remains Fparent as a female
parent. In the breading phase, every nest generates B nestling
using equations (3) and (4). Where 1eggj generate from both
parents, and r is a random value in [-1, 1], then 1eggj used to
generate nestlingj, where i= (1,2, . . .B).

1eggj = (Fparent−Mparent ) + r (3)

nestlingj = Fparent + 1eggj (4)

The nestlings will depend on their parents; the male parent
is dominant, which feeds the nestling, and the female, but the
male feeds by itself only; the female also feeds by itself, and
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FIGURE 3. Pseudo-code SHOA Algorithm.

FIGURE 4. Pseudo-code generates nestling steps.

will feed nestling if they don’t get food from the male parent.
The idea of feeding nestling by a dominant parent leads
the search to exploit solutions and converge to the optimum
solution. Each nest has only two dominant solutions as a
parent, they consider the first optimum and second optimum

solution for the current nest, and each nestling gets feeds from
the parent this is the solution exploit phase. In SHOA, after
initialization nests and parameter parents should be specified
depending on their objective function, and then r will be
generated for each dimension using equation (5).

r = e−2xt/Tmax (5)

The r parameter represents a natural factor in feeding, and
the reason for the calculation of such a factor is to increase
exploration. Where x is the dimension variable for birdj,
t is the current iteration, and Tmax is the maximum iteration
allowed for running SHOA. Then using equation (6) each
parent bird will feed itself.

1f ood j = bird j × r (6)

But for feeding nestlings, the 1 food is generated using for-
mula (7), which bird j is the current bird state with aMparent is
male parent bringing food.

1foodj = r × (bird j−Mparent ) +Mparent (7)

whereas the nestlings didn’t survive by food from the male
parent, then they tried to survive through the female parent
using formula (8), the same as formula (7), but r ∈ [-1, 1],
and sin(α), where α is used as a constant factor.

1foodj = r × (bird j−Fparent ) + sin(α) (8)

After generating food, the birds’ next status will be calculated
using formula (9), which is the current state of birds getting
food.

birdt+1
j = birdtj + 1foodj (9)

Calculate the fitness for each bird is better than the current
state, then the current bird birdtj ,will be updated with the new
state as birdt+1

j , the fittest one will survive for the next gener-

ation, not all birds get food at the same time. If any birdj does
not get food from its parent it will survive using equation (10)
to generate 1foodj, where r is randomly generated between
[-1, 1] and another variable parameter α = rand [0, dimen-
sion], α used as random variable to increase randomization,
the sine of the variable will change over time depending on
different values, this step is exploring the space by finding
new solutions far from the current state, and randomly search-
ing other possibilities, in this phase, the current solution will
diverge from local best to generate new solution far away
from parent.

birdt+1
j = birdtj + (r×bird j + sin(α)) (10)

The SHO algorithm keeps the best of each nest as the
local best, then the population keeps the best from all local
best as global. The idea of multi-modality can be solved
using a group of solutions; where each nest has many birds,
each k iteration the nest will regenerate after the old nestling
finishes their nestling period time. The algorithm will keep
just the two best birds as parents and remove all other birds
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FIGURE 5. Flow chart of SHOA.

as they die or fly far away from nests as they get ready to
live independently. Every parent will generate a new nestling
again and a new generation will update the current nest
solution, the same algorithm execution process will continue
till the stop condition.

Generation after generation of searches conducted using
a randomly generated population. The Flow chart of SHOA
specifies the process and SHOA’s follow steps are presented
in Figures (5, 6).

C. TIME AND SPACE COMPLEXITY
The computational time complexity of the SHOA encom-
passes the time and space complexity is taken into account.
The time complexity of SHOA is affected by the initialization
process and population updating as follows:

The algorithm initialization process requires O(N × B)
time, where, as mentioned, N is the number of nest members
in the population and each nest has B birds.

Updating and calculating each nested element as a solution
of the algorithms requires M iterations to complete algorithm
evaluation O ((N× B) × M), where M is the maximum
iteration of an algorithm. For every dimension, the updat-
ing of members requires an O ((N× B)× M × d) time,
where d is the dimension, for every k iteration SHOA had to

FIGURE 6. Flow chart of generate nestling.

choose two bests to regenerate nestling, the time considered
as O (N log N). Overall time complexity:

O (N×B (1 + M (1 + d))) + O (N log N).
The space complexity of SHO depends mainly on the

population size (N), the number of solutions in each nest (B),
and the number of dimensions to be solved (d).

III. IMPLEMENTATION AND RESULTS
Number of global optimization test functions to show the
performance of SHOA and the results compared with some
well-developed optimization algorithms studied in the lit-
erature. Three groups of test functions are selected as
uni-modal, multi-modal (simple, complex) [87], [88], [89],
[90], and [91], 100-digit Challenge test functions [92], and
highly complex benchmark of CEC 2022 (CEC22) [93] as a
single objective-constrained bounded numerical optimization
benchmark, each having a specific characteristic. The test
functions were shifted and rotated by the values shown in
Tables (19-23) in Appendix A to increase the complexity
of the problems. The results compared with many optimiza-
tion algorithms such as ANA [13], PSO [15], FDO [25],
MFO [31], BKA [35], Fox [55], OOBO [67], and GA [94].

Despite the increasing complexity of the tested functions
by rotating and shifting, all uni-modal test functions have
a single optimum solution, while increasing the dimension
will increase the problem difficulty and computation time to
reach a globally optimum solution. The test functions F1-F7
are shown in the uni-modal function considered, while the
multi-modal function has many local optima, which increases
the difficulty of the algorithm to find an optimum solu-
tion because of trapping in local optima. The test functions
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F8-13 multi-modal test functions are considered multi-modal
problems for comparison, and the specification of functions,
rotation, and shift values of the problems are specified in
the table in Appendix Table 20. Composition functions are
compounds of many functions with rotation, shifting, and
add function bias. These functions are important as case
studies because the properties of multi-functions are mixed
like real-world problems, and they will show the performance
of the algorithm in the exploration and exploitation search
capability. The test functions F14-F19 mentioned in Table 21
composite functions had fmin = 0 shown, where σ is used to
coverage range control of each f(x), and λ used for compress
and stretch the function, all these are tested with composite
functions in the current study. Recently, many competition
functions have been provided by high-impact conferences
to be used as comparison studies for competing for the
performance of optimization algorithms. The 100-Digit func-
tions challenge has 10 hard-solved problems as compound
functions from the Society for Industrial and Applied Math-
ematics (SIAM), the purpose of solving such problem in this
paper is to find the optimum solution within a specific time
because, in the original paper, there is no time limitation for
solve problems [92]. The problems are shown in Table 22 the
Hundred-Digit Challenge basics with the range of x values,
and dimensions of the test problems.

TheCEC22 is also used to show the performance of SHOA.
Four groups of test functions included as uni-modal just one
function F1, basic multi-modal four functions F2-F5, hybrid
multi-modal has only three functions F6-F9, and Composi-
tion multi-modal has four F9-F12, they are challenge test
functions each having a specific characteristic. Test functions
have shift, shuffle, and rotate with a matrix downloaded from
a special session of conference link. The change of x values
with rotation, shift and shuffling values, for hybrid functions
will increase the problem complexity.

Numerical examples with dimensions specified in the
tables, each test instance run 30 times. The SHOA runs with
a population size set to 15, each nest starts with two solutions
as a parent of the nest, parents breeding B eggs, nestling
birds feeding by the parent during k generations of algorithm
cycles, then best 2 keep for next generation, other birds
removed from nest, 500 iterations specified for each turn
the SHOA and selected optimization algorithm parameters
shown in the Table 1. The statical results ‘‘Mean ‘‘represents
the mean value and ‘‘Std’’ is the standard deviation over
30 rounds, the algorithm’s extra parameters and specifica-
tions are summarized in the Table 1.

The proposed algorithm applies groups and subgroups,
the concept designed for multi-modality, but uni-modal test
functions are also benchmarked to show the performance of
SHOA. The comparison F1, F2, and F7 are median when
compared with other algorithms, but in all multi-modal func-
tions have good performance in some show superiority over
others. The comparative results mean and standard deviation
are shown in Table 2. SHOA outperforms other powerful
algorithms in hybrid multi-modal functions.

TABLE 1. Algorithm specifications.

In Table 3 comparison results for Hundred-Digit challenge
problems of SHOA and other algorithms are shown, C01 and
C06 are highly complex problems that need more execution
time to solve, some algorithms have slow convergence to
optimal like ANA, FDO, and PSO takes a lot of time because
it has exploited every solution, furthermore PSO fails for
C01 and C06 and ANA fails for C06, this proves that ANA
and PSO’s slow convergence rate during execution. Indeed,
results in many test functions like (C01, and C06) show the
novel SHOA is more powerful than other algorithms not only
at the average value of 30 runs but at other statistical Std
values also.

Furthermore, Table 4 shows the comparison result of
CEC22 for all problems, SHOA’s performance is low com-
pared with other algorithms in Ce01, while in all others it
has good performance. Once again, the Wilcoxon rank sum
and Fridman test shown in Tables (5-11) demonstrated the
statistical performance of SHOA in solving all test problem
functions. Two algorithms are compared using the Wilcoxon
rank sum test, the Wilcoxon rank sum test a nonparametric
statistical test to determine the significant difference between
the average of two data samples, is applied. In the Wilcoxon
rank sum test, using an index called a p-value of 5%, it is
determined whether the superiority of SHOA against any
other algorithms is significant from a statistical point of
view. While more than one algorithm is used to test for
Fridman, any value that is not applicable has a sign (-) in
Table (2, 3, or 4) Fridman and Wilcoxon tests are not con-
sidered for not applicable results.

The Wilcoxon rank sum is reported in Table 5-7. Based
on these results, in cases where the p-value is less than 0.05,
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TABLE 2. Comparison result of SHOA on 19 Test Instances (Uni, Multi, Composition ) -modals with Algorithms MFO, FDO, FDO, FOX, ANA, PSO, GA, BKA,
OOBO.

TABLE 3. Comparison result of SHOA on Hundred- Digit CEC 2019 test instances with algorithms MFO, FDO, FDO, FOX, ANA, PSO, GA, BKA, OOBO.

TABLE 4. Comparison result of SHOA on CEC 2022 test instances with algorithms MFO, FDO, FDO, FOX, ANA, PSO, GA, BKA, OOBO.

SHOA has a significant statistical superiority compared to the
corresponding algorithm.

In Table 7 the test results show the statistical difference
between SHOA with correspondence algorithm specified in,
F2, and F7 has p-value > 0.05% while all others are < 0.05,
furthers more in Table 6, C4 with ANA, and C7 with FDO
have p-value> 0.05, in Table 7 the functions Ce05, and Ce06
with ANA also have p-vales > 0.05. The Fridman statistical
test is reported in Tables (8-10). In Table 8 Fridman’s results
of unimodal functions are presented, MFO takes first place
the lowest is the best, and SHOA takes fourth place as it
runs median, while MFO is inapplicable to find a solution for
F7 under the same conditions which other algorithms found.
In Table 9 as all test functions are multi-modal mean rank-
ing of Fridman shows that SHOA takes first place followed
by ANA. MFO, FDO, BKA, GA, FOX, OOBO, AND the
last PSO.

Hundred-Digit CEC19 test case Fridman results show
SHOA taking first ranking place followed by MFO, FDO,
ANA, BKA, FOX, OOBO, GA, and PSO. Compari-
son of Fridman for the last test instances presented in
Tables 10 and 11 for both CEC19 and CEC22 respectively,
in the overall mean ranking has the lowest value, but in all
cases, it performswell even inmedium and good performance
for all cases.

Furthermore, Figure 7 reports the best solution found dur-
ing the search space of SHOAwith all competitive algorithms
selected for Function (F1-F19), the algorithms convergence
curve shows smoothly converges to the best solution.

In Figure 8, the 100-digit problems’ convergence curve
is presented to show the searching space and converge to
the optimal solution, some algorithms converge to the opti-
mal solution from the first 25 iterations, while others need
more. MFO has fast convergence in C01, C02. SHOA also
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TABLE 5. Wilcoxon ranking sum test SHOA on 19 different modal test
instances against algorithms SHOA vs (MFO, FDO, FDO, FOX, ANA, PSO,
GA, BKA, OOBO).

TABLE 6. Wilcoxon ranking sum test SHOA on Hundred Digit CEC
2019 test instances against Algorithms SHOA vs (MFO, FDO,
FDO, FOX, ANA, PSO, GA, BKA, OOBO).

TABLE 7. Wilcoxon ranking sum test SHOA on CEC 2022 test instances
against Algorithms SHOA vs (MFO, FDO, FDO, FOX, ANA, PSO, GA,
BKA, OOBO).

TABLE 8. Fridman mean ranking SHOA on 7 single modal test instances
against Algorithms MFO, FDO, FDO, FOX, ANA, PSO, GA, BKA, OOBO.

converges to optimal at the first quarter of iterations. Figure 9
presents convergence curve of CEC22 test instance, some

TABLE 9. Fridman mean ranking SHOA on 14 different multi-modal test
instances against algorithms MFO, FDO, FDO, FOX, ANA, PSO, GA,
BKA, OOBO.

TABLE 10. Fridman mean ranking SHOA on Hundred CEC 2019 test
instances against Algorithms MFO, FDO, FDO, FOX, ANA, PSO,
GA, BKA, OOBO.

TABLE 11. Fridman mean ranking SHOA on CEC22 test instances against
Algorithms MFO, FDO, FDO, FOX, ANA, PSO, GA, BKA, OOBO.

lines appear in some functions meaning multiple algorithms
had same value or near value, the line at the top hides others.

The authors of JDE100 [95] run 50 runs for each function
with a different initial population but only the best 25 are
selected for the final result shown in Table 12, while in SHOA
30 consecutive runs were implemented with different initial
populations and all used in the resulted table, and SHOA
run on 5e+02 maximum function evaluation, but JDE100
maximum evaluation is 1e+12. In all function comparisons,
SHOA performs less mean and std than JDE100. The results
are shown in Table 12. The Table 13 shows the performance of
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FIGURE 7. Convergence curve F1-F19.

SHOA for CEC22 benchmarks for each (2, 10, 20) dimension,
where D = 20 has already been studied but the Table above
shows a comparison, there are no application results for F6,
F7, F8 in two dimensions because of hybrid functions need

more dimensions. The performance of SHOA wouldn’t be
different with high dimensions when comparing between
10 and 20 dimensions, but overall algorithm performance will
be high in small dimensions like D = 2.
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FIGURE 8. Convergence Curve CEC 2019.

FIGURE 9. Convergence Curve CEC22 test instances.

Table 14 presents the comparison results of different nest-
ing sizes (4 to 7) and selects samples from the CEC22

instance test cases for D= 10, due to the challenge of achiev-
ing an optimal or semi-optimal solution through multiple
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TABLE 12. Comparison of SHOA with winner CEC 2019.

TABLE 13. Compare values Of CEC 2022 for different dimension.

TABLE 14. Comparison results of CEC22 with different nestling for D=10.

algorithms at the appropriate time. The results show that with
increasing nest size, mean and std with a single model were
improved, while multi-modal was complex and difficult to
solve; no significant difference was found.

IV. ENGINEERING PROBLEMS SOLVING
In this study, four constrained engineering problems, namely
three-bar truss design, gear train design, antenna array design,
and frequency-modulated sound wave design, are considered
to investigate the applicability of SHOA. The problems have
equality and inequality constraints, the SHOA should be
equipped with the constrained solutions. Although, in con-
straint problem solving there will be feasible and infeasible
solutions, to investigate infeasible solutions, some algorithms
use penalty functions [96], in this study the death penalty
is used, and the infeasible solutions are discarded and not
investigated with a penalty to speed up the algorithm process.
It is worth noting that the population size is set to 15, and

iterations set to 500, for 30 rounds for all the problems in this
section.

A. GEAR TRAIN DESIGN PROBLEM SOLVING
The gear train design is a mechanical engineering problem,
the main objective is to minimize the desired ratio with the
current ratio [97], the objective function was formulated as
follows:

f (x⃗) =

(
1

6.931
−
GaGb
GcGd

)2

(11)

where 1
6.931 desired ratio, Ga, Gb, Gc, Gd teeth of gears A, B,

C, and D respectively, with the ratio is:

Gear Ratio =
GaGb
GcGd

(12)

subject to: ∀
{
Gi, 12≤Gi≤ 60

}
, where Gi is teeth of Ga, Gb,

Gc, Gd.
In Table 15 for SHOAwith AZOA [98], MFO, Non-Linear

(NL) [97], and Cuckoo Search (CS) [99] shown, the table
presents gear teeth of A, B, C, and D, optimal, and ratio (x)
as comparison parameters, where the ratio must be closer to
(1/6.931). In this study, SHOA had high performance over
other algorithms,MFOhas good optimal error but the (ratio>

1.442) CS also performedwell in the second stage, but AZOA
had bad performance because their ratio rates as constraints
were not satisfied.

TABLE 15. Comparative result gear train design problem.

B. THREE-BAR TRUSS DESIGN PROBLEM SOLVING
The three-bar truss problem is a civil engineering design
problem whose objective is to achieve the minimum weight
subjected to stress, deflection, and buckling constraints and
evaluate the optimal cross-sectional area (A1, A2). Math-
ematically, to minimize the weight of a three-bar truss
construction, according to [100], an objective function and
constraints are formulated as follows:

Minimize f (x) =

(
2
√
2 x1 + x2

)
× l (13)

Subject to:

C1(x) =

√
2 x1 + x2

√
2 x21 + 2x1x2

P− σ ≤ 0 (14)

C2(x) =
x2

√
2 x21 + 2x1x2

P− σ ≤ 0 (15)

C3(x) =
1

√
2 x2 + x1

P− σ ≤ 0 (16)
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∀i, 0 ≤xi≤ 1, where i = 1, 2, the constant parameters are:
l = 100 cm,P = 2 KN/cm2,σ = 2 KN/cm2.
The comparative result shown in Table 16 presents the

performance of the SHOA compared with AZOA, CS, MFO,
and engineering design optimization by (Ray T, and Saini)
TSa [100] algorithms, SHOA had tested nearly 20 times in
30 rounds all minimum fitness was between (263.89, and
263.90) and maximum fitness was between (263.94, and
263.97). Table 16 shows the performance of SHOA either
better or equal other algorithms.

TABLE 16. Comparative result three-bar truss design problem.

C. ANTENNA SPACED ARRAY PROBLEM SOLVING
Optimization of antenna arrays means reducing the side-lobe
level (SLL) of a non-uniformly spaced linear array. The
fitness value for the problem has been formulated to the max-
imum SLL to optimize the non-uniformly spaced array [25],
and [101]. Objective function and constraints are formulated
as follows:

f (x⃗) = max[20 log |G(θ )|] (17)

where the:

G(θ ) =

∑n

i=1
cos [2πxi (cos θ − cos θs)]

+ cos [2.25 × 2π (cos θ − cos θs)] (18)

n = 4 and θ = 45◦,θb = 90◦

Subject to:

d = |xi− xj| > 0.25λ (19)

0.125λ < min xi ≤ 2.0λ

xi ∈ (0, 2.25) , i = 1, 2, 3, 4.i̸=j (20)

To minimize SLL, the element should optimize without
violation of above constraints above, where θ is elevation
angle, and θb is beam angle, xi which is an element of the
antenna must be greater than 0.125λ , the distance between
elements must be more than 0.25λ .
The comparative assessment in Table 17 shows an opti-

mal value between SHOA and other algorithms that applied
antenna array space problem, the SHOA found a mini-
mum optimal out of 30 rounds as shown in Table 17, and
the maximum optimal value was (-177.46) with parameters
(1.237, 0.789, 1.513, 0.432), the assessment shows the supe-
riority of SHOA in all rounds when compared with FDO
and ANA.

TABLE 17. Comparative result antenna spaced array problem.

TABLE 18. Comparative result of frequency-modulated sound wave.

TABLE 19. Uni-modal test functions with dimension = 10.

D. FREQUENCY-MODULATED SOUND WAVE DESIGN
PROBLEM SOLVING
The frequency modulation in sound waves is required to find
optimal parameters to transfer sounds, it has six parameters to
optimize as (a1, w1, a2, w2, a3, w3), which is a highly com-
plex problem in the multimodal field, with fitness function
is a minimum summation of square error between evaluated
and modeled data, the fitness and constraints are formulated
as follows:

f (p⃗) =

∑100

i=1
(y(t) − y0(t))2 (21)

where:

(p⃗) = (a1,w 1, a2,w 2, a3,w3) (22)

y(t) = a1 · sin (w1 · t · θ + a2 · sin (w2 · t · θ

+ a3 · sin (w3 · t · θ))) (23)

y(t) = (1 · 0) · sin((5 · 0) · t · θ + (1 · 5) · sin((4.8) · t · θ

+ (2 · 0) · sin((4 · 9) · t · θ ))) (24)

With θ = (2π/100), the range of the parameter is
[−6.4, 6.35], and minimum fitness values are the optimal
solution for the sound wave problems to transfer sound with
the lowest error rate [94], [102], and [103].
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TABLE 20. Multi-modal test functions with dimension = 10.

In Table 18 comparative results of a frequency-modulated
wave for the SHOA and FDO, ANA and Fork Genetic
Algorithm (fGA) [94] are shown, the table presented six
parameters, with the best fitness value out of 30 runs con-
sidered as an optimal result, and an average of 30 runs of
the SHOA with the mentioned algorithms FDO and fGA, the
unknown data is written as NA. The result shows that SHOA
has a higher performance than all algorithms. The SHOA
finds better fitness than FDO and a better average than fGA
out of 30 runs. The FDO average result was NA, an opti-
mal value has been generated depending on the presented
parameters from FDO, and the fGA reached the optimal

solution
(

−→
p

)
= 0.0, but the parameters had not been

presented.

TABLE 21. Composite test functions with dimension = 10, Range [−5,5],
fmin = 0.

V. CONCLUSION
In this study, the theoretical model for the novel SHO
swarm-based algorithm has been provided via concepts of
exploration and exploitation. It mimics the bird’s breed adap-
tation and lifestyle in the population.

The SHOA applied to 41 benchmark functions as (uni-
modal, multi-modal, composite, and 100-Digit Challenge)
test functions, CEC22 single objective bounded constrained
optimization and engineering problems (constrained, uncon-
strained) are solved. The performance has been compared
with recent and powerful algorithms. The results demon-
strated the effectiveness of the newly developed approach
SHOA in solving all test functions and a variety of engineer-
ing problems and showed that this can provide reliable and
accurate solutions in a variety of contexts. Through the SHOA
study, the following were concluded:

• Faster convergence rate, the mechanism adapts the best
birds for the next generation.
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TABLE 22. Summary of basic ‘‘The Hundred-Digit Challenge’’ benchmarks.

TABLE 23. Summary of CEC2022 benchmarks.

• More stable than compared algorithms, the balance of
convergence and divergence leads to the best solution.

• Accurate search, high exploration, and investigation
promise a promising area of space within a reasonable
amount of time.

• High performance in solving constrained and un-
constrained multimodal real optimization problems.

• Highly multi-modal problem optimizer, because each
nest is considered a population with an optimal solution,
and all are considered a single population that finds the
global optimum from local optimums.

• There are fewer control parameters compared with other
optimization algorithms, which leads to low computa-
tion time.

The proposed SHOA is a single objective and the graphical
abstract of SHOA presented in Figure 10 in the Appendix B;
for the future, many research works can be conducted in
multi-objective, binary, and discrete versions, all of which can
be used to solve a variety type of problems.

APPENDIX A
See Tables 19–23.

FIGURE 10. Novel SHOA process structure.

APPENDIX B
See Figure 10.
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